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1. Implementation Details

1.1. Parallel-UNet

Fig. 1 provides the architecture of 256×256 Parallel-
UNet. Compared to the 128×128 version, 256×256
Parallel-UNet makes the following changes: 1) In addition
to the try-on conditional inputs ctryon, the 256×256 Parallel-
UNet takes as input the try-on result I128tr , which is first
bilinearly upsampled to 256×256, and then concatenated
to the noisy image zt; 2) the self attention and cross at-
tention modules only happen at 16×16 resolution; 3) ex-
tra UNet blocks at 256×256 resolution are used; 4) the re-
peated times of UNet blocks are different as indicated by
the Figures.

For both 128×128 and 256×256 Parallel-UNet, normal-
ization layers are parametrized as Group Normalization [9].
The number of group is set to min(32, ⌊C

4 ⌋), where C is
the number of channels for input features. The non-linear
activation is set to swish [5] across the whole model. The
residual blocks used in each scale have a main pathway of
GroupNorm→swish→conv→GroupNorm→swish→conv.
The input to the residual block is processed by a separate
convolution layer and added to the output of the main
pathway as the skip connection. The number of feature
channels for UNet blocks in 128×128 Parallel-UNet is set
to 128, 256, 512, 1024 for resolution 128, 64, 32, 16 respec-
tively. The number of feature channels for UNet blocks in
256×256 Parallel-UNet is set to 128, 128, 256, 512, 1024
for resolution 256, 128, 64, 32, 16 respectively. The
positional encodings of diffusion timstep t and noise
augmentation levels tna are not shown in the figures for
cleaner visualization. They are used for FiLM [4] as
described in Sec. 3.2 of the main paper. The 128×128
Parallel-UNet has 1.13B parameters in total while the
256×256 Parallel-UNet has 1.06B parameters.

1Work done while author was an intern at Google.

1.2. Training and Inference

TryOnDiffusion was implemented in JAX [2]. All three
diffusion models are trained on 32 TPU-v4 chips for 500K
iterations (around 3 days for each diffusion model). Af-
ter trained, we run the inference of the whole pipeline on
4 TPU-v4 chips with batch size 4, which takes around 18
seconds for one batch.

2. Additional Results
In Fig. 2 and 3, we provide qualitative comparison to

state-of-the-art methods on challenging cases. We select
input pairs from our 6K testing dataset with heavy occlu-
sions and extreme body pose and shape differences. We can
see that our method can generate more realistic results com-
pared to baselines. In Fig. 4 and 5, we provide qualitative
comparison to state-of-the-art methods on simple cases. We
select input pairs from our 6K test dataset with minimum
garment warp and simple texture pattern. Baseline meth-
ods perform better for simple cases than for challenging
cases. However, our method is still better at garment de-
tail preservation and blending (of person and garment). In
Fig. 6, we provide more qualitative results on the VITON-
HD unpaired testing dataset.

For fair comparison, we run a new user study to compare
SDAFN [1] vs our method at SDAFN’s 256 × 256 resolu-
tion. To generate a 256 × 256 image with our method, we
only run inference on the first two stages of our cascaded
diffusion models and ignore the 256×256→1024×1024 SR
diffusion. Table 1 shows results consistent with the user
study reported in the paper. We also compare to HR-
VITON [7] using their released checkpoints. Note that orig-
inal HR-VTION is trained on frontal garment images, so we
select input garments satisfying this constraint to avoid un-
fair comparison. Fig. 9 shows that our method is still better
than HR-VITON under its optimal cases using its released
checkpoints.

Table 2 reports quantitative results for ablation studies.
Fig. 7 visualizes more examples for the ablation study of
combining warp and blend versus sequencing the tasks.
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Figure 1. Architecture of 256×256 Parallel-UNet.

Fig. 8 provides more qualitative comparisons between con-
catenation and cross attention for implicit warping.

We further investigate the effect of the training dataset
size. We retrained our method from scratch on 10K and
100K random pairs from our 4M set and report quantitative
results (FID and KID) on two different test sets in Table 3.
Fig. 10 also shows visual results for our models trained on
different dataset sizes.

In Fig. 6 of the main paper, we provide failure cases due
to erroneous garment segmentation and garment leaks in the
clothing-agnostic RGB image. In Fig. 11, we provide more
failure cases of our method. The main problem lies in the
clothing-agnostic RGB image. Specifically, it removes part
of the identity information from the target person, e.g., tat-
toos (row one), muscle structure (row two), fine hair on the
skin (row two) and accessories (row three). To better visual-
ize the difference in person identity, Fig. 12 provides try-on
results on paired unseen test samples, where groundtruth is
available.

