
A. Formulations for Adversarial Attack
Adversarial attack is often formalized as an optimization

problem under some certain constraints, which vary among
different attack settings. Here, we give a brief introduction
to the settings mentioned in the paper and formalize their
objectives following the notations in Sec. 3.

ℓ∞ Adversarial Perturbations. To corrupt the inputs of
one frame with ℓ∞ adversarial perturbations for untargeted
attack, the problem is formalized as

max
x′

L(fθ(x′), ŷ), s.t. ||x′ − x||∞ < ϵ, (5)

where ϵ is an allowed perturbation budget.
Instance-specific Adversarial Patches. Formally, the

instance-specific patch attack is described as

max
δ

L(fθ((1−m)⊙ x+m⊙ δ), ŷ), (6)

where δ is in the same space as image input x and m ∈
{0, 1}Nc×1×H×W represents binary masking matrix to ap-
point the location of patches with element-wise multipli-
cation of pixels denoted by ⊙. The masking matrix m is
defined according to the ground-truth 3D bounding boxes.

Category-specific Adversarial Patches. The formula-
tion of this problem is

max
δ1,··· ,δC

E(x,ŷ)∼D[L(fθ((1−
C∑

j=1

mx
j )⊙x+

C∑
j=1

mx
j⊙δj), ŷ)],

(7)
where δj is for objects of j-th category in the dataset D
which has C categories in total, while mx

j denotes the bi-
nary mask for objects of the j-th category in the sample x.
Similarly, the masking matrix mx

j is defined according to
the ground-truth 3D bounding box coordinates.

B. Additional Details for ℓ∞ Adversarial Per-
turbations

B.1. Raw Data for ℓ∞ Attack

The raw data for ℓ∞ attack, including FGSM and
PGD10, is shown in Tab. 7 and Tab. 8.

B.2. Details for Transfer Attack

The details of transfer attack are shown in Fig. 6.

B.3. mAP data for ℓ∞ Perturbations for Fusion
Models

The mAP data for ℓ∞ perturbations for two fusion mod-
els, TransFusion [4] and BEVFusion [35], is shown in
Fig. 7.

C. mAP Data for Partial Cameras
The mAP data is shown in Fig. 8
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Figure 6. Transfer attack. mAP, NDS of Camera-LiDAR fusion
models under different adversarial perturbations added to images
and point clouds.
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Figure 7. ℓ∞ Perturbations for Fusion Models. mAP of Camera-
LiDAR fusion models under different adversarial perturbations
added to images and point clouds.



Clean FGSM(e=0.1) FGSM(e=0.2) FGSM(e=0.5) FGSM(e=1) FGSM(e=2) FGSM(e=4) FGSM(e=8)
FCOS3D 29.8/37.7 25.9/34.3 23.4/32.5 19.6/29.3 16.9/27 14.9/25.4 14.2/24.6 13.9/24.3
BEVDet 29.2/37.2 17.9/26.9 13.7/23.1 8.7/17.9 6.1/14 4.7/10.7 3.9/10 3.4/9.2
BEVDepth 33.2/40.4 21.6/30.4 16.7/27 10.9/21.8 7.9/17.7 6.2/14.4 5.3/13.7 4.6/9.1
DETR3D 34.7/42.2 21.5/31.1 17/27.6 12.4/24.1 10.4/22.7 9.7/22.1 10.4/22.5 12.3/24.3
BEVFormer 37.0/47.9 16.2/26.9 12.4/23.9 8.2/19.9 6.3/17 5.4/16.1 5.6/16.3 6.6/17.3
TransFusion 67.2/70.9 64.6/69.5 63.3/68.9 61.7/68.1 60.9/67.6 60.4/67.4 60.6/67.5 61.4/68
BEVFusion 68.5/71.4 62.7/68.1 58.5/65.7 52/62.1 48.1/59.8 46.2/58.8 46.9/59.2 50.6/61.4

