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Below are additional details regarding our model and ex-
periments.

6. Datasets

mini-ImageNet. This dataset [8, 10] is widely used in
few-shot classification. It contains 100 randomly chosen
classes from ImageNet [9]. There are 64 training (base)
classes, 16 validation (novel) classes, and 20 test (novel)
classes among the 100 classes. There are 600 images in
each class. We adopt the split provided in [8].

tiered-ImageNet. ImageNet with a hierarchical structure
was used to create the tiered-ImageNet. Categories of
classes are divided into 34 categories, each of which con-
tains 351, 97, and 160 classes for training, validation,
and testing, respectively. Please note the training and test
classes are semantically disjoint. We follow the common
split in [1] and 84 by 84px resolution.

CIFAR-FS. This dataset has 100 classes, each with 600
examples in CIFAR-100 [4], on which this dataset is based
on. We use the 64 training, 16 validation, and 20 test classes
provided by [2].

CUB. There are 200 classes, each representing a bird
species, in this fine-grained dataset. Following the setting
in [2] , we divide our classes into three groups: 100 train-
ing, 50 validation, and 50 testing classes.

7. Feature Extraction and Pre-processing

ResNet-12A is the pre-trained backbone network used in
[12]. For all of our transductive and semi-supervised ex-
periments using this network, we adopt exactly the same
pre-processing as [12], which includes normalizing feature
vectors by their ℓ2 norms.

WRN-28-10 is the pre-trained network used in [7] and [3].
To provide fair comparisons with PT+MAP [3], we adopt
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exactly the same pre-processing as [3]. In the all experi-
ments, we apply the power transform and normalize feature
vectors by their ℓ2 norms.

DenseNet is the pre-trained network used in [6] and [11].
To provide fair comparisons with TASFFL [6], we adopt
exactly the same pre-processing. In the all experiments,
we decentre feature vectors by using the center in the train-
ing set and normalize decentred feature vectors by their ℓ2
norms.

MobilieNet is the pre-trained network used in [11]. To
provide fair comparison with LaplacianShot [14], we adopt
exactly the same pre-processing. In the all experiments, we
follow the setting as same as other backbones.

8. Hyper-parameters

In Eq. (7), parameter λ is in charge of regularizing the
graph. For the balanced class setting, we simply set λ = 1.
For the unbalanced class setting, we set λ = 0.5.

Hyper-parameter α is used to control updating proto-
types C in Eq. (16). We empirically found that α basically
does not impact the final result but the convergence speed.
In this paper, we set it as 0.2 for all experiments.

9. Note on Fair Comparisons

During our experimental studies, we noticed the impor-
tance of fair comparisons by ensuring the common testbed.
Below we talk about common issues.

• Some comparisons use different networks. In some
papers, ResNet-18 is compared directly with other
methods using ResNet-12. In Table 1 (our main pa-
per), we show that ResNet-18 has some advantages
over ResNet-12 in some cases.

• Methods are mainly compared under the class-
balanced prior. For ease of understanding, transduc-
tive FSL evolves directly from the setting of inductive
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FSL. Class-balanced queries are not an issue for in-
ductive FSL because these methods treat queries one-
by-one and ignore the class distribution of queries.
However, the same setting in transductive setting in-
troduces class-balanced prior. Many approaches over
the last few years have focused on how to exploit
this prior. We argue that this prior is unreasonable
for transductive FSL, since it is rare for queries to
follow a uniform class distribution. We can see the
power of optimal transport under this prior i numerous
works [3,5,13]. We can also see that this technique has
the negative effect for queries that do not conform to
the uniform class prior (e.g., PT-MAP [3] drop 17% in
mini-ImageNet under the unbalanced setting). Without
the optimal transport, these methods also loose perfor-
mance in the balanced setting.

We hope that bringing attention to these evaluation issues
will help researchers avoid following the unrealistic settings
and move toward fairer evaluation protocols and models.
We encourage the community to compare different methods
with under the same testbed.

10. The motivation of Parameterized Label
Prediction

From a theoretical point of view, if we do not use param-
eterized label prediction, we need to optimize:
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The closed form solution is
(
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computational complexity of the inverse matrix is n3. and
the rank(ZΛ−1Z⊤)= 5 (for 5-way problem). Thus we can
use linear function A to do propagation on Y and reduce
computational complexity from n3 to c3 where n≫ c. Pro-
jection to low-dimensional space limits the number of un-
necessary parameters. Experiments in Table 10 confirm the
parameterized LP works better.

Table 10. Test accuracy on standard LP and parameterized LP
setting (ResNet-12 backbone).

mini-ImageNet tiered-ImageNet CUB
Methods (ResNet-18) 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Ours (non-paramerized) 69.41 79.52 83.60 88.56 88.50 91.70
Ours (parameterized) 70.04 79.80 84.04 88.72 88.85 91.93

11. Inference Time

Table 11 provides the average inference time (1× AMD
3600 CPU) for the 1- and 5-shot tasks on mini-ImageNet
(ResNet-12 and WRN-28-10).

Table 11. Average inference time (in seconds) for the 1-shot and
5-shot tasks in mini-ImageNet dataset with different backbones.

Backbone ResNet-12 WRN-28-10

Shot 1 5 1 5
iLPC [5] 4.5e-2 5.6e-2 5.5e-2 7.0e-2
ICI [12] 3.4e-2 4.2e-2 4.1e-2 5.2e-2
protoLP 4.7e-3 5.8e-3 6.2e-3 6.8e-3
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