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In this supplementary document, to the main paper, we
provide the following:

A. Further comparisons on synthetic and scanned data

A.1. Additional visual comparisons on the Rue
Madame and Kinect datasets

A.2. Comparison of conventional methods on the
PUNet dataset with Gaussian noise and Kinect
dataset

A.3. Quantitative comparisons on PUNet dataset with
different noise patterns

B. Further ablations on iteration number

C. Ablation study on patch stitching

D. Filtering results for PointNet++ based encoders

E. Runtimes for learning based methods

A. Further Comparisons on Synthetic and
Scanned Data

In this section, we provide additional visual and quanti-
tative results on synthetic and scanned data.

A.1. Additional visual comparisons on the Rue
Madame and Kinect datasets

Table 2 and Fig. 7, of the main paper, present quantita-
tive results on the Kinect dataset and visual results on the
RueMadame dataset, respectively. To further demonstrate
our method’s robustness, in the presence of real world noise,
we provide visual results on two additional scenes of the
RueMadame dataset, given in Fig. 1. Moreover, we provide
visual comparisons of 4 scans from the Kinect v2 dataset in
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Fig. 2, which could not be included in the main paper due
to constraints of space.

As seen in Fig. 1, our method performs considerably bet-
ter compared to other methods when filtering noise for the
RueMadame scenes. In scene 3, the roof and body of the
vehicle is best filtered by our method while the filtering
results of other methods leave behind significant noise ar-
tifacts. Furthermore, as illustrated in Fig. 2, we are able
to better filter complex Kinect v2 scans, such as the model
of the Boy, as opposed to state-of-the-art methods. This is
supported by the results presented in Table 2 of the main
paper, where we achieve the best results on the CD metric.
It indicates that our method produces filtered point clouds
closer in point distribution, and proximity, to the clean point
clouds of the Kinect v2 dataset, than other state-of-the-art
methods.

A.2. Comparison of conventional methods on the
PUNet dataset with Gaussian noise and
Kinect dataset

In the main paper we were not able to present a compar-
ison of the filtering performance of conventional methods,
due to limited space. In Table 1 and Table 2, we present
quantitative results for the Bilateral filter [2], Jet fitting
mechanism [1] and WLOP regularization mechanism [4].
The Bilater filter relies on initial point normals which were
calculated using Principal Component Analysis (PCA) [3]
as it is a widely used normal estimation technique. WLOP
regularizes and downsamples noisy point clouds. These
must then be upsampled and we use the Edge Aware Resam-
pling (EAR) mechanism of Huang et al. [5] to accomplish
this.

In general, conventional methods perform poorly com-
pared to learning based methods. In addition, they require
parameter tuning to obtain best results which can be te-
dious and time-consuming. Methods such as the Bilateral
filter further rely on initial point normals to filter effec-
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Figure 1. Visual results on two additional scenes of the RueMadame dataset. Green and red arrows are used to indicate accurately and
inaccurately filtered regions, respectively.

Figure 2. Visual results of point-wise P2M distances for 4 scans of the Kinect v2 dataset.

tively and the accuracy of these normals have an effect on
the overall filtered output. WLOP, by contrast, recovers
good P2M results on the Kinect v1 dataset. This is pos-
sibly due to the resampling procedure where the downsam-
pled output from WLOP is upsampled by the EAR mecha-
nism. Although this is reasonably successful for the Kinect
v1 scanned data with relatively simple topology, for more
complex topologies as those associated with the shapes in

the PUNet dataset, the resampling procedure is less success-
ful. As shown in Table 1, the resampling procedure yields
high CD and P2M values as the WLOP mechanism is not
able to optimally identify clean surfaces and omits geomet-
ric details. Moreover, WLOP performs poorly on the Kinect
v2 dataset which illustrates its inability to generalize well
across different filtering scenarios.



Method
10K points 50K points

1% noise 2% noise 2.5% noise 1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

Bilateral 31.47 14.95 51.94 26.75 73.83 44.31 17.09 13.9 17.98 13.38 25.34 19.55
Jet 31.91 13.42 55.25 31.14 61.51 36.56 7.95 4.39 13.67 8.77 16.68 11.18
WLOP 60.41 30.85 88.59 52.95 109.68 74.29 9.61 6.27 19.94 14.53 28.44 21.66
Ours 20.56 5.01 30.43 8.45 33.52 10.45 6.05 3.02 8.03 4.36 10.15 5.88

Table 1. Filtering results of conventional methods on the PUNet dataset with Gaussian noise. CD and P2M distances are multiplied by
105.

