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A. Overview

In this supplementary material, we provide the following
content for a better understanding of the paper:

B. Limitations and Societal Impact.

C. Implementation Details.

D. Performance of R?Former Trained on Pitts30k.
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B. Limitations and Societal Impact

One limitation of our method is that our reranking mod-
ule is not as explainable as RANSAC [3] and it does not
guarantee a correct geometry correspondence between the
two images. Based on the ablation study, most of the in-
formation used for reranking is still the correlation between
local features, and the geometric information is not fully ex-
ploited. We might introduce direct homography estimation
and verification into our model in future work. Another lim-
itation is that our reranking module needs to be trained with
the global hardest negative samples from the full dataset. A
more elegant training strategy could be designed to achieve

1 This work was done during the first author’s internship at ByteDance
Inc.

complete end-to-end training with a simple sampling strat-
egy.

The proposed method could be used to improve local-
ization or navigation systems of a wide range of real-world
applications, and the authors do not foresee any negative
societal impact.

C. Implementation Details

The global retrieval module is trained with Adam [5] op-
timizer with a learning rate of 0.00001. Each batch sam-
ples 16 triplet pairs, where each pair contains a query, a
positive, and two negative reference images. The negative
samples are generated using partial negative mining [2] on
MSLS [8]. The module is trained until the recall@5 on the
validation set is not improving. 50000 queries are sampled
in each epoch for MSLS.

The partial negative mining [2] and positive sampling
mining follow the default setting of the VG benchmark
[2]. We did not use the full negative mining implementa-
tion of [2] to train the reranking module because it is very
time-consuming. Instead, we freeze the reranking module
first and precompute the global hardest samples for all the
queries on GPU which is much faster in practice. It can fitin
a single GPU because the dimension of our global retrieval
module is only 256.

The 2D interpolation is conducted on the positional em-
bedding (every channel is reshaped to widthxheight) so that
its size is always the same as the input size w/p x h/p. We
use the pre-trained best-performing NetVLAD models from
VG benchmark [2] where PCA is not used by default.

D. Performance of R?Former Trained on
Pitts30k

In Table 1, we show the performance of our models and
a typical standard method from [2] ("ResNet101+GeM”)
on Pitts30k [7] test set. The models are trained on either
Pitts30k or MSLS [8] dataset. For global retrieval meth-
ods, i.e. “ResNet101+GeM”, and “Ours w/o Reranking”,
training on Pitts30k achieves better performance than its



Trained on Pitts30k [7]

Trained on MSLS [8]

R@l R@5 R@10 R@1 R@5 R@10
ResNet101+GeM 832 925 94.8 770 89.2 925
Ours w/o Reranking  77.7  90.5 93.5 73.1  88.7 92.5
Ours 858 932 953 884 942 957

Table 1. Performance on Pitts30k [7] test set for our models trained on different datasets.

counterpart trained on MSLS [8], because there is a gen-
eralization gap between MSLS and Pitts30k dataset. How-
ever, “Ours” trained on MSLS [&] performs significantly
better than its counterpart trained on Pitts30k, indicating
that Pitts30k is not suitable to train our reranking mod-
ule. Different from RANSAC [3], our reranking module is
data-driven, so it prefers a large-scale training dataset like
MSLS. Besides, the reference/database images in Pitts30k
are extracted from panorama, where 24 images are gener-
ated from each panorama with the same location. Although
the positive sample mining [1, 2] is adopted, the positive
samples are not guaranteed to visually overlap with the cor-
responding query images, which could lead to wrong super-
vision information for our reranking module. Therefore, we
train our model on MSLS [8] dataset by default and finetune
on Pitts30k if necessary.

E. Performance of R’Former with Different
Number of Reranking Candidates

In Table 2, we show the performance of our method
(R?Former) and “Ours+RANSAC” (RANSAC with our
backbone) with different numbers of reranking candidates.
There is no observable improvement when the number of
candidates is increased from 100 to 200 for both methods,
indicating that 100 candidates are enough for reranking-
based methods. We also validate that using only 20 can-
didates does not cause much performance drop (~ 1%),
which could be a good trade-off to reduce the computational
cost by 5x.

