A. Ablation of calibration metrics

In the main paper we present calibration results computing the Expected Calibration Error with equally spaced bins,
however, alternative calibration metrics have been suggested. In Fig. 9 we compare the results obtained with: ECE with
equally spaced bins (ECE), ECE with equally populated bins (Ada ECE) and the Kolmogorov-Smirnov Error (KS Error). For
further details see Sec. 3.3. We observe that the three different metrics yield almost identical results.
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Figure 9. Comparison of calibration error metrics (|) Calibration error for different datasets and networks computed with different
metrics. All different metrics yield very similar result.

B. Ablation of number of pixels for calibration

As discussed in Sec. 3.3, in segmentation, the number of samples to be taken into account for calibration scales with the
number of pixels in an image. In order to be more cost-effective when testing different calibration metrics and strategies, we
use a random subset of pixels within each image rather than the full image. In Fig. 10, we ablate the evolution of the different
calibration metrics as we vary the number of sampled pixels. We can see that from 10k datapoints on, the metrics stabilizes;
therefore, we chose to use 20k randomly sampled pixels per image for our experiments.
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Figure 10. Pixels-per-image ablation. Evolution of calibration metrics as we vary the number of pixels sampled at random from each
image (as opposed to the full image). We observe that when sampling more than 10k pixels all calibration metrics are very similar and the
calibration error remains stable. We use 20k random samples in our experiments.



C. Ablation of confidence score: max probability vs. entropy

Misclassification detection and OOD detection both rely on a metric to evaluate how confident a model is on its predictions.
The most straightforward metric would be the pseudo-probability of the predicted class (i.e. the max probability). If the
probability is high it is reasonable to assume that the network is confident (this is precisely what we want to impose in the
calibration task). Other metrics which involve all the logits have been suggested, negative entropy being the most popular.
In Fig. 11 we compare the results obtained with probabiliy and entropy as confidence metrics and observe that there is not a
significant difference between the two. Therefore, the simpler confidence metric based on the predicted class probability is
used for other experiments by default.
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Figure 11. Ablation of confidence score: max probability vs. entropy Comparison of misclassification (top) and OOD (bottom) detection
when using probability or negative entropy as confidence metrics. We observe that there is no significant difference between the two metrics,
therefore we use the simpler probability as the default.



D. Ablation number of clusters

One of the main hyperparameters in Gong et al. [17] is the number of clusters. In Fig. 12, we ablate the number of clusters
for different test datasets (columns) and calibration datasets (rows). Although not all networks evolve in the same way, we
observe that after 16 clusters, performance is more or less stable.
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Figure 12. Ablation number of clusters. ECE (|) for different models and datasets as we vary the number of clusters computed for
calibration. We find 16 clusters to be relatively stable.

E. Visualization of cluster samples

In Sec. 4.3 we observe that adaptive temperature scaling via clustering does not significantly improve calibration under
distribution shift — especially when the shift is strong. The method by Gong et al. [1 7] makes the implicit assumption that the
different domains captured in the clusters during calibration will be representative of the domains encountered at test time. In
order to have a better intuition, we visualize a few samples randomly picked from each cluster. We show images from both
the calibration set (used to compute the clusters and calibrate the models) and the test set (used to evaluate the calibration
error). In our visualizations, the test set comprises images of the three datasets (CS, IDD and ACDC), while the calibration
set changes for each Figure. In Figs. 13 to 15, respectively, we show representatives from clusters in Clust All (all datasets
used during calibration), Clust CS (CS images used) and Clust CS aug (augmented CS images used). Qualitatively, when all
datasets are used for calibration, the cluster assignments appear quite reasonable (e.g. night ACDC images are assigned to
night images from calibration). However, when calibrating on CS and CS augmented, we observe that the calibration clusters
are not diverse enough for the test images and the cluster assignments do not appear so intuitive.
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Figure 13. Visualization of clusters (Clust All). Sample images from clusters computed for [17]. In this case, the calibration set (where
clusters are computed) contains imaged from all datasets and we qualitatively observe the cluster assignments to align with human intuition.
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Figure 14. Visualization of clusters (Clust CS). Sample images from clusters computed for [17]. In this case, the calibration set (Where
clusters are computed) contains imaged from CS only. We qualitatively observe that the clusters are not representative of the test distribu-
tion.
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Figure 15. Visualization of clusters (Clust CS aug). Sample images from clusters computed for [17]. In this case, the calibration set
(where clusters are computed) contains imaged from CS augmented only. Even if data augmentations introduce variability to the dataset,
it is still not representative of the test distribution.