Method Kinect v1 Kinect v2
CD P2M CD P2M

Bilateral 13.65 9.27 20.14 12.1
Jet 13.41 8.78 19.82 11.82
WLOP 13.89 7.65 33.0 14.79
Ours 13.2 8.43 18.69 10.92

Table 2. Filtering results on the Kinect v1 and Kinect v2 datasets.
CD and P2M distances are multiplied by 105.

A.3. Quantitative comparisons on PUNet dataset
with different noise patterns

In addition to Gaussian noise, we are interested in com-
paring filtering results for different noise patterns. In this
section, we follow the work of ScoreDenoise [7] and inves-
tigate the filtering performance of methods on the following
noise types:

Non-isotropic Gaussian noise where we set the covari-
ance matrix of the Gaussian noise distribution to:

Σ = s2 ×

 1 −1/2 −1/4
−1/2 1 −1/4
−1/4 −1/4 1

 (1)

The noise scale parameter s is set to 1%, 2% and 2.5% of the
bounding sphere’s radius. Results are presented in Table 3
and Fig. 4. Much like the case of isotropic Guassian noise,
Table 1 of the main paper, our method outperforms others
and generalizes well to this noise pattern.

Discrete noise with the following distribution:

p(xxx; s) =


0.1, xxx = (±s, 0, 0) or xxx = (0,±s, 0)

or xxx = (0, 0,±s),

0.4, xxx = (0, 0, 0)

0, Otherwise

(2)

where s is set to 1%, 2% and 2.5% of the bounding sphere’s
radius. Results are presented in Table 4 and Fig. 5. Our
method outperforms others across resolutions and noise
scales.

Laplace noise with the noise scale set to 1%, 2% and
2.5% of the bounding sphere’s radius. Results are presented

in Table 5 and Fig. 6. This noise pattern has a relatively high
noise intensity as illustrated by the CD and P2M metric re-
sults for the noisy point clouds. Nevertheless, our method
consistently outperforms other methods and recovers fil-
tered point clouds with low CD and P2M distances from
the clean counterparts.

Uniform distribution of noise within a 3D sphere of ra-
dius s, given by,

p(xxx; s) =

{
3

4πs3 , ∥xxx∥2 ≤ s,

0, Otherwise
(3)

where s is set to 1%, 2% and 2.5% of the bounding
sphere’s radius. Results are presented in Table 6 and Fig. 7.
This noise pattern corresponds to noise sampled uniformly
within a sphere of radius s, and as pointed out by [7], is an
example of a noise distribution that is not uni-modal and is
unlike Gaussian or Laplace noise. Our method again out-
performs other state-of-the-art methods.

B. Further Ablations on Iteration Number
In Table 7 we consider the impact of iteration number un-

der higher noise settings. The maximum training noise for
all models is 2%, much lower than the unseen, high noise
settings of Table 7. We observe that the optimum number
of filtering iterations for our network is 4. Variants contain-
ing higher numbers of ItMs appear to over-specialize on the
training noise scales and perform sub-optimally at higher,
unseen noise scales. Moreover, the DPFN network, with
1 ItM comprising 6 Dynamic EdgeConv layers as opposed
to 4 ItMs with 4 Dynamic EdgeConv layers each, performs
poorly with increasing noise. This result demonstrates the
importance of multiple ItMs and true iterative filtering, as
opposed to a deep, 1 iteration, network with the same num-
ber of parameters.

