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Overview of Supplementary Material

In this supplementary material, we first provide the design and property of Diffusion Gesture Stabilizer in Section A. Then,
we further show more implementation details in Section B. And some additional experiments are reported in Section C.

A. More Details of Diffusion Gesture Stabilizer
A.1. Design of Annealed Strategies

In denoising diffusion probabilistic models (DDPMs), we iteratively sample @1 ~ pg(@:—1|x¢, ) at the inference as
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where z ~ N (0, I). At each timestep in the reverse process, z helps to increase the diversity of the generation.

However, the naive denoising strategy inevitably introduces a critical in our method. The dimensions of latent space consist
of temporal dimension and pose dimension in our method to produce high-fidelity pose sequences in a non-autoregressive
manner; thus, receiving the same treatment on two dimensions as on static image data can harm temporal consistency. In
DiffGesture, we propose a Diffusion Gesture Stabilizer to eliminate the negative effect via constraining the temporal-unaware
noise z at each timestep. We empirically find that given the trained diffusion model (with no extra training expense), with the
Diffusion Gesture Stabilizer of the annealed strategies, DiffGesture produces better results, especially on those failure cases
with clear temporal jittering (~ 5%, w/o Stabilizer).

In detail, our solution is to devise the temporal-aware noise z(t) = {2;(t)}}¥,, where z;(t) € RC. Itis clear that z;(t)
independently follows A(0, I') fori € {1, ..., N} and does not have relations with timestep ¢ in the naive denoising strategy.
A first attempt can be removing the temporal dimension of z(t) to make 2;(t) = 2o where zg € R follows A/ (0, I'). Thus,
all the temporal variation is removed in each timestep ¢ of the reverse process. However, this attempt fails due to an intuitive
observation: values on a certain dimension tend to be similar after some denoising steps with the zy. As the diffusion model
is trained with noisy data x; with the predefined diffusion process, it fails to generalize well on a new noisy data domain and
predict the noise from the noisy data of another noise prototype.

Therefore, we propose a Thresholding strategy where we remove the variation in the temporal dimension after denoising
to a certain extent of a threshold timestep. In detail, we set a time threshold ¢¢, and then use the same z € RVXC in the
naive sampling strategy for t > to and set z = {2}, for t < o, where zy € R® follows A/(0, I) which do not introduce
variation in the temporal dimension. Therefore, given the similar noisy data x, the diffusion model could predict the noise,
and z(t) would not introduce temporal variation when ¢ < ¢;.

Additionally, We further propose a smooth version of hard thresholding annealed strategy, Smooth Sampling. With
Thresholding, the process is transitioned from high variance and entropy (hot) to low variance and entropy (cold) at the
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threshold #(, while in Smooth Sampling, we wish the transition is smooth. We first sample zo(t) ~ A (0,02, (¢)I) only once
for each timestep ¢ in the reverse process, then given zo(t), we sample z;(t)|zo(t) ~ N (20(t), 02, (t)I) fori € {1,...,N},
where 02, (t) + 02, (t) = 1. Since given z((t), the group variance z(t) = {2;(t)}, is controlled by o4 (t), setting o2 (t)
a non-decreasing function (i.e., setting 0,1 (t) as a non-increasing function) temporal variance annealing is achieved, and
therefore we can use the annealed sampling strategies smoothly controlling the trade-off between diversity and temporal
consistency. Besides, we further prove that with our strategies, the sampled z;(t) follows the standard Normal distribution,
and the proof can be found in Section A.2. Obviously, Thresholding can be viewed as a special case of Smooth Sampling by

setting o,2(t) as a stepping function.
A.2. Property of Smooth Sampling

Property 1 With the annealed noise sampling strategy of Smooth Sampling, the z;(t) follows the standard Normal distribu-
tion N'(0,I).

Proof 1 According to Bayes’ theorem,
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Note that 02, (t) + 02,(t) = 1 holds and the integral of the normal distribution probability density function is 1.
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B. More Implementation Details

Audio Encoder F,. We extract audio features directly from raw audio data. We follow the implementations from [0]. The
audio encoder consists of a series of Convolution, BatchNorm, and LeakyReLU. For the first Convolution, we set the stride
to 5 and the padding to 1600. For the remaining Convolution, the stride is 6, and the padding is 0. For LeakyReLU, the
negative slope is 0.3. All the detailed operations and the corresponding feature dimensions are shown in Table 1. As a result,
32-D feature vectors can be extracted, and the number of feature vectors (i.e., channel size of the feature map) is the same as
the number of the motion frames.

Block Shape Operation

Input 1 x 36267 Unsqueeze
Conv Block-1 | 16 x 7891 | Convld, BN, LeakyReLU
Conv Block-2 | 32 x 1313 | Convld, BN, LeakyReLU
Conv Block-3 | 64 x 217 | Convld, BN, LeakyReLU
Conv Block-4 32 x 34 Convld

Table 1. Details of the operations in Audio Encoder and the shapes of audio feature maps.