F. Theoretical insights on adaptive temperature via clustering

In Fig. 4 we observed that even when we evaluate the ECE on the calibration set, the calibration error does not monoton-
ically decrease as we increase the number of clusters. This is somewhat counterintuitive as one would think that, with more
clusters, the temperatures can be more fine-grained and evaluating on the calibration set there are no issues with overfitting.
However, it is indeed possible since the temperatures of each cluster are optimized independently. In the following we present
a theorem and proof to show that decreasing the ECE for several disjoint subsets of images (clusters) independently does not
guarantee that the ECE on the union set will decrease.

First, we introduce some preliminaries and notation. Consider a classifier f : X — Y with Y ={1,2,3,..., Ic}. We model
our classifier as f = argmax p(y|x) where p(y|x) are the pseudo-probabilities estimated by the model for each class given the
input. We say that a model is calibrated when

P(ylplyx)=p)=p. ¥x~D D

where P is the true probability of the classes and D the data distribution. However, most works focus on a simplification of
this problem where only the probability of the predicted class is taken into account, that is:

P (y = argmax p(y[x) | max p(ylx) = p*) = p* Vx,y~ D. (2)
The most common metric to measure calibration is the Expected Calibration Error (ECE). Which looks at the expected

difference between the predicted and actual probabilities:

B[ | p' - B[ Plargmax p(ylx) = y) | max piyix) = p' 1] | )

In order to empirically estimate the ECE, it is standard practice to quantize the output probabilities given by the model
and compute the mean probability (confidence) and accuracy in each bin. That is,

m

— #B;
ECEf = Z — |accuracy(B;) — confidence(B;)| 4)
n
i=1
where #B; denotes the number of elements in the i bin, m denotes the number of bins and n = Y., #B; the total number

of elements used to estimate the ECE. We also use f to indicate the dependency of the ECE on the classifier.

Consider now, that we split the data into two different sets and we quantize it in bins 8 = {B;} and 8’ = {B;} with the
same boundaries so that for each pair B; and B; the range of confidence values are the same. Moreover, consider now the
respective ECE computed for each subset of data independently — denoted E/C\Ef(B) and E/C\Ef(B’) — and on the full set of
points ETC\Ef(B + B’) where B + B’ is an abuse of notation to indicate the union of elements in the bins for each index i.

Theorem F.1. With the notation described above, consider a model fy,qc1 sSuch that an “oracle” splits the input according
to whether it belongs to B or B'. Moreover, fyaci. Uses two calibration strategies (one for B and one for B’) in a way that
it improves it’s ECE on each subset B, B’ individually compared to some baseline model f (e.g. by means of temperature
scaling with a different temperature for each subset). This does not necessarily imply that the oracle model (fyr4c1.) Will be
better calibrated on the full set of points B + B’ than the baseline model f. That is, given that:

(@) ECE,

oracle

(B) < ECE(B) and ECE,

oracle

(8) < ECE(8B)
Then, condition (a) is not sufficient to claim:

(b) ECE;, (B+8B)<ECE(B8+8)

loracle

Proof. In order to proof the theorem we will construct a counter-example where condition (a) is satisfied but condition (b)
is not. Consider the accuracy and confidence for the full set of points in a given bin:

#B; acc(B;) + #B; acc(B])
#B; + #B,
#B; conf(B;) + #B; conf(B;)
#B, + #B,

acc(B; + B)) =

conf(B; + B}) =



Then the ECE of the full set of points will be:

. ™ #B; + #B,
ECE/(B+ B) = Z — |ace,(B; + BY) — conf,(B; + B)) |

i=1

1
n+n

M

1l
—

#B;(accr(By) — confr(By)) + #B;(acc;(B;) — conf(B)) | .