C. Ablation Study on Patch Stitching
During inference, given a noisy point cloud, we con-

struct patches of 1000 nearest neighbors from a set of refer-
ence points {xxxr}Rr=1 determined using farthest point sam-



Method
10K points 50K points

1% noise 2% noise 2.5% noise 1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

Noisy 36.17 15.9 78.88 47.75 104.2 69.69 18.55 12.8 50.37 41.38 72.32 62.0
Bilateral 30.92 14.98 52.56 27.77 74.19 45.08 17.08 13.99 18.99 14.52 27.72 22.07
Jet 31.57 13.54 55.39 31.59 60.89 35.89 7.87 4.38 13.84 9.0 17.21 11.74
WLOP 60.02 29.87 92.14 56.69 108.78 70.55 9.67 6.34 20.53 15.13 29.59 22.68
PCN 36.12 15.86 78.74 47.6 104.04 69.53 10.82 6.37 20.49 14.42 34.17 26.98
GPDNet 22.71 7.17 43.34 19.24 59.25 31.68 10.54 6.46 33.09 25.38 51.0 41.67
DMRDenoise 47.8 22.76 50.96 25.26 53.47 27.62 12.05 7.6 14.63 9.9 17.57 12.48
PDFlow 21.03 6.78 32.93 13.76 37.12 17.81 6.53 4.19 13.12 9.6 20.56 15.97
ScoreDenoise 24.79 7.54 37.01 14.09 42.41 19.1 7.11 4.0 13.19 8.62 14.92 9.96
Pointfilter 23.99 7.2 35.29 11.84 41.57 15.71 7.57 4.36 9.64 5.6 12.4 7.51
Ours 19.94 4.94 30.3 8.6 34.39 11.23 6.02 3.05 8.3 4.6 11.52 6.99

Table 3. Filtering results on the PUNet dataset with non-isotropic Gaussian noise. CD and P2M distances are multiplied by 105.

Method
10K points 50K points

1% noise 2% noise 2.5% noise 1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

Noisy 11.6 5.87 30.08 12.73 36.99 17.35 6.71 4.44 13.76 10.31 18.36 14.56
Bilateral 19.6 15.33 27.84 15.08 28.78 14.56 15.61 14.38 15.85 14.09 15.74 13.74
Jet 17.82 10.46 38.94 22.82 41.06 23.74 4.57 3.22 8.13 5.67 8.94 6.22
WLOP 59.72 29.85 66.12 35.0 68.2 36.57 8.28 5.31 10.11 6.77 11.32 7.73
PCN 11.64 5.89 30.06 12.71 36.95 17.31 6.21 4.14 8.86 5.95 10.26 7.05
GPDNet 7.88 4.33 19.19 6.34 22.32 7.65 4.6 3.14 7.75 5.29 10.38 7.45
DMRDenoise 48.4 24.25 48.42 23.74 48.43 23.86 11.1 6.9 12.5 7.95 12.68 8.13
PDFlow 8.71 4.64 18.86 6.33 23.37 8.29 4.33 3.04 6.72 4.53 7.38 5.0
ScoreDenoise 12.44 5.32 21.82 7.07 28.81 11.72 4.48 2.91 6.16 3.87 7.32 4.62
Pointfilter 11.14 5.72 20.56 6.92 22.49 7.57 5.43 3.92 6.12 4.16 6.43 4.34
Ours 6.41 3.67 16.49 4.66 18.72 5.21 3.47 2.53 4.26 2.8 4.62 2.99

Table 4. Filtering results on the PUNet dataset with discrete noise. CD and P2M distances are multiplied by 105.

Method
10K points 50K points

1% noise 2% noise 2.5% noise 1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

Noisy 49.83 25.95 117.73 83.79 162.23 124.83 28.69 22.23 86.64 76.74 127.21 115.91
Bilateral 36.87 17.95 80.15 51.36 112.47 78.99 18.2 14.66 41.25 35.58 71.13 63.96
Jet 35.87 15.64 63.13 38.0 70.8 44.24 9.4 5.43 18.63 13.04 28.33 21.79
WLOP 60.94 31.19 103.49 69.38 126.41 88.96 11.73 7.98 32.5 25.96 52.69 44.16
PCN 49.75 25.87 117.6 83.64 162.1 124.66 13.71 8.89 47.62 40.94 86.11 78.13
GPDNet 28.61 10.13 63.79 36.67 96.58 65.43 15.33 10.53 58.14 49.37 93.35 82.92
DMRDenoise 48.45 23.48 55.12 28.84 59.61 32.72 12.6 8.12 17.62 12.62 23.45 17.98
PDFlow 25.38 8.76 43.19 22.05 51.87 30.12 8.21 5.52 22.76 17.89 45.08 38.08
ScoreDenoise 29.03 9.64 46.02 21.36 51.84 27.3 8.25 4.89 16.77 11.67 18.51 12.79
Pointfilter 27.73 8.61 42.5 16.73 54.66 25.55 8.27 4.85 12.44 7.59 17.54 11.69
Ours 23.93 6.02 33.96 11.0 42.93 17.55 6.53 3.36 9.99 5.8 16.6 10.96

Table 5. Filtering results on the PUNet dataset with Laplace noise. CD and P2M distances are multiplied by 105.