Diffusion Audio-Gesture Transformer. Our Transformer-based network consists of Linear Embedding, Transformer Blocks,
and MLP. Through a linear layer FC (dimnput, diMpidden), Where dimpp,: and dimyp;qqen represent the input dimension



and the hidden dimension, we project the input data into a hidden space. We inject the time embedding to the transformer
through expanding and concatenation, where the time embedding can be represented as [f¢, sin(/3;), cos(S; )] following [4].
Here the time information ¢ is first represented in the variance f3;, then the basis of 3; are used. We concatenate the corrupted
gesture x4, the time embedding, and the context information (i.e., the initial poses and audio features). Following former
works [3, 6], the shape of the inial poses is nuMpose X (diMpose + 1), Where numyp,se denotes the number of ground truth
poses, 34 for both two datasets, dim,,,s. denotes the dimension of poses, 27 for TED Gesture and 126 for TED Expressive,
and an indicator logit is set to 1 for the use of initial poses. The initial poses are copied from the pseudo ground truth, and
the unknown poses are set to zero. Therefore, dimippur = 2 * dimpose + 3 + 1 4 32 based on the above inputs, where 3,
1, 32 represents the dimension of the time embedding, indicator logit, and the dimension of audio feature. For the trans-
former blocks, we use 8 Blocks, which are implemented in PyTorch Image Models (timm) [5]. And the input shape of the
transformer blocks is numpose X diMpidden. We set the number of heads to 8 in the multi-head self-attention blocks and
the MLP ratio to 4 in Feed-Forward Networks. Finally, we use a simple 2-layer MLP to map the latent hidden space of the
Transformer to the pose space.

Pose Auto-Encoder. Following Fréchet Inception Distance (FID) [2], which is widely leveraged to evaluate the image
generation quality, Yoon et al. [6] proposes a similar evaluation metric Fréchet Gesture Distance (FGD) to evaluate gesture
quality is. It leverages a pre-trained feature extractor to extract latent features of the gestures, then calculates the Fréchet
distance between the distributions of the latent feature space of real and generated gestures. In our evaluation, we use the
pre-trained auto-encoder provided from [6] and use it to evaluate FGD on TED Gesture. For TED Expressive, we train a new
auto-encoder on this dataset following [3] and use this one to evaluate FGD on TED Expressive.

C. Additional Experiments
C.1. Exploitation of Other Context Information

In this work, we simplify the co-speech gestures generation and focus on the speech audio to drive the gestures generation
while not using the text information as the input. We have shown the effectiveness with exhaustive experiments in the paper.
Here, we also want to show more experiments to illustrate the ability to leverage various context information of our method.
Specifically, we simply replace the audio feature in the context information with other formats of context information, like
text information and speaker identity information. To show the results on various formats of context information, we train
and test our method on the combination of context information and investigate all the eight settings. The results are reported
in Table 2. And for the text information and speaker identity, following the pipeline in [7], we use a temporal convolutional
network(TCN) [1] to exploit text information and an embedding mapping along with linear layers to map a speaker ID to a
style embedding space. Then we simply concatenate multiple information before the Diffusion Audio-Gesture Transformer.

TED Gesture [0] TED Expressive [3]
Context Input Logits FGD | BC? Diversityt FGDJ] BC{ Diversity 1
Ground Truth 0 0.698 108.525 0 0.703 178.827

audio text speaker - - - - - -

X X X 12542 0745 92536  25.768 0.682  166.075
X X v 10275 0760  91.925  27.639 0.665  161.176
X v X 3474 0704  103.546  3.137 0.707  182.137
v X X 1506  0.699  106.722  2.600 0.718  182.757
X 4 v 3462 0.695  102.378  3.587 0715 175.697
v X v 1999 0.671 106227  4.637 0.710  172.461
v v X 2.685 0726  101.986  2.089 0.723  184.422
v v v 2.637 0710 101.861  5.697 0.719  162.989

Table 2. The quantitative results on TED Gesture [6] and TED Expressive [3]. We show all the eight settings corresponding to the
different combinations of context modalities, where the setting 100 is what we investigate in this work.

In Table 2, it can be shown that our method produces great results when there is rich information, i.e., excluding the
first two rows, 000 and 001, where logit 1 denotes the modality is used and the logit O denotes the modality leaves unused.



With DiffGesture, it is simple yet effective to leverage other context information with the same architecture, which shows the
scalability of our framework. Since we do not further investigate how to fuse multi-modality features and simply concatenate
them in the input level, it is reasonable that case 111 does not produce the best metrics. We will explore how to effectively
fuse multiple conditional information for high-fidelity generation in future work.

C.2. Ablation Studies on Different Architectures

We use a Transformer-based Network to serve the diffusion network, which aims to predict the Gaussian Noise accurately.
Here we show the results of adopting different architectures in Table 3. We use the multilayered bidirectional gated recurrent
unit (GRU) network in [6]. All the context inputs are kept the same as our method, i.e., the initial poses, the feature of the
audio, and the time embedding are concatenated before the network. For the 1D Conv network, we simply use multiple
1D Conv blocks consisting of Conv, bn, and ReLU, to upsample and downsample the inputs. It is observed that while our
network achieves excellent performances, the GRU produces suboptimal results and 1D Conv cannot be well-trained in our
setting. The results indicate that applying diffusion models in the audio-driven conditional generation is a non-trivial task,
especially for non-static temporal data generation.

Network FGD| BC? Diversity T
1D Conv on D, 70.523  0.467 45.89
GRUon D, 14.343  0.658 98.472

Transformeron D, 1.506 0.699 106.722

1D Conv on D, 95410 0.475 132.250
GRU on D, 17.452  0.680 172.168
Transformeron D,  2.600 0.718 182.757

Table 3. Ablation studies on different architectures. We compare the performances of different diffusion-based backbones on TED
Gesture (D,) and TED Expressive (D).
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