
STMT: A Spatial-Temporal Mesh Transformer for MoCap-Based Action
Recognition

1. Model Architecture
The input to surface field convolution is a set of vertices

in shape N × C and the coordinates of a set of centroids of
size N ′×3, where N is the number of vertices, C is the fea-
ture dimension, and N ′ is the number of centroids. The out-
puts are groups of vertex sets of size N ′×K×C, where each
group corresponds to a local region and K is the number of
vertices in the nearest neighborhood of centroid vertices. To
learn both intrinsic and extrinsic features, we sample the K
nearest neighbors in Geodesic and Euclidean space, respec-
tively. Then each local region is abstracted by its centroid
and local feature that encodes the centroid’s neighborhood.
Output data size is N ′ × C ′. We use two surface field con-
volution blocks. In the first block, we sample 64 centroids
with 8 nearest neighbors. In the second block, we sample 32
centroids with 8 nearest neighbors. The feature dimension
C and C ′ equal 256. For the hierarchical spatial-temporal
transformer, we use 2 offset-attention layers for the intra-
frame attention module. The inter-frame attention module
contains a self-attention block with 8 heads.

2. Datasets
2.1. Data Pre-Processing

As most of the existing skeleton-based and point-cloud-
based baselines are for single-class classification, we only
use the MoCap sequences with single-class annotations.
There are 6,570 and 21,653 sequences for KIT and BA-
BEL after data cleaning. Both datasets use the SMPL-H
sequences from AMASS [8]. For 3D skeleton-based base-
lines, we use the pre-processed 3D skeletons provided by
the official BABEL dataset [9]. It predicted the 25-joint
skeleton used in NTU RGB+D [10] from the vertices of
the SMPL-H mesh. The process involves human efforts to
identify the vertices in the SMPL+H mesh that correspond
to these joints in the NTU RGB+D skeleton. For the data
pre-processing of noisy pose estimations on NTU-RGB+D
dataset, we apply the state-of-the-art body pose estimation
model VIBE [5] on videos of NTU RGB+D to obtain 3D
mesh sequences. Skeleton and point cloud representations
are derived from the estimated meshes to train the base-
line modes. There are 45,035 mesh sequences after pre-

processing. We follow the cross-view evaluation protocol
(i.e., use the samples of camera 1 for testing and samples of
cameras 2 and 3 for training [10]). We manually convert the
72-dimensional pose parameters from the estimated SMPL
sequences into the standardized NTU-RGB+D skeleton for-
mat. For point cloud-based models, we directly use the
mesh vertices as model input. For our STMT model, the
mesh vertices along with their adjacent matrices are used as
input. As MoCap sequences have variant lengths, we sam-
ple 24 frames from each MoCap sequence. We use farthest
point sampling to sample 128 vertices from each frame.

2.2. Dataset Licenses

AMASS [8]: https://amass.is.tue.mpg.de/
license.html
BABEL [9]: https://babel.is.tue.mpg.de/
license.html
NTU-RGB+D [10]: https://rose1.ntu.edu.sg/
dataset/actionRecognition

3. Experiments
3.1. Training Details

For skeleton-based baselines, we use the official imple-
mentations of 2s-ACGN, CTR-GCN, and MS-G3D from
[11], [1], and [7], respectively. We train models for
250 epochs with a batch size of 64. The other hyper-
parameters are the same as the hyper-parameters used in
NTU-RGB+D dataset. For point-cloud-based baselines, we
use the official implementations of PSTNet, Sequential-
PointNet, P4Transformer from [4], [6], and [3]. Our STMT
model is pre-trained using Adam optimizer with a learning
rate of 0.0001 for 120 epochs. The batch size is 128. We use
equal weights (λ1 = λ2 = 0.5) for masked vertex reconstruc-
tion loss and future frame prediction loss. The pre-training
stage takes 18 hours on 8 Tesla V100 (32GB) GPUs, and the
fine-tuning stage takes 1.5 hours on 4 Tesla V100 (16GB)
GPUs.

3.2. Computational Efficiency and Memory Usage

We evaluate the computational efficiency and memory
usage, i.e., the number of parameters and GFLOPs, of our
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Method # Frames # Params (M) GFLOPs Running time per clip (ms) Top-1 (%)
P4Transformer [2] 24 44.21 65.94 27.59 62.15
STMT (Lightweight) 6 10.55 59.59 15.41 63.50

Table 1. Comparison of Computational Efficiency and Memory Usage.

method. As mesh’s local connectivity cannot be directly
aggregated in the temporal domain, we cannot use tempo-
ral stride as in P4Transformer [2]. Therefore, we compare
our ablated model which only takes 6 frames as input with
P4Transformer, which is the best point-cloud-based base-
line. We can see that our light-weighted model has much
fewer parameters and smaller GFLOPs, and it can outper-
form P4Transformer by 1.35% in terms of Top-1 accuracy.

3.3. Transfer Learning Ability of the Pre-Trained
Model

To evaluate the transfer ability of the pre-trained model,
we train our model on KIT and test it on the joint dataset
BABEL, which combines more than 15 datasets. We report
the results with and without the proposed self-supervised
pre-training method (i.e., Maksed Vertex Modeling and Fu-
ture Frame Prediction) in Table 2. We observe that our pre-
training method can learn robust and generalized features,
even when the model is not pre-trained on the target domain.

Method Top-1 (%) Top-5 (%)
Rand.init. 41.90 68.37
STMT Pre-Training 43.16 69.04

Table 2. Analysis of the Transfer Ability.

4. Limitations
Although we validated our method on BABEL, which

combines more than 10 datasets, it still suffers from the
long-tailed problem. Some action classes have very few
sequences and may not represent the intra-class variances.
Therefore, potential dataset biases need to be addressed be-
fore deploying the model.
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