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A. More Implementation Details

Bidirectional Lateral Connections. We apply bidirec-
tional lateral connections [1] to the first four S3D blocks for
video-video, keypoint-keypoint, and video-keypoint infor-
mation exchange. For video-keypoint connections (dashed
lines in Figure 4 in the main paper), since the input spatial
resolutions of the video and keypoint encoder are 224×224
and 112 × 112, respectively, we use 2D convolution (Fig-
ure 6a) and transposed convolution layers (Figure 6b) with a
stride of 2 and a kernel size of 3×3 to match the spatial res-
olutions. For video-video and keypoint-keypoint connec-
tions (dotted dashed lines in Figure 4 in the main paper),
due to the input length difference, we use 1D convolution
(Figure 6c) and transposed convolution layers (Figure 6d)
with a stride of 2 and a kernel size of 3 to match the tem-
poral resolutions. Figure 6 shows the bidirectional lateral
connections.
Keypoint Illustration. We show the keypoints used in our
VKNet in Figure 7. The keypoints are estimated by HR-
Net [9] trained on COCO-WholeBody [3]. We use a subset
of keypoints including 11 upper body keypoints, 10 mouth
keypoints, and 42 hand keypoints.

B. More Experiments

Head Choices for Inter-Modality Mixup. By default, we
apply our inter-modality mixup on all head networks. To
validate the effectiveness of this setting, we further conduct
experiments on only applying it on partial heads. We cat-
egorize the head networks into three groups: video heads
with input features (fV

64,f
V
32), keypoint heads with input

features (fK
64,f

K
32), and joint heads with input features

(f64,f32,f). See Figure 4 in the main paper for their def-
initions. Table 10 shows that applying the inter-modality
mixup on either one group of heads outperforms the base-
line, and our default setting, applying the inter-modality
mixup on all heads, achieves the best performance.
Keypoint Selection. We utilize HRNet [9] trained on
COCO-WholeBody [3] to estimate 63 keypoints (11 for
upper body, 42 for hands, and 10 for mouth) per frame.
As shown in Table 11, we validate the effectiveness of
each keypoint group by training several single-stream key-

Video Keypoint Joint Per-instance Per-class
Top-1 Top-5 Top-1 Top-5

59.56 90.10 56.77 89.33
✓ 60.42 91.07 57.62 90.37

✓ 60.08 90.62 57.27 89.76
✓ 59.83 90.72 56.88 90.11

✓ ✓ 60.56 91.24 57.87 90.37
✓ ✓ ✓ 61.05 91.45 58.05 90.70

Table 10. Ablation studies on applying inter-modality mixup on
different types of head networks.

Upper Body Hand Mouth #Keypoints Per-instance Per-class
Top-1 Top-5 Top-1 Top-5

✓ 11 21.37 50.66 19.78 49.00
✓ ✓ 53 48.54 81.45 45.52 79.94

✓ ✓ 52 48.64 81.83 45.64 80.36
✓ ✓ ✓ 63 49.10 82.00 46.18 80.71

Table 11. Ablation study on keypoint selection.

V-V K-K V-K Per-instance Per-class
Top-1 Top-5 Top-1 Top-5

56.85 86.87 53.34 85.60
✓ 57.12 87.11 54.21 85.94
✓ ✓ 57.16 87.56 54.03 86.54
✓ ✓ ✓ 57.19 88.29 54.35 87.49

Table 12. Ablation studies on different types of bidirectional lat-
eral connections. (V-V: video-video; K-K: keypoint-keypoint; V-
K: video-keypoint.)

point encoders. Only using upper body keypoints yields
the lowest top-1 accuracy (21.37%). Employing hand key-
points significantly improves the top-1 accuracy by 27.17%.
This result is also consistent to the fact that sign languages
mainly convey information by signers’ hand movement. Fi-
nally, the mouth keypoints also have a positive effect since
signers usually mouth the words during signing.
Bidirectional Lateral Connections. Within the VKNet,
we apply bidirectional lateral connections [1] for video-
video, keypoint-keypoint, and video-keypoint information
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(a) Lateral connection from the 64-frame video encoder to the 64-
frame keypoint encoder. We use a 2D convolution layer with a kernel
size of 3 × 3 and a stride of 2 to match the spatial resolutions. The
same holds true for the 32-frame input.
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(b) Lateral connection from the 64-frame keypoint encoder to the 64-
frame video encoder. We use a 2D transposed convolution layer with
a kernel size of 3× 3 and a stride of 2 to match the spatial resolutions.
The same holds true for the 32-frame input.
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(c) Lateral connection from the 64-frame video encoder to the 32-
frame one. We use a 1D convolution layer with a kernel size of 3
and a stride of 2 to match the temporal resolutions. The same holds
true for the keypoint encoder.

