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Silhouette Coefficient ↑

Anchors
Space-filling
curve type Stage 1 Stage 2 Stage 3 Stage 4

✓
horizontal
scanline 0.24 0.24 0.22 0.24

✗
horizontal
scanline -0.01 -0.20 -0.16 0.03

✓ Peano 0.2 0.23 0.29 0.21
✗ Peano 0.15 0.15 0.14 0.17
✓ Hilbert 0.22 0.23 0.22 0.19
✗ Hilbert 0.14 0.15 0.16 0.18

Table 1. Ablation studies on the anchors and the type of space-
filling curves used in the balanced clustering algorithm. For the
cases without anchors, the space-filling curve is directly applied
on the tokens. The metric scores are averaged over a random batch
of 256 images from ImageNet.

A. Additional Experimental Results

A.1. Additional Ablation Studies

A.1.1 Ablation on Balanced Clustering Algorithm

We show more results and comparisons regarding our bal-
anced clustering algorithm in Table 1. We study the benefits
of space-filling anchors and different types of space-filling
curves. We measure the quality of the resulting clusters us-
ing the silhouette coefficient [12] metric. The silhouette co-
efficient ranges from −1 to 1, measuring how clearly dis-
tinguishable the clusters are. A larger value indicates better
clusters. Specifically, the silhouette score for the i-th token
is calculated as

bi − ai
max(ai, bi)

, (1)

where ai is the mean distance between the position of the
i-th token and all other tokens in the same cluster, and bi is
the mean distance between the position of the i-th token and
all tokens in the next nearest cluster. The final silhouette co-
efficient is the average score of all the tokens. The numbers
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in Table 1 are averaged over a random batch of 256 images
from ImageNet.
Our default setting is to use space-filling anchors, and ap-
ply a simple horizontal scanline as the space-filling curve
on the anchors. A horizontal scanline sweeps the rows from
left to right in odd rows and from right to left in even rows.
We experimented with two other more complicated curves
here: the Peano [11] and the Hilbert [6] curves. Both are
recursive curves establishing a surjective mapping from a
unit interval to a unit square. We also studied direct ap-
plication of space-filling curves to tokens without us of the
anchors. Results show that the anchors are necessary for ob-
taining more separated clusters. Also surprisingly, the sim-
ple horizontal scanline attains better cluster quality than the
more complicated space-filling curves when the anchors are
used. The visualization of the clustering results are shown
in Fig. 1.