Number of MSLS
Candidates R@1 R@5 R@10
20 85.1 932 94.7
Ours + 50 85.0 928 94.2
RANSAC 100 849 93.0 94.5
200 842 923 93.6
20 889 934 94.9
Ours 50 89.1 942 95.1
100 89.7 950 96.2
200 89.5 951 95.8

Table 2. Performance of our methods on MSLS [&] dataset with
different numbers of reranking candidates.

F. Qualitative Results of Retrieval and Rerank-
ing

In Figs. 1, 2, and 3, we show qualitative results of our
methods on challenging scenarios of MSLS [8] dataset, i.e.
dramatic lighting change, seasonal change, and viewpoint
variation. All the methods are based on the same back-
bone, “No Reranking” only adopts our global retrieval mod-
ule. “Ours” and “RANSAC” adopt our reranking module
and RANSAC [3] respectively on our global retrieval mod-
ule. Both “Ours” and “RANSAC” perform better than “No
Reranking”. “Ours” shows strong robustness in these chal-
lenging scenarios.

G. Qualitative Results on Matched Pairs

In Fig. 4, we show the qualitative comparison between
RANSAC and our reranking module in terms of local pairs.
Although our reranking module does not guarantee geomet-
ric correspondence, most of the highlighted local pairs of
our reranking module are correct local matches.

H. The Snapshot of MSLS Leaderboard

In Fig. 5, we show the snapshot of the MSLS [8]
leaderboard at the time of submission, and the proposed
method (named “Anonymous006” for double-blind policy)
is ranked 1st among all methods. Its recall@5 is much bet-
ter than the other methods.

1. Model Size

Table 3 shows ViT-Small and ResNet backbones have
very similar model sizes, e.g. # of parameters, and GFLOPs.

Method #of para. GFLOPs
ResNet+GeM 235M 252
ViT-Small 222M 259

Table 3. Model sizes of different backbones.

J. Explanation of Learning Patch-level Corre-
spondence

Although only image-level supervision is used, similar
patches are still likely to have similar features/tokens in



Query Image

RANSAC

Top-5 Matching Results

Ours

Figure 1. Qualitative results of our methods with different reranking configurations on dramatic lighting change. Top-5 matching results

are presented with green/red boxes for correct/wrong predictions.
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Figure 2. Qualitative results of our methods with different reranking configurations on seasonal change. Top-5 matching results are

presented with green/red boxes for correct/wrong predictions.

the embedding space. The raw similarity/correlation infor-
mation might not be accurate, but our reranking module
learns to determine whether the two images are correct
matches according to the inaccurate correlation matrix.
The image-level supervision helps the model put more
attention on candidate patch pairs with high confidence
to be correct local matches. It does not estimate any
homography transformation, and thus is not as explainable
as RANSAC. However, it could take advantage of addi-
tional information to get better performance than RANSAC.

K. Results on Nordland Dataset

We follow Patch-NetVALD [4] GitHub to download
Nordland [6] dataset. Table 4 shows that our method sig-
nificantly outperforms Patch-NetVLAD.

Method R@l R@5 R@10
Patch-NetVLAD | 449  50.2 522
Ours 60.6 66.8 68.7

Table 4. Comparison with PatchNetVLAD on Nordland dataset.



Figure 3. Qualitative results of our methods with different reranking configurations on viewpoint variation. Top-5 matching results are

presented with green/red boxes for correct/wrong predictions.

L. Different Training Settings

Our results with the model trained only on MSLS are
included in Table 2. We also evaluate the Pitts30k fine-
tuned model on MSLS Val in Table 5 and it still outperforms
TransVPR.

Method R@1 R@5 R@10
TransVPR 86.8 91.2 92.4
Ours-Pitts30k Finetuned | 88.4 94.5 95.4

Table 5. Evaluation of Pitts30k-finetuned model on MSLS Val.

M. Compare with MixVPR

Since MixVPR is published in 2023 (after the CVPR
submission deadline) and the code is not released, we are
not able to reproduce it during the rebuttal. Based on their
reported results, our method performs much better (9% 1)
on the hold-out MSLS Challenge set in Table 6.

Method R@l R@5 R@10
MixVPR | 64.0 759 80.6
Ours 73.0 859 88.8

Table 6. Comparison with MixVPR on MSLS Challenge set.
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Figure 4. Qualitative results on selected local pairs of RANSAC and our reranking module.



Results
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Figure 5. The snapshot on MSLS [&] leaderboard. The proposed method named “Anonymous006” (for double-blind policy) is ranked 1st
at the time of submission.