U

To simplify the notation, let us define ri(f) = acc;(B;) — conf;(B;) and similarly for r{(f). Then, we can write:

m

— 1
ECE/(B+8) = )| —— WBi r(f) + #B, rl().
P n+n
— - #B;
ECE/(8) = ), — In(/l
i=1
STal® ’ S #B: ’
ECE/(8) =) — IN().

i=1

Now let us consider a setting where r;(f) = r and r;(foracle) = —0.51 for some r # 0 while r{(f) = —r and r{ (foracte) = —0.57.
Moreover, consider #B; = #B; which implies n = n’, then this setting would satisty condition (a) since

— O #B; o #B; —

ECE/(B) = ) — = > — |- 0.5r| = ECE;,.(8) and
i=1 i=1

— N #B, T #B, — )

ECE/(8)= ), —"|-rl2 ) —"|-05r| = ECEy,,(8).
i=1 i=1

However, this same setting would not satisfy condition (b) since

STl ’ S #Bl

ECE(8+8)=) —Ir—r/=0 and
i=1 2n
m

E/C\Eﬂ)racle (B + B/) = Z

i=1

#B;
2n

| =0.5r-0.5r] > 0.

Thus, we have showed that condition (a) does not imply (b). ]

This result implies that minimizing the ECE for different subsets of the data independently (e.g. each cluster of images)
does not necessarily lead to an overall improvement of the ECE. Moreover, we have assumed only two sets of samples
without loss of generalization since if (a) implied (b) for an arbitrary number of data splits it would in particular imply it for
two. Finally, note that our result is valid for either image classifiers or segmentors. In the first case we would each prediction
would be the class of a whole image while in the second case the each pixel in an image would have a different prediction.



G. Per-class clustering

In Fig. 6, we have observed that adaptive temperature via clustering [|7] does not significantly help improving out-of-
domain calibration compared to local temperature scaling (LTS) [14]. One important difference between the methods is that
LTS computes a temperature for each pixel in the image while clustering is performed at the image level — using a single
temperature per image. This motivates us to perform an ablation where, on top of the image level clustering, pixels in a
given image are grouped according to their predicted class. Intuitively, we are looking for a temperature for regions in the
image that look alike to the network (since they are assigned to the same class). In Fig. 16 we compare standard per-image
clustering (top) with the aforementioned per-class clustering (bottom). Note that per-class clustering always groups pixels
according to the predicted class, therefore if ik = 1 then there are 19 clusters (corresponding to the CS classes). Calibration
images are from the CS dataset.

Similarly to per-image clustering, increasing the number of clusters does not seem to always help when using per-class
clustering. Moreover, we do not find that per-class clustering significantly improves calibration except for SegFormer ar-
chitecture. We are not stating here that finer-grained clustering may not yield further improvements (and reach similar
performance to LTS). However, given that improving ECE in different subdomains independently is not guaranteed to im-
prove overall calibration (see Appendix F), perhaps a different approach to finding the temperatures and clusters taking into
account both local and global calibration error would be needed.
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Figure 16. Per-class clustering ablation. ECE (|) for different models and datasets as we vary the number of clusters computed for
calibration. We compare per-image clustering (where all pixels in an image are given the same temperature) vs. per-class clustering
(where different pixels in an image are given a temperature depending on their predicted class). Overall, we do not observe consistent
improvements when using per-class clustering except in SegFormer architecture.



H. Ablation LTS: image vs. logits

LTS [14] employs a small-weight calibration network which receives both the image and predicted logits as input and it
returns a temperature map to scale the logits (with a different temperature for each pixel in the image). Given its remarkable
performance (see Figs. 5 and 6) and, to get further insights into this method, in Fig. 17 we perform an ablation where the
calibration network only receives the image or the logits as input. To carry out this experiment, we modify the network
in [14] so that both input branches (logits and image) receive the same input, either both logits or both image. All calibration
networks have been trained in CS images only.

Interestingly, we observe that, in distribution (ECE CS), the better performing method for most networks is the LTS
variant that uses the logits only. On the other hand, for OOD calibration, the better performing variant in most cases is the
one that relies on both logit and image information. Moreover, under strong domain shifts (ECE ACDC), LTS yields better
results by using only the image information than by using only the logits. However, this is subject to variability as results
vary across different architectures. Further investigations on how logit and image signals are combined may constitute a
promising direction to further improve calibration results.
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Figure 17. LTS with image vs. logits information ECE () after calibration with three LTS variants: the original method combining image
and logits (LTS), an LTS version only using logit information (LTS logits) and the complementary version only using image information
(LTS image). We observe that in distribution, using only the logits seems to perform better while out of distribution using information from
both image and logits works best.