S3D-B-n

2D Conv.

3×3, stride 2

T,H,W,C

T,H/2,W/2,C

T’,H’,W’,C’

T’,H’/2,W’/2,C’

S3D-B-n

K-64:

V-64:

S3D-B-n

1D Conv.

3, stride 2

T,H,W,C

T/2,H,W,C

T’,H’,W’,C’

T’/2,H’,W’,C’

S3D-B-n

V-32:

V-64:

S3D-B-n

T,H,W,C

T,H/2,W/2,C

T’,H’,W’,C’

T’,H’/2,W’/2,C’

S3D-B-n

K-64:

V-64:

2D Trans. Conv.

3×3, stride 2

S3D-B-n

T,H,W,C

T/2,H,W,C

T’,H’,W’,C’

T’/2,H’,W’,C’

S3D-B-n

V-32:

V-64:

1D Trans. Conv.

3, stride 2

(d) Lateral connection from the 32-frame video encoder to the 64-
frame one. We use a 1D transposed convolution layer with a kernel
size of 3 and a stride of 2 to match the temporal resolutions. The same
holds true for the keypoint encoder.

Figure 6. Illustration of the lateral connections. Note that we split bidirectional lateral connections into unidirectional ones for better
illustration.

Figure 7. Illustration of the keypoints (11 upper body keypoints, 10 mouth keypoints, and 42 hand keypoints) used in our VKNet.

exchange. See Figure 4 in the main paper for their illus-
tration. As shown in Table 12, each type of bidirectional
lateral connections has a positive effect on model perfor-
mance, and our default setting, using all of the three types
of the lateral connections, can achieve the best performance.

VKNet vs. SlowFast. Our VKNet consists of two

sub-networks, VKNet-64 and VKNet-32, to jointly model
video-keypoint pairs with different temporal receptive
fields. The results in Table 4 in the main paper suggest that
modeling different video-keypoint pairs with varied tempo-
ral receptive fields improves the model generalization capa-
bility. One network that is related to our VKNet is Slow-



Method Per-instance Per-class
Top-1 Top-5 Top-1 Top-5

SlowFast 56.81 87.60 53.69 86.68
VKNet 57.19 88.29 54.35 87.49

Table 13. Comparison between SlowFast and our VKNet.

Method Per-instance Per-class
Top-1 Top-5 Top-1 Top-5

Contrastive Learning 59.90 91.28 57.23 90.59
Inter-Modality Mixup 61.05 91.45 58.05 90.70

Table 14. Comparison between contrastive learning and our inter-
modality mixup.

Method Per-instance Per-class
Top-1 Top-5 Top-1 Top-5

Word2vec [5] 60.63 91.14 57.53 90.42
GloVe [7] 60.81 90.90 57.73 90.27
FastText [6] 61.05 91.45 58.05 90.70
BERT [4] 60.11 90.83 57.15 90.05

Table 15. Comparison among different word representation learn-
ing methods.

Fast [2], which consists of two streams taking RGB videos
with low/high frame rate as inputs while having a fixed tem-
poral receptive field. For a fair comparison between Slow-
Fast and our VKNet, we replace the “temporal crop” opera-
tion in Figure 3 in the main paper with “temporal sampling”,
i.e., sampling a 32-frame pair from the 64-frame one with
a stride of 2 frames, to mimic the SlowFast. As shown in
Table 13, our VKNet can consistently outperform SlowFast
on all of the four metrics, showing that VKNet is a stronger
backbone for sign language recognition.
Inter-Modality Mixup vs. Contrastive Learning. Our
inter-modality mixup blends vision and language features to
better maximize the separability of signs. Its effectiveness is
shown in Table 6 in the main paper. One work that is related
to our inter-modality mixup is CLIP [8], which jointly trains
an image encoder and a text encoder with a contrastive loss
by maximizing the cosine similarity of positive image-text
pairs while minimizing the similarity of negative pairs. Fol-
lowing the practice in CLIP, we replace our inter-modality
mixup loss LIMM with a contrastive loss between the vi-
sion feature f and gloss features Ē. As shown in Table
14, our inter-modality mixup can consistently outperform
the contrastive learning method on all of the four metrics.
The results demonstrate that our inter-modality mixup is
a more effective approach to exploit semantic information
contained in glosses.

ac
ce

nt

ad
ap

t

ch
an

ge cit
y

co
ld

co
m

m
un

ity or
al

sp
ee

ch

vo
ice

wi
nt

er

accent

adapt

change

city

cold

community

oral

speech

voice

winter
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 8. Visualization of gloss feature similarities. We adopt
fastText to extract gloss features.