A.2. Additional Segmentation Experiments

A.2.1 Additional Results on COCO and ADE20K

COCO instance segmentation. For instance segmentation
on COCO (Table 2), we present very significant AP im-
provement for the Mini size, showing the capability of our
model of being more efficient with limited resources. For
Tiny and Small, we obtained par results with Swin with
10% decrease in FLOPs. For the 1/5 downsampling-rate
models, we see they have significant computational benefits
with little performance drop with respect to their 1/4 coun-
terparts. We observe AP improvements for small objects
(APS) and regressions for large objects (APL). We suspect
that the standard decoder heads were not aggregating infor-
mation well when the sampling rate is very uneven for large
objects, and we aim to improve the decoder in future work.
Semantic segmentation with HCFormer. HCFormer [13]
performs prediction on the feature map at the coarsest level.
Each token on the finer level will learn 9 similarity values
to the tokens in a 3 × 3 window in the coraser level, and
the model uses the similarity values to interpolate the pre-
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Backbone Segmentation Head Search Space Epochs AP APS APM APL # Params FLOPs
EdgeViT-XS [10] Mask R-CNN [5] - 12 38.3 - - - 26.5M -
PVT v2-B1 [14] Mask R-CNN [5] - 12 38.8 - - - 33.7M -
LightViT-T [7] Mask R-CNN [5] - 36 38.4 - - - 28M 187G
Swin-Mini‡ Mask2Former* [1] 100 queries 50 33.1 13.8 35.2 53.7 25.8M 149G
AFF-Mini Mask2Former* [1] 100 queries 50 42.3 21.2 45.6 63.7 25.8M 148G
AFF-Mini-1/5 Mask2Former* [1] 100 queries 50 42.3 21.8 45.7 64.0 25.8M 120G (-19% vs. Swin)
PVT v2-B3 [14] Mask R-CNN [5] - 12 42.5 - - - 64.9M -
LightViT-S [7] Mask R-CNN [5] - 36 39.9 - - - 38M 204G
SpineNet-96 [2] Mask R-CNN [5] 1000 proposals 350 41.5 - - - 55.2M 315G
Swin-Tiny Mask2Former [1] 100 queries 50 45.0 24.5 48.3 67.4 47M 232G
AFF-Tiny Mask2Former* [1] 100 queries 50 45.3 24.8 49.2 66.9 46M 204G (-12% vs. Swin)
AFF-Tiny-1/5 Mask2Former* [1] 100 queries 50 44.5 24.5 47.8 66.3 46M 152G (-34% vs. Swin)
LightViT-B [7] Mask R-CNN [5] - 36 41.2 - - - 54M 240G
PVT v2-B5 [14] Mask R-CNN [5] - 12 42.5 - - - 101.6M -
SpineNet-190 [2] Mask R-CNN [5] 1000 proposals 500 46.1 - - - 176.2M 2077G
Swin-Small Mask2Former [1] 100 queries 50 46.3 25.3 50.3 68.4 69M 313G
AFF-Small Mask2Former* [1] 100 queries 50 46.4 27.0 49.8 67.6 61.4M 281G (-10% vs. Swin)
AFF-Small-1/5 Mask2Former* [1] 100 queries 50 45.7 26.1 49.2 67.5 61.4M 206G (-34% vs. Swin)

Table 2. Instance segmentation on COCO instance val2017. “1/5” means the backbone uses 1/5 downsampling rate instead of the traditional
1/4 downsampling rate. * The segmentation head is modified to accept point cloud input. ‡ This Swin backbone is trained using the same
architecture configuration and training settings as our model. The random seed is fixed at 0.

Backbone Segmentation Head
Crop
Size mIoU FLOPs

Swin-Small HCFormer [13] 512 48.8 56G
PVT v2-B5 [14] Semantic FPN [8] 512 48.7 91.9G
AFF-Small HCFormer* [13] 512 49.2 51.1G

Table 3. Semantic segmentation on ADE20K val with HCFormer
head. * The segmentation head is modified to accept point cloud
input.

Class Swin-Tiny AFF-Tiny Swin-Small AFF-Small
person 36.3 38.6 36.8 39.2
rider 29.0 30.4 28.7 33.3
car 59.3 60.9 59.9 61.4
truck 41.4 43.1 42.0 41.1
bus 60.4 65.1 65.2 66.9
train 43.7 52.3 51.7 55.4
motorcycle 24.5 26.2 25.2 28.9
bicycle 23.2 24.9 24.7 25.6
average 39.7 42.7 41.8 44.0

Table 4. Class-wise Instance Segmentation AP on CityScapes
(backbone Swin vs. AFF) with Mask2Former segmentation head.

diction all the way up to the highest resolution. We replace
the square window by 9 nearest neighbors in the coarser
level, while the calculation of similarity values stays the
same. In Table 3, we show semantic segmentation results
on the ADE20K [15] dataset with the HCFormer [13] head
for the AFF-Small model. We achieve a +0.4% increase in
the mIoU metric with -8% FLOP count.

A.2.2 Class-wise Segmentation Results

To facilitate understanding how AFF improves over the
baselines, in addition to score breakdown according to ob-
ject sizes, we further provide class-wise segmentation score
breakdown in Table 4 and Table 5. However, through the-
ses results, we don’t see apparent correlation between score
improvement and classes. We guess that the improvement

from AFF is more correlated with object sizes than specific
categories.