I. Ablation of the effect of training settings

Our goal is to assess the reliability of the best available models for segmentation — the ones used by practitioners.
Therefore, to test a model at its best, we need to use its most favorable setup (original pre-training, optimizer, etc.), as done
in previous work [33, 44]. Nevertheless, in this section we ablate the effects of two different training settings: the dataset
used to pre-train the backbone and the number of training iterations. Most recent models were pre-trained on ImageNet 21k,
however, ResNet backbones are usually pre-trained on ImageNet 1k. In the top rows of Tab. 2 we compare the performance
of a BiT-ResNet50 [26] and a ConvNext-B [30] backbones pre-trained with either ImageNet 1k or 21k. We observe that the
benefits of a larger pre-training dataset are small in comparison to the gap between architectures.

On the other hand, most models were trained using 80k iterations (as is quite standard for CS dataset, but Segmenter and
SegFormer models’ original training schedule uses 160k iterations. In the bottom rows of Tab. 2 we compare Segmenter
and SegFormer-B5 networks trained with either 160k or 80k iterations, again the differences are minor compared to the gap
between architectures.

mloU (T) ECE ()
Architecture CS IDD ACDC CS 1IDD ACDC

ConvNext-B (IN-1k)  80.39 64.11 58.77 0.77 5.53 18.95
ConvNext-B (IN-21k) 81.56 65.70 60.59 0.81 5.27 20.07
BiT-RN50 (IN-1k) 76.36 5746 4747 0.67 5.18 1947
BiT-RN50 (IN-21k) 7649 5723 46770 065 520 19.63

Segmenter (160k) 76.19 6196 6324 083 4.14 1859
Segmenter (80k) 76.22  60.74 6296 0.71 428 18.36
SegF-B5 (160k) 80.94 6247 5943 193 646 21.37
SegF-B5 (80k) 80.15 6295 57.00 1.07 532 21.27

Table 2. Ablations of different training settings. On the top we compare ConvNext and BiT-RN50 architectures with the backbones pre-
trained on either ImageNet 1k or 21k datasets. We observe that the benefits of a larger pre-training dataset are small in comparison to the
gap between architectures. On the bottom we compare the amount of training iterations, again, we observe that although longer training
schedules do improve the performance, changes are also small in comparison to architecture differences.

J. Architectures for Universal Image Segmentation

With the appearance of transformers, and in particular motivated by DETR [4], some architectures have been proposed
with the objective to solve the three main Image Segmentation tasks, that is: Semantic Segmentation, Instance Segmentation
and Panoptic Segmentation [8,9,57]. Here we will focus on Mask2Former [8] which is based on MaskFormer [9] and is the
best performing universal architecture to the best of our knowledge. Interestingly, to be able to solve the different segmen-
tation tasks jointly, these architectures do not output the standard per-pixel logits when it comes to semantic segmentation.
Instead, they predict a set of N object masks (where N is fixed) and the class probabilities for each object. Then, to obtain the
per-pixel class probabilities they marginalize over all the possible objects a pixel could belong to, we refer the reader to [8, 9]
for further details.

Although this final output can be regarded as per-pixel class probabilities, they way it is obtained differ from the standard
logits + softmax setting that all calibration methods rely on, therefore it is not straightforward to compare these universal
architectures with other models with temperature scaling. Nevertheless, given the good performance and wider applicability
of these models, we include them in our study comparing only off-the-shelf performance in terms of mloU, calibration, OOD
detection and misclassification. The best performing model from [8] is based on a Swin transformer (Swin Large) [29],
therefore, we also include a Swin transformer model with UpperNet to the comparison for completeness.

J.1. Calibration with Mask2Former

In 18 we present the ECE vs segmentation error (100 - mIoU) for the different models. Interestingly, we observe that
Mask2Former seems to be the best-performing model in terms of mloU in all datasets. In terms of calibration error
Mask2Former is poorly calibrated in distribution (CS) but has a milder increase in ECE as the distribution shift becomes
stronger.
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Figure 18. mloU error (]) vs. Expected calibration error (]). All models were trained on CS. Markersize proportional to number of
parameters. Interestingly, we observe that Mask2Former seems to be the best-performing model in terms of mloU in all datasets. In terms

of calibration error Mask2Former is poorly calibrated in distribution (CS) but has a milder increase in ECE as the distribution shift becomes
stronger.