Fig. 13 shows try-on results for a challenging case,
where input person wearing garment with no folds, and in-
put garment with folds. We can see that our method can
generate realistic folds according to the person pose instead
of copying folds from the garment input. Fig. 14 and 15
show TryOnDiffusion results on variety of people and gar-
ments for both men and women.

Finally, Fig. 16 to 21 provide zoom-in visualization for
Fig. 1 of the main paper, demonstrating high quality results

SDAFN [1] Ours Hard to tell
Random 5.24% 77.83% 16.93%

Challenging 3.96% 93.99% 2.05%

Table 1. User study comparing SDAFN [1] to our method at
256×256 resolution.

Test datasets Ours VITON-HD
Methods FID ↓ KID ↓ FID ↓ KID ↓

Ablation 1 15.691 7.956 25.093 12.360
Ablation 2 14.936 7.235 28.330 17.339

Ours 13.447 6.964 23.352 10.838

Table 2. Quantitative comparison for ablation studies. We com-
pute FID and KID on our 6K test set and VITON-HD’s unpaired
test set. The KID is scaled by 1000 following [6].

Test datasets Ours VITON-HD
Train set size FID ↓ KID ↓ FID ↓ KID ↓

10K 16.287 8.975 25.040 11.419
100K 14.667 7.073 23.983 10.732
4M 13.447 6.964 23.352 10.838

Table 3. Quantitative results for the effects of the training set size.
We compute FID and KID on our 6K test set and VITON-HD’s
unpaired test set. The KID is scaled by 1000 following [6].

of our method.
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Figure 2. Comparison with TryOnGAN [8], SDAFN [1] and HR-VITON [7] on challenging cases for women. Compared to baselines,
TryOnDiffusion can preserve garment details for heavy occlusions as well as extreme body pose and shape differences. Please zoom in to
see details.
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Figure 3. Comparison with TryOnGAN [8], SDAFN [1] and HR-VITON [7] on challenging cases for men. Compared to baselines,
TryOnDiffusion can preserve garment details for heavy occlusions as well as extreme body pose and shape differences. Please zoom in to
see details.
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Figure 4. Comparison with TryOnGAN [8], SDAFN [1] and HR-VITON [7] on simple cases for women. We select input pairs with
minimum garment warp and simple texture pattern. Baseline methods perform better for simple cases than for challenging cases. However,
our method is still better at garment detail preservation and blending (of person and garment). Please zoom in to see details.
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Figure 5. Comparison with TryOnGAN [8], SDAFN [1] and HR-VITON [7] on simple cases for men. We select input pairs with minimum
garment warp and simple texture pattern. Baseline methods perform better for simple cases than for challenging cases. However, our
method is still better at garment detail preservation and blending (of person and garment). Please zoom in to see details.
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Figure 6. Comparison with state-of-the-art methods on VITON-HD unpaired testing dataset [3]. All methods were trained on the same 4M
dataset and tested on VITON-HD. Please zoom in to see details
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Person Garment Two networks One network

Figure 7. Combining warp and blend vs sequencing two tasks. Two networks (column 3) represent sequencing two tasks. One network
(column 4) represents combining warp and blend. Green boxes highlight differences, please zoom in to see details.
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Person Garment Concatenation Cross attention

Figure 8. Cross attention vs concatenation for implicit warping. Green boxes highlight differences, please zoom in to see details.
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HR-VITONGarment OursPerson

Figure 9. Comparison with HR-VITON released checkpoints for frontal garment (optimal for HR-VITON). Please zoom in to see details.

Person Garment 10K 100K Ours

Figure 10. Quanlitative results for effects of the training set size. Please zoom in to see details.
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Person Garment Try-on

Figure 11. Failure cases. Clothing-agnostic RGB image removes part of the identity information from the target person, e.g., tattoos (row
one), muscle structure (row two), fine hair on the skin (row two) and accessories (row three).
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Figure 12. Qualitative results on paired unseen test samples. Please zoom in to see details.

Person Garment Try-on

Figure 13. Try-on results for input person wearing garment with no folds, and input garment with folds.
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Figure 14. 4 women trying on 5 garments.
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Figure 15. 4 men trying on 5 garments.



Figure 16. Larger version of teaser.



Figure 17. Larger version of teaser.



Figure 18. Larger version of teaser.



Figure 19. Larger version of teaser.



Figure 20. Larger version of teaser.



Figure 21. Larger version of teaser.
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