Method
10K points 50K points

1% noise 2% noise 2.5% noise 1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

Noisy 11.89 6.21 35.01 14.17 44.54 19.62 7.96 4.7 16.93 10.99 22.45 15.55
Bilateral 19.92 15.42 31.4 14.78 33.86 14.46 16.49 14.41 17.25 14.14 17.01 13.6
Jet 18.15 10.55 42.27 22.72 46.06 24.38 5.6 3.28 9.56 5.8 10.42 6.4
WLOP 59.88 29.79 71.06 37.63 67.11 35.71 8.12 5.17 10.63 7.2 12.05 8.22
PCN 11.93 6.22 34.96 14.14 44.48 19.56 7.24 4.25 10.62 6.09 11.81 6.92
GPDNet 7.84 4.31 22.31 6.59 27.25 8.22 5.45 3.24 9.97 5.87 13.66 8.6
DMRDenoise 49.14 24.01 47.69 22.61 48.06 22.67 11.18 6.9 12.23 7.71 12.19 7.72
PDFlow 8.74 4.64 20.26 6.24 24.65 8.38 4.56 3.03 6.82 4.54 7.55 5.09
ScoreDenoise 12.74 5.35 24.67 7.01 31.4 11.68 5.05 2.88 6.91 3.78 8.02 4.74
Pointfilter 11.39 5.7 24.47 6.92 27.76 7.68 6.31 3.96 7.42 4.2 7.63 4.23
Ours 6.45 3.68 20.09 4.74 24.16 5.45 4.43 2.54 5.99 2.98 6.42 3.24

Table 6. Filtering results on the PUNet dataset with noise uniformly distributed within a 3D sphere of radius s. Here, s corresponds to the
noise scale. CD and P2M distances are multiplied by 105.

Ablation:
10K points

2.75% noise 3% noise 3.25% noise
CD P2M CD P2M CD P2M

La & 1 it. 40.76 15.46 46.33 19.62 53.55 25.36
La & 2 it. 37.53 13.2 43.91 17.82 52.8 24.72
La & 4 it. 36.31 12.3 41.87 16.44 51.2 23.6
La & 8 it. 37.44 13.15 45.39 19.1 56.65 27.97
La & 12 it. 37.95 13.59 45.14 18.86 55.17 26.79
La & DPFN 39.49 14.48 47.06 20.11 57.35 28.25
Lb & 4 it. 37.62 13.2 44.22 18.13 54.36 25.93

Table 7. Ablation results for different iteration numbers and loss
functions at higher noise. CD and P2M distances are multiplied
by 105.

Figure 3. Patch (a) illustrates a noisy patch filtered with patch
stitching and patch (b) corresponds to the same noisy patch filtered
without patch stitching. The point-wise P2M distance is given
for each point. As shown by patch (b), we observe that bound-
ary points of patches tend to have higher P2M distances, i.e., fil-
tered results away from the center are less accurate, when filtering
without patch stitching. However, results closer to the center have
higher accuracy. Therefore, patch stitching attempts to recover the
best filtered points from overlapping patches and reduce the filter-
ing error at boundary points. This can be seen in patch (a), where
stitching is incorporated. We observe more accurate filtering re-
sults near the boundary.