J.2. OOD detection with Mask2Former

In 19 we present the OOD vs mloU for the different models. Here we observe that Mask2Former and Swin transformer

align with the negative trend observed in previous models where models with better mIoU tend to perform worse at OOD
detection.

Cityscapes IDD ACDC
° 2/ P ° o R @ UpNetRN
- % . P X & e $¢ DLV3+RN
o075 ® ¢ 075 ® £ o ° ‘L @ Conviext
. oy oo xg %o o S
20.50 % 0.50 * ufm 050 % ke SR
8 ' ] ’ L] ’ B @ segFormer
X X X <4 Segmenter
0.25 0.25 0.25 Mask2F
75 80 55 60 65 40 60 M SwinL
mioU ( T) mioU ( T) mloU ( 1)

Figure 19. mloU (T) vs. OOD - AUROC (1) for different model families. All models trained on CS. Markersize proportional to number of
parameters. We observe that Mask2Former and Swin transformer align with the negative trend observed in previous models where models
with better mloU tend to perform worse at OOD detection.

J.3. PRR with Mask2Former

In 20 we present the OOD vs mloU for the different models. Although Mask2Former is significantly better than other
models in terms of misclassification detection in distribution, it seems to perform significantly worse under strong domain
shifts (ACDC). This seems to be contrary to the trend followed by other models where robustness seems to be correlated with
misclassification under domain shift.
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to number of parameters. Mask2Former is significantly better than other models in terms of misclassification detection in distribution, it
seems to perform significantly worse under strong domain shifts (ACDC).



K. Visualization of uncertainty and temperature maps

As opposed to classification, semantic segmentation models can assign different confidence to regions of the image. That
can allow, among other applications, to detect regions with low confidence that may correspond to novel classes or weird
instances of a known class. ACDC shares the same classes as Cityscapes, however, IDD includes some novel classes which
are not included in the Cityscapes dataset. In 21 we illustrate some examples of IDD images with confidence maps before
and after LTS, together with the temperature scaling maps predicted by the calibration network. We observe how different
OOD classes (e.g. autorickshaw, bridge, billboard) or weird instances are highlighted in the calibration maps. In Appendix L
we quantify how useful are the calibration maps in order to perform local OOD detection.

Scaled Probs T map

Figure 21. Calibration and temperature maps for different IDD images. We observe how different OOD classes (e.g. autorickshaw,
bridge, billboard) or weird instances are highlighted in the calibration maps.



L. Local OOD detection

In this section we perform OOD detection at the pixel level to find regions of the image that belong to unknown classes
(autorickshaw, guardrail, billboard, bridge). We define pixels of unknown classes as OOD while those corresponding to CS
classes are in distribution. In Fig. 22 we present the results of local OOD detection vs mloU. We make two observations:
i) Mask2Former has the best local OOD detection; ii) Differences between models are smaller for local OOD: numbers are
roughly in the 0.7 — 0.8 range vs. 0.4 — 1.0 range for image-based OOD.
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Figure 22. mlIoU (T) vs. local ood (7) for different model families. All models trained on CS. Markersize proportional to number of
parameters. Mask2Former achieves the best local OOD detection performance.



M. Additional plots: adaptive temperature via clustering

In Fig. 3 we analyzed the calibration error after applying the method by Gong et al. [17], which clusters the images in the
calibration set and computes a different temperature per cluster. Due to space constraints we only showed the best performing
model for each family, in Fig. 23 we show the results for all models.
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Figure 23. ECE () after clustering TS Extension of Fig. 3 in the main paper where we show results for all models.



Complementary to Fig. 23 where we show the different calibration methods for a given architecture with barplots, in

Fig. 24 we present the same results but we group them by calibration method (instead of by model). For each test dataset
(rows), we plot the ECE vs. mloU after calibrating the models with the corresponding method (columns).
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Figure 24. ECE () vs. mIoU error () after calibration with clustering TS considering different calibration sets. This plot provides a
different visualization of the results in Fig. 23.



N. Additional plots: local temperature scaling

In Fig. 5 we analyzed the calibration error after applying the method by Ding et al. [14] which learns a calibration network
that predicts the temperature as a function of the image and segmentation model logits. Due to space constraints we only
showed the best performing model for each family, in Fig. 25 we show the results for all models.
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Figure 25. ECE (|) after Local TS Extension of Fig. 5 in the main paper where we show results for all models.