B. Segmentation Training Setting Details
We largely follow the settings of Mask2Former [1] in train-
ing including weight decay, augmentations and training
steps. More specifically, we use the AdamW [9] optimizer
with the step learning rate scheduler. We use a weight decay
of 0.05. We apply a learning rate multiplier 0.1 to the back-
bone. We set α = 4 for ADE20K and COCO, and α = 8
for Cityscapes. We use a learnable shepard power initial-
ized at 6 for ADE20K and Cityscapes, and a fixed power 4
for COCO.
For ADE20K, we train for 80K steps with a batch size of 32
and a base learning rate 0.0002. The FLOP count is calcu-
lated on a random 512 × 512 image, as we crop all images
to this size during training.
For COCO, we train for 50 epochs with a batch size of 64
and a base learning rate 0.0002. We apply the large-scale
jittering (LSJ) augmentation [3,4] with a random scale sam-
pled from range 0.1 to 2.0 followed by a fixed size crop to
1024 × 1024 during training. During inference we use the
standard Mask R-CNN [5] inference setting where we re-
size an image with shorter side to 800 and longer side up to
1333. The FLOP count is averaged over 100 validation im-
ages for the COCO FLOP count. We scale the learning rate
down by 0.1 at 0.9 and 0.95 fractions of the total training
steps.
For Cityscapes, we train for 45K steps with a batch size
of 32 and a base learning rate 0.0002. During training, we
use a crop size of 512 × 1024. During inference, we use
the entire image (1024× 2048). We use 100 queries for all
models.
For all training tasks, we do not use test-time augmentation



Class Swin-Tiny AFF-Tiny Class Swin-Tiny AFF-Tiny Class Swin-Tiny AFF-Tiny
person 50.541 50.210 bicycle 23.690 23.861 car 45.443 46.281
motorcycle 40.718 40.840 airplane 60.491 59.508 bus 70.112 71.876
train 71.873 71.853 truck 42.820 44.763 boat 29.597 30.855
traffic light 30.971 30.314 fire hydrant 70.358 68.929 stop sign 68.312 68.553
parking meter 50.348 50.078 bench 24.617 25.122 bird 33.864 34.639
cat 76.870 77.594 dog 68.567 70.120 horse 47.912 47.360
sheep 53.354 54.451 cow 56.130 55.105 elephant 66.213 65.602
bear 77.146 81.873 zebra 65.191 66.634 giraffe 61.708 61.146
backpack 23.438 23.936 umbrella 54.531 53.804 handbag 22.801 24.080
tie 37.348 36.612 suitcase 50.478 50.670 frisbee 68.770 69.198
skis 7.103 7.668 snowboard 31.047 31.945 sports ball 50.537 50.470
kite 38.308 38.900 baseball bat 38.899 38.439 baseball glove 45.918 48.275
skateboard 37.358 41.363 surfboard 40.484 41.238 tennis racket 61.187 61.463
bottle 42.015 42.877 wine glass 37.538 38.286 cup 47.234 49.267
fork 23.725 24.974 knife 18.923 19.837 spoon 19.997 22.391
bowl 45.014 45.610 banana 27.437 25.364 apple 24.022 25.128
sandwich 47.375 47.423 orange 37.039 37.065 broccoli 24.394 25.494
carrot 24.957 24.435 hot dog 45.251 41.675 pizza 58.760 57.535
donut 55.920 57.046 cake 49.705 48.989 chair 26.461 27.313
couch 48.393 47.571 potted plant 27.185 26.932 bed 45.991 44.751
dining table 22.249 23.094 toilet 68.757 68.878 tv 67.036 66.700
laptop 69.644 70.101 mouse 66.043 61.897 remote 39.732 40.769
keyboard 55.528 56.306 cell phone 41.274 42.047 microwave 65.497 64.513
oven 39.090 38.031 toaster 40.422 39.761 sink 41.816 42.876
refrigerator 66.878 66.622 book 15.363 16.021 clock 56.141 57.378
vase 41.719 42.520 scissors 35.620 37.310 teddy bear 55.229 52.801
hair drier 9.155 14.401 toothbrush 28.801 26.657

Table 5. Class-wise Instance Segmentation AP on COCO (backbone Swin vs. AFF) with Mask2Former segmentation head.

or multi-scale testing. For all segmentation results, we re-
port the best validation result in one run with seed fixed at
0. Validation results are reported every 2500 steps.