Word Representation Learning Methods. We adopt fast-
Text [6] as our default gloss feature extractor. Here we in-
vestigate other alternatives as shown in Table 15. Word2vec
[5] and GloVe [7] are two classical word representation
learning methods which are widely-adopted in NLP com-
munity. They perform comparably to each other that
GloVe achieves better results on the top-1 accuracy while
word2vec is superior regarding to the top-5 accuracy. As
an improvement of word2vec, fastText leads to better re-
sults on all of the four metrics. Finally, we also utilize an
advanced model, BERT-base [4], to extract word represen-
tations by averaging the outputs of the last layer. However,
it performs worse than all the other methods since it is not
dedicated to word representation learning.

C. Visualization

Gloss Feature Similarity. The gloss feature similarities
play a key role in our language-aware label smoothing. We
select several glosses from the vocabulary and visualize the
cosine similarities between their gloss features as a heatmap
in Figure 8. We can see that the similarity matrix can
roughly reflect the semantic similarities between glosses.
For example, the pairs: (“adapt”, “change”), (“city”, “com-
munity”), (“cold”, “winter”), (“speech”, “oral”), and (“ac-
cent”, “voice”), have high similarities, which are consistent
to human understanding.
Keypoint Heatmaps. As shown in Figure 9, we visualize
the keypoint heatmaps extracted by HRNet [9] by randomly
selecting six frames of three signers from the test sets of
WLASL2000, MSASL1000, and NMFs-CSL, respectively.
We can clearly see that the heatmaps are robust to signer ap-
pearances, background variations, hand positions, and palm



(a) WLASL2000.

(b) MSASL1000.

(c) NMFs-CSL.

Figure 9. Visualizations for the randomly selected frames and their corresponding keypoint heatmaps estimated by HRNet.

orientations.

D. Qualitative Results

As shown in Figure 10, we conduct qualitative analy-
sis for our NLA-SLR. We find that compared with VKNet
(baseline), our NLA-SLR can well classify visually indis-

tinguishable signs (VISigns) with either similar or distinct
meanings. As shown in Figure 10a, our NLA-SLR can
successfully distinguish (“doctor”, “nurse”) and (“calcu-
late”, “multiply”), which are VISigns with similar seman-
tic meanings, whereas the baseline, VKNet, fails to classify
them. Besides, as shown in Figure 10b, our NLA-SLR can
also recognize VISigns with distinct semantic meanings:
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(a) VISigns with similar semantic meanings.
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(b) VISigns with distinct semantic meanings.

Figure 10. Qualitative results on WLASL2000. (Here for NLA-SLR, we do not use intra-modality mixup for a fair comparison. The
ground-truth gloss is highlighted in red.)

(“champion”, “mushroom”) and (“friend”, “medicine”).
We owe these success to the two proposed techniques:
language-aware label smoothing and inter-modality mixup.

E. Social Impact and Limitation

Sign language is the primary communication method
among the deaf community. Thus, research on sign lan-
guage recognition can help bridge the communication gap



between the normal-hearing and hearing-impaired people.
The proposed method is data-driven. Thus, the model

performance may be affected by the biases in the training
data. Besides, our backbone relies on pre-extracted key-
points; inaccurate keypoint estimation may hurt the model
performance. We believe that stronger keypoint estimators
may further improve sign language recognition in the fu-
ture.

References
[1] Haodong Duan, Yue Zhao, Kai Chen, Dahua Lin, and Bo Dai.

Revisiting skeleton-based action recognition. In CVPR, pages
2969–2978, 2022. 1

[2] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In
ICCV, pages 6202–6211, 2019. 3

[3] Sheng Jin, Lumin Xu, Jin Xu, Can Wang, Wentao Liu, Chen
Qian, Wanli Ouyang, and Ping Luo. Whole-body human pose
estimation in the wild. In ECCV, pages 196–214, 2020. 1

[4] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In NAACL-HLT, pages
4171–4186, 2019. 3

[5] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781, 2013. 3

[6] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian
Puhrsch, and Armand Joulin. Advances in pre-training dis-
tributed word representations. In Proceedings of the Inter-
national Conference on Language Resources and Evaluation
(LREC), 2018. 3

[7] Jeffrey Pennington, Richard Socher, and Christopher D Man-
ning. GloVe: Global vectors for word representation. In
EMNLP, pages 1532–1543, 2014. 3

[8] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision.
In ICML, pages 8748–8763, 2021. 3

[9] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-
resolution representation learning for human pose estimation.
In CVPR, pages 5693–5703, 2019. 1, 3


	. More Implementation Details
	. More Experiments
	. Visualization
	. Qualitative Results
	. Social Impact and Limitation