Complementary to Fig. 25 where we show the different calibration methods for a given architecture with barplots, in
Fig. 26 we present the same results but we group them by calibration method (instead of by model). For each test dataset
(rows), we plot the ECE vs. mloU after calibrating the models with the corresponding method (columns).

Uncalib LTS CS LTS CS aug LTS All LTS O TS O
4 4 4 o 4 4

%
3 A
(@] .‘+’x
W2 e 2 2 o 2 + 2 2
Luﬂ = v e +.0+.' ".". * to+.'
7 ® L )94
. x6 o, . 2"y * o R . . "ot * o P TP
20 25 20 25 20 25 20 25 20 25 20 25
o o :
()] || %
550" &®e, 50 50 o, 5.0 5.0 5.0
w s L4 0.0* ‘ s 0 n ’*x * o
025 25 drPek 25 e T25 025 25 gen'®
] n (>3 Ox02 n -‘l:‘§ Oxe' ©® “ ‘,‘.Qx °
0.0 0.0 0.0 0.0 0.0 0.0
35 40 45 35 40 45 35 40 45 35 40 45 35 40 45 35 40 45
x
Q20 B° * e 20 20 20 20 20
8 " oxe
< =
10 10 4 10 10 10 10 {&F y aX.
6 e & @ #’3’ * :‘ o X » ¢ X <o
e LS Sxo M %0 dine J e fin. . Se
40 60 40 60 40 60 40 60 40 60 40 60
mloU error mloU error mloU error mloU error mloU error mloU error

@® UpNetRN $¢ DLV3+RN m ConvNext & SETR ¢ SegFormer < SegmenterJ

Figure 26. ECE (|) vs. mloU error (|) after calibration with Local TS considering different calibration sets. This plot is showing the
same results as Fig. 25 but in a different visualization.



0. Additional plots: Comparison calibration methods

In Fig. 6 we compared the calibration error after calibrating with TS CS, Clust CS and LTS CS vs. the uncalibrated
baseline. Due to space constraints we only showed the best performing model for each family, in Fig. 27 we show the results
for all models.
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Figure 27. ECE (]) after calibration with different methods Extension of Fig. 6 in the main paper where we show results for all models.



Complementary to Fig. 27 where we show the different calibration methods for a given architecture with barplots, in
Fig. 28 we present the same results but we group them by calibration method (instead of by model). For each test dataset
(rows), we plot the ECE vs. mloU after calibrating the models with the corresponding method (columns).
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Figure 28. ECE () vs. mIoU error (|) after calibration with different methods on the CS calibration set. This plot is showing the same
results as Fig. 27 but in a different visualization.



P. Additional plots: misclassification detection

In Fig. 8 we compared the misclassification detection and OOD detection performance of the networks after calibrating
with TS CS, Clust CS and LTS CS vs. the uncalibrated baseline. Due to space constraints we only showed the best performing

model for each family, in Fig. 29 we show the misclassification detection results for all models.
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Figure 29. Misc detection: PRR (1) after calibration with different methods Extension of Fig. 8 in the main paper where we show

misclassification results for all models.
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Complementary to Fig. 29 where we show the different calibration methods for a given architecture with barplots, in
Fig. 30 we present the same results but we group them by calibration method (instead of by model). For each test dataset
(rows), we plot the ECE vs. mloU after calibrating the models with the corresponding method (columns).
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Figure 30. PRR (1) vs. mIoU (7) after calibration with different methods on the CS calibration set. This plot is showing the same results
as Fig. 29 but in a different visualization.



Q. Additional plots: out-of-distribution detection

In Fig. 8 we compared the misclassification detection and ood detection performance of the networks after calibrating with
TS CS, Clust CS and LTS CS vs. the uncalibrated baseline. Due to space constraints we only showed the best performing
model for each family, in Fig. 29 we show the OOD detection results for all models.
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Figure 31. OOD detection: AUROC (1) after calibration with different methods Extension of Fig. § in the main paper where we show

OQOD detection results for all models.

Complementary to Fig. 31 where we show the different calibration methods for a given architecture with barplots, in
Fig. 32 we present the same results but we group them by calibration method (instead of by model). For each test dataset
(rows), we plot the ECE vs. mloU after calibrating the models with the corresponding method (columns).
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Figure 32. AUROC (1) vs. mIoU (1) after calibration with different methods on the CS calibration set. This plot is showing the same
results as Fig. 31 but in a different visualization.



