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In the following, we provide more details about our
photo-consistency network, and specify hyper parameters
we used in the experiments. We further provide an ablation
study to better understand the benefits of our optimization
framework. We then give additional qualitative compar-
isons with the DTU dataset and the detailed version of the
evaluation table. Finally, we show more qualitative compar-
isons with Renderpeople and real human capture data.

1. Photo-consistency Network
As explained in the paper, we propose a data-driven

photo-consistency measure to better handle real images that
are noisy and for which the Lambertian assumption is not
fully satisfied. This network is composed of 3 main parts.
First, features are extracted from the input images by an im-
age encoder composed of convolutional layers, batch nor-
malizations, ReLu activations and max-pooling operations
as shown in Figure 1. Given an input 3D point, its per
view multi-scale features are obtained by projecting it in
the multi-scale feature maps extracted with the image en-
coder and by concatenating over scales. Next, we use a self-
attention module [7] to combine the multi-scale features
from all views and obtain therefore a multi-scale/multi-view
(MSV) feature. This Pytorch [5] module is parameterized
as follows, d model = 115, nhead = 1, dim feedforward =
256, num layers = 6. Note that we also apply a mean oper-
ation on the output of this self-attention module. Finally, a
fully connected network decodes the MSV feature and out-
puts a photo-consistency score between 0 and 1, as shown in
Figure 2. To train the network, we use an MSE loss between
the ground truth and predicted photo-consistency scores and
the Adam optimizer with a learning rate of 1e−4.

2. Hyper parameters
Table 1 specifies hyper parameters used in our experi-

ments. They are either fixed or simply scaled to match the
unit of the models. The offset o defines the interval for the
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Figure 1. Architecture of the image encoder.

sampling around the current depth [dij − o; dij + o]. The

real depth d̂ij needs to be contained inside this interval for
the appearance to guide the geometry optimization. We set
o depending on the initialization that is used such that this
constraint is satisfied, and adjust o to the unit of the dataset.
For datasets captured with cameras distributed all around
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Figure 2. Fully Connected decoder.

the object, we set o = 50 for models in mm, while for
datasets captured with cameras that observe the object from
one side, we set o = 100 for models in mm. These values
are scaled to the unit of the models.

The sampling density is fixed and set to 51 in our ex-
periments. ΓSRDF and ΓΦ are used for numerical stability
and prevent the product over multiple cameras to be very
close to zero. We set them to 1 in our experiments. σc and
σd define the strength of the penalty if the prediction of the
color or the depth, respectively, from one camera, is incon-
sistent. σc is fixed empirically for each photo-consistency
prior (σc = 0.05 for the baseline prior and σc = 0.1 for the
learned prior). σd is set to 25 for models captured in mm,
and scaled to the unit of the models (e.g., σd = 0.025 for
models in m).

The learning rate lr represents how much depth predic-
tions change at each optimization iteration, and is fixed to 1
for models in mm and scaled with the unit of models.

DTU Renderpeople Real human capture data
Unit mm cm m
Photo-consistency prior learned baseline learned
o 100 10 0.05
Sampling density 51 51 51
ΓSRDF 1 1 1
ΓΦ 1 1 1
σc 0.1 0.05 0.1
σd 25 2.5 0.025
lr 1 0.1 0.001

Table 1. Hyper parameters used in our optimization for the differ-
ent experiments.

3. Ablation Study
To provide more in depth insight into our approach’s be-

havior, we provide a comparison with 2 alternative strate-
gies within our framework. First, we mention in Section 3.2
iofn the main paper that the product over cameras in Equa-
tion 3 enforces depths to become consistent across views.
To evaluate this aspect we show, in Figure 3, results with
an optimization of depths individually per camera, with-
out camera product. Second, to demonstrate the benefit

Figure 3. Ablation study with 2 alternative strategies. Reconstruc-
tions with data from Renderpeople [1] (two top rows) and DTU [4]
(bottom row).

of the volumetric optimization we also show results with
a direct search and selection of the photo-consistency max-
imum along rays without optimization.