Table 7. ℓ∞ FGSM attack. mAP/NDS of FGSM attack at different ϵ settings

Clean PGD10(e=0.1) PGD10(e=0.2) PGD10(e=0.5) PGD10(e=1) PGD10(e=2) PGD10(e=4) PGD10(e=8)
FCOS3D 29.8/37.7 25.4/33.6 21.8/30.3 14.6/24 9.3/19.1 5.2/13.4 2.6/9 1.2/6.4
BEVDet 29.2/37.2 17.2/26.2 11.6/19.9 5.7/11.9 3.3/6.8 1.8/5.1 0.8/4.3 0.2/0.7
BEVDepth 33.2/40.4 21/29.8 14.6/25.5 7/12.7 3.7/7 1.8/5.2 0.8/4.4 0.3/0.7
DETR3D 34.7/42.2 19.5/29.6 12.2/24.4 4.7/19.2 1.8/15.9 0.8/8.9 0.4/5.6 0.3/5.1
BEVFormer 37.0/47.9 15.7/26.6 10.3/22.7 4.1/16 1.6/11.7 0.7/8.4 0.3/5.3 0.2/3.6
TransFusion 67.2/70.9 64.4/69.5 62.5/68.4 57.8/65.9 48.7/61.4 36.2/55.2 28.2/51.4 28.3/51.3
BEVFusion 68.5/71.4 62.8/68.2 57.3/65 44.1/57.7 30.7/50.1 19.1/43.3 11.6/38.6 7.5/36.1

Table 8. ℓ∞ PGD10 attack. mAP/NDS of PGD10 attack at different ϵ settings
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Figure 8. Partial Cameras. Performance with partial cameras in
terms of mAP

D. Additional Details for 3D Consistent Patch
Attack

Full results including mAP and NDS is show in Tab. 9
and Tab. 10.

E. Training strategies
We note that different training strategies could influence

the model robustness to some extents and also take them
into account. Though prior works on benchmarking robust-
ness in classification [17] and detection [16] usually treat
training strategies as part of models instead of dissociating
them, we investigate the training strategies of each model

Patch Size 0% 5% 10%
FCOS3D 21.3/32.5 12.9/22.2 8.5/17.5
BEVDet 19.4/33.8 3.3/11.1 1.4/6.2
BEVDepth 23.5/37.7 4.4/11.8 1.9/8.8
DETR3D 27.3/39.1 3.5/15.2 1.3/10.3
BEVFormer 29.0/45.0 4.1/14.8 1.8/9.6
TransFusion 58.4/66.8 52.6/63.7 50.7/62.8
BEVFusion 58.3/66.4 36.4/54.2 29.5/50.8

Table 9. Multi-view Patch Attack. mAP/NDS of vision-
dependent models with 3D consistent patches in the cases of
Multi-view Patch Attack. 0% for clean images.

Patch Size 0% 5% 10%
FCOS3D 29.8/37.7 11.9/20.6 6.0/15.3
BEVDet 29.2/37.2 3.8/12.7 1.7/5.9
BEVDepth 33.2/40.4 6.3/17.7 2.5/8.7
DETR3D 34.7/42.2 16.3/28.3 9.5/23.2
BEVFormer 37.0/47.9 18.8/35.0 11.7/29.0
TransFusion 67.2/70.9 61.9/68.0 58.9/66.4
BEVFusion 68.5/71.4 54.9/63.9 49.1/60.7

Table 10. Temporally Universal Patch Attack. mAP/NDS of
vision-dependent models with 3D consistent patches in the cases
of Temporally Universal Patch Attack. 0% for clean images.

including data augmentation, learning rate, optimizer, and
find that there is an insignificant difference within the three
comparing sub-groups of models. The detailed training
schemes are summarized in Tab. 11.