C. Qualitative Comparisons
In Fig. 2, we provide a qualitative comparison of AFF-
Small and Swin-Small with Mask2Former segmentation
head on the Cityscapes panoptic segmentation data, along
with the remaining token locations in stage 2, 3 and 4. Our
model is able to retain tokens on very small objects even
in the last stage, which provides the foundation to capture
crowded, small objects, such as the people sitting in the cafe
in the first example in Fig. 2.
In Fig. 3, we provide a qualitative comparison between
AFF-Tiny and Swin-Tiny with Mask2Former segmentation
head on the ADE20K semantic segmentation data. Our
model better captures small objects (e.g., the pole in the first
row, the chickens in the third row, and the rug in the fourth
row) with fewer false positives in small objects (compared
to the Swin baseline in the second row).

References
[1] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexan-

der Kirillov, and Rohit Girdhar. Masked-attention mask
transformer for universal image segmentation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1290–1299, 2022. 2

[2] Xianzhi Du, Tsung-Yi Lin, Pengchong Jin, Golnaz Ghiasi,
Mingxing Tan, Yin Cui, Quoc V Le, and Xiaodan Song.

Spinenet: Learning scale-permuted backbone for recogni-
tion and localization. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
11592–11601, 2020. 2

[3] Xianzhi Du, Barret Zoph, Wei-Chih Hung, and Tsung-Yi
Lin. Simple training strategies and model scaling for object
detection. arXiv preprint arXiv:2107.00057, 2021. 2

[4] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-
Yi Lin, Ekin D Cubuk, Quoc V Le, and Barret Zoph. Sim-
ple copy-paste is a strong data augmentation method for in-
stance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2918–2928, 2021. 2

[5] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pages 2961–2969,
2017. 2
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Figure 1. Visualization of the balanced clustering results with different configurations of anchors and space-filling curves. For the cases
without anchors, the space-filling curve is applied directly on the tokens. From the results, we observe the use of anchors to be critical for
obtaining more rounded and separated clusters. Although Peano and Hilbert are recursive curves, the uneven density of the tokens due to
adaptive sampling still breaks the local euclidean metric if we directly apply these curves on the tokens.

[10] Junting Pan, Adrian Bulat, Fuwen Tan, Xiatian Zhu, Lukasz Dudziak, Hongsheng Li, Georgios Tzimiropoulos, and Brais



Image Our Prediction Swin’s Prediction

Remaining
Tokens Stage 2

Remaining
Tokens Stage 3

Remaining
Tokens Stage 4

Image Our Prediction Swin’s Prediction

Remaining
Tokens Stage 2

Remaining
Tokens Stage 3

Remaining
Tokens Stage 4

Image Our Prediction Swin’s Prediction

Remaining
Tokens Stage 2

Remaining
Tokens Stage 3

Remaining
Tokens Stage 4

Figure 2. Additional qualitative comparison between AFF-Small and Swin-Small with Mask2Former segmentation head on Cityscapes
panoptic segmentation. The red pixels in the even rows indicate the locations of the remaining tokens in stage 2, 3 and 4.
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Figure 2. (Continued) Additional qualitative comparison between AFF-Small and Swin-Small with Mask2Former segmentation head on
Cityscapes panoptic segmentation. The red pixels in the even rows indicate the locations of the remaining tokens in stage 2, 3 and 4.



(a) Original images. (b) AFF-Tiny predictions. (c) Swin-Tiny prediction.

Figure 3. Qualitative comparison between AFF-Tiny and Swin-Tiny with Mask2Former segmentation head on ADE20K semantic segmen-
tation. First column: original image. Second column: AFF prediction. Third column: Swin prediction.
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