In Figure 3, it can be observed that optimizing depth
per-camera, in the first alternative, is prone to local min-
ima and that the reconstructed surfaces are quite noisy
even when considering synthetic images from Renderpeo-
ple. Moreover, a global search for the maximum of the
photo-consistency along each camera ray, in the second al-
ternative, yields somewhat good results with Renderpeople
data despite some noise. On the other hand, results are very
noisy with real data from DTU. For both real and synthetic
data, our proposed strategy that optimizes depth based on a
volumetric representation clearly outperforms the two alter-
natives considered here.

4. Multi-View Reconstruction from Real Data

In Table 2 we show the detailed version of Table 1 of the
main paper.



In Figure 4 we also give additional qualitative vi-
sual comparisons between our method and the baselines
COLMAP [6], ACMMP [10], IDR [11], Neus [9], Neural-
Warp [2], PatchmatchNet [8] and CasMVSNet [3] on the
DTU [4] dataset. The reconstruction settings are similar to
the comparison in Section 5.3 of the main paper.

5. Multi-View Reconstruction from Synthetic
Data

In Figure 5, we provide additional visual comparisons
between our method with the baseline photo-consistency
prior defined in Section 3.3 of the main paper, and
COLMAP, ACMMP, IDR, NeuS, PatchmatchNet and Cas-
MVSNet. We use 19 synthetic images rendered from the
Renderpeople [1] meshes. The reconstruction settings are
similar to the comparison in Section 5.4 of the main paper.
We can observe that our method is able to reconstruct very
accurate and detailed meshes. Our results contain more de-
tails (e.g. faces, cloth wrinkles) and less noise than the other
methods.

6. Multi-View Reconstruction from Real Hu-
man Capture Data

In Figure 6, we provide additional visual comparisons
between our method and COLMAP, ACMMP, NeuS, Patch-
matchNet and CasMVSNet. The reconstruction settings are
similar to the comparison in the Section 5.5 of the main pa-
per. We can observe that our method reconstructs detailed
surfaces with limited noise even on some difficult parts as
the black pants on the fourth column. COLMAP also per-
forms quite well but has difficulties with the black bag, the
pants and the hair. ACMMP is less precise; a single op-
timization iteration was used due to RAM limitation, even
with 64GB. NeuS reconstructs a watertight surface but lacks
high-frequency details and exhibits poor geometries at dif-
ferent locations due to appearance ambiguities. The deep
MVS methods PatchmatchNet and CasMVSNet have much
more difficulties reconstructing accurate surfaces. This il-
lustrates the generalization issue with the full end-to-end
learning based methods when the inference scenario is sub-
stantially different from the training one (i.e. DTU).

7. Societal impact
We do not see any immediate negative societal impact of

our method, but we still need to be very cautious as accurate
3D models of humans could be used maliciously, without
the consent of the person who is modeled.
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Figure 4. Qualitative comparisons on DTU.

Variants IDR [11] NeuS [9] NeuralWarp [2] COLMAP [6] ACMMP [10] PatchmatchNet [8] CasMVSNet [3] Ours
Acc Comp Avg Acc Comp Avg Acc Comp Avg Acc Comp Avg Acc Comp Avg Acc Comp Avg Acc Comp Avg Acc Comp Avg