Optim. lr b.s. epoch image aug 3D aug GT aug
FCOS3D [54] SGD 2e-3 2*8 12 - RandomFlip3D -
BEVDet [26] AdamW 2e-4 8*8 24 ResizeRotFilp GlobalRotScaleTrans, RandomFlip3D -
BEVDepth [31] AdamW 2e-4 8*8 24 ResizeRotFilp GlobalRotScaleTrans, RandomFlip3D -
DETR3D [55] AdamW 2e-4 1*8 24 PhotoMetricDistortion - -
BEVFormer [32] AdamW 2e-4 1*8 24 PhotoMetricDistortion - -
TransFusion [4] AdamW 1e-4 2*8 20+6 - GlobalRotScaleTrans, RandomFlip3D GTPaste
BEVFusion [35] AdamW 1e-4 4*8 20+6 ResizeRotFilp GlobalRotScaleTrans, RandomFlip3D GTPaste

Table 11. Different training strategies. Training strategy information of different models evaluated in this paper, including optimizer (Op-
tim.), learning rate (lr), batch size (b.s.), training epoch and different types of data augmentation strategies.

F. Different truncation levels for partial cam-
eras

Following KITTI [19], we get the truncation ratio of
objects at image boundaries and examine the performance
of models at different levels. Results of NDS between
DETR3D and BEVFormer are shown in Tab. 12. BEV
model outperforms non-BEV model at all truncation lev-
els for partial cameras. This is consistent with our finding
in Sec. 4.3.

NDS λ-mode Y-mode
All Easy Moderate Hard All Easy Moderate Hard

DETR3D 32.0 37.7 30.0 29.2 30.6 35.1 29.0 27.5
BEVFormer 37.0 43.3 39.8 36.1 35.5 40.0 34.9 32.3

Table 12. Partial results at different truncation levels for partial cameras.

G. BEVDet/BEVDepth with high resolution
Considering that the input resolution may influence the

robustness of detectors, we test this influence on BEVDet
and BEVDepth. We increase the resolution from 704x256
to 1408x512 and retrain the models by ourselves due to the
lack of official models.

From Tab. 13 of PGD attack, we see that higher reso-
lution improves the robustness of BEVDet and BEVDepth,
but the performance is still inferior to FCOS3D. We also test
them on temporally universal patch attack, and find similar
trends, e.g., under 5% patch size, the NDS of high resolu-
tion BEVDet and BEVDepth are 18.9 and 20.5, still lower
than 20.6 NDS of FCOS3D. The conclusion is that the orig-
inal resolution improves the robustness, but cannot substan-
tially overturn our findings.

H. Similar schemes when discussing temporal
information

To further investigate the effectiveness of temporal infor-
mation on improving robustness, we conduct additional ex-
periments among BEVDet & BEVDet4D and BEVFormer-
Static (re-implemented) & BEVFormer. The results under
two time-related attack settings are shown in Tab. 14. The

ϵ 0 0.1 0.2 0.5 1 2 4 8
BEVDet 37.2 26.2 19.9 11.9 6.8 5.1 4.3 0.7
BEVDet-HighRes 41.0 26.7 20.1 15.0 10.8 9.5 7.6 5.2
BEVDepth 40.4 29.8 25.5 12.7 7.0 5.2 4.4 0.7
BEVDepth-HighRes 43.9 31.2 26.4 18.2 11.0 9.1 7.0 4.4
FCOS3D 37.7 33.6 30.3 24.0 19.1 13.4 9.0 6.4

Table 13. NDS under ℓ∞ adversarial perturbations generated by PDG10.

Category-Specific Patch (5%) Temporally Universal Patch (5%)
BEVD BEVD4D BEVF-S BEVF BEVD BEVD4D BEVF-S BEVF
15.4 21.3 32.9 35.9 12.7 17.5 30.3 35.0

Table 14. Partial results (NDS) among models with temporal information.

results confirm that temporal information fortifies robust-
ness to universal attack along time.
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