Scan024 1.76 1.50 1.63 0.90 0.75 0.83 0.52 0.47 0.50 0.32 0.50 0.41 0.39 0.33 0.36 0.33 0.26 0.30 0.29 0.29 0.29 0.35 0.25 0.30
Scan037 2.16 1.55 1.86 1.09 0.88 0.98 0.80 0.61 0.70 0.57 0.66 0.62 0.66 0.44 0.55 0.56 0.45 0.51 0.47 0.58 0.52 0.61 0.43 0.52
Scan040 0.65 0.61 0.63 0.58 0.54 0.56 0.38 0.37 0.38 0.27 0.43 0.35 0.37 0.28 0.33 0.28 0.29 0.29 0.24 0.34 0.29 0.29 0.25 0.27
Scan055 0.57 0.37 0.47 0.40 0.34 0.37 0.40 0.37 0.39 0.25 0.44 0.35 0.26 0.27 0.27 0.27 0.25 0.26 0.32 0.39 0.36 0.25 0.26 0.26
Scan063 1.43 0.63 1.03 1.62 0.64 1.13 1.00 0.58 0.79 0.70 0.45 0.58 1.35 0.35 0.85 0.84 0.26 0.55 0.64 0.27 0.45 0.45 0.40 0.43
Scan065 0.88 0.69 0.78 0.68 0.51 0.59 0.80 0.82 0.81 0.32 1.60 0.96 0.32 0.72 0.52 0.34 0.98 0.66 0.27 1.42 0.84 0.50 0.51 0.50
Scan069 0.88 0.66 0.77 0.68 0.52 0.60 0.92 0.73 0.82 0.39 0.52 0.46 0.43 0.37 0.40 0.38 0.32 0.35 0.31 0.33 0.32 0.44 0.27 0.36
Scan083 1.10 1.55 1.32 1.33 1.57 1.45 0.85 1.55 1.20 0.48 0.62 0.55 0.47 0.56 0.51 0.57 0.50 0.54 0.36 0.51 0.43 0.32 1.02 0.67
Scan097 1.30 0.99 1.15 1.06 0.84 0.95 0.85 1.33 1.09 0.57 0.56 0.57 0.46 0.39 0.43 0.58 0.31 0.45 0.42 0.32 0.37 0.51 0.34 0.42
Scan105 - - 0.64* 0.78 0.78 0.78 0.59 0.78 0.69 0.46 0.63 0.54 0.50 0.52 0.51 0.55 0.48 0.52 0.33 0.51 0.42 0.34 0.27 0.31
Scan106 0.73 0.60 0.66 0.53 0.52 0.52 0.57 0.78 0.67 0.29 0.57 0.43 0.32 0.33 0.32 0.31 0.34 0.33 0.25 0.40 0.33 0.25 0.34 0.29
Scan110 1.09 0.68 0.89 1.71 1.16 1.44 0.90 0.57 0.73 0.44 0.43 0.44 0.45 0.34 0.39 0.49 0.20 0.34 0.34 0.23 0.29 0.41 0.36 0.38
Scan114 0.45 0.38 0.41 0.34 0.38 0.36 0.42 0.41 0.41 0.26 0.36 0.31 0.26 0.27 0.27 0.39 0.18 0.29 0.23 0.19 0.21 0.26 0.20 0.23
Scan118 0.54 0.46 0.50 0.48 0.43 0.45 0.71 0.55 0.63 0.30 0.50 0.40 0.30 0.34 0.32 0.37 0.25 0.31 0.28 0.39 0.33 0.30 0.26 0.28
Scan122 0.72 0.43 0.57 0.57 0.41 0.49 0.55 0.46 0.50 0.30 0.45 0.37 0.30 0.31 0.31 0.34 0.22 0.28 0.26 0.34 0.30 0.26 0.22 0.24
Mean 1.02 0.79 0.89 0.85 0.68 0.77 0.68 0.69 0.69 0.40 0.58 0.49 0.46 0.39 0.42 0.44 0.35 0.40 0.34 0.43 0.38 0.37 0.36 0.36

Table 2. Quantitative evaluation on DTU [4] (49 or 64 images per model). Best scores are in bold. (* pre-trained model issue with
Scan105, we report the IDR paper results).



Figure 5. Qualitative comparisons on Renderpeople.



Figure 6. Qualitative comparison using 65 images from a multi-camera platform.
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