Ablation
10K points

1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M

without PS 21.19 5.45 32.38 10.2 38.67 14.98
with PS 20.56 5.01 30.43 8.45 33.52 10.45

Table 8. Ablation results with and without patch stitching (PS).
CD and P2M distances are multiplied by 105.

pling. Typically, for a noisy point cloud of 50K points,
we construct 300 such patches and filter each patch with
all patch points being simultaneously filtered. As these 300
patches have overlapping regions, some points may be re-
peated amongst multiple patches which leads to some noisy
points having multiple filtering results associated to them.
Therefore, it is necessary to select the best filtered points
that correspond to the best filtering result for each point
amongst all patches. To achieve this, inspired by Zhou
et al. [9], we design a generalized patch stitching mecha-
nism to utilize Gaussian weights when selecting best filtered
points. These weights are designed such that noisy points
closer to a patch’s central reference point, xxxr, are weighted
higher than points further away from it. This is motivated
by the observation that points at the patch boundary are fil-
tered less favorably compared to those close to the central
point. During inference, we recover the best filtered point,
corresponding to a given initial noisy point, by selecting the
filtered result within the patch where the noisy point was
weighted highest.

The impact of incorporating patch stitching can be seen
in Fig. 3. Here, patch (b) is filtered without patch stitch-
ing. We see that many boundary points have high point-
wise P2M values, indicating these filtered results lie further
away from the clean surface. By contrast, patch (a), filtered



Method
10K points 50K points

1% noise 2% noise 2.5% noise 1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

Noisy 36.9 16.03 79.39 47.72 105.02 70.03 18.69 12.82 50.48 41.36 72.49 62.03
Ours (PN++) 22.9 5.93 33.07 10.28 36.92 13.06 6.18 3.09 9.23 5.22 12.1 7.47
Ours (PN++ w/ GRU) 22.81 5.81 33.15 10.31 37.08 13.17 6.15 3.07 9.19 5.2 12.04 7.44
Ours 20.56 5.01 30.43 8.45 33.52 10.45 6.05 3.02 8.03 4.36 10.15 5.88

Table 9. Filtering results on the PUNet dataset for IterativePFNs with Pointnet++ based encoders as compared to the original graph
convolution based implementation. CD and P2M distances are multiplied by 105.

using patch stitching, has fewer boundary points with high
P2M values. Table 8 shows that patch stitching leads to bet-
ter overall filtering, especially at high noise scales.

D. Filtering Results for PointNet++ based En-
coders

We are motivated that filtering is the reverse Markov pro-
cess that iteratively removes noise. To obtain the filtered
point xxxτ

i , we only need the filtered point from the previ-
ous iteration, i.e., xxxτ−1

i . Hence, a simple Encoder-Decoder
module (ItM) suffices to obtain filtered displacements. To
test our hypothesis, and demonstrate the generalization of
our method to other 3D point set convolution architectures,
we create variant IterativePFNs with 4 ItMs composed of
Pointnet++ based encoders:

• PN++: a vanilla Pointnet++ based encoder where the
graph convolution of point cloud patches, of our origi-
nal implementation, is replaced by direct point set con-
volution of these patches using a Pointnet++ achitec-
ture.

• PN++ w/ GRU: similar to [8], we create a Pointnet++
based variant which incorporates GRU layers within
the encoder to maintain an additional memory of fea-
ture information from the previous iteration.

Our original network, which uses a DGCNN-based encoder,
performs better as shown in Table 9. Using an additional
GRU layer within the encoder provides no meaningful per-
formance gain as the results of the vanilla Pointnet++ imple-
mentation performs comparably to the PN++ w/ GRU net-
work. This reinforces our hypothesis that filtering a point,
xxxτ
i , at the subsequent iteration, is a reverse Markov process

which requires only the filtered point, xxxτ−1
i , from the pre-

ceding iteration.

E. Runtimes for Learning based Methods
Finally, we compare runtimes across different learning

based methods. We do not compare conventional methods
as they usually require parameter tuning and, therefore, user

Method Time (s)
PCN 167.75
GPDNet 79.87
DMRDenoise 11.08
PDFlow 32.74
ScoreDenoise 18.7
Pointfilter 84.32
Ours 22.91

Table 10. Runtimes of different learning based methods for filter-
ing a noisy point cloud of 50K points with 2% Gaussian noise.

interaction, to obtain best results. Furthermore, the bilateral
filtering mechanism, and the upsampling step for WLOP,
both require point normals to be computed separately. This
process can be quite time-consuming. Our method is quite
competitive, ranking third in runtime while also achiev-
ing best results on synthetic and scanned data. By con-
trast, DMRDenoise [6], which has the shortest runtime,
generally performs poorly on the filtering task. ScoreDe-
noise [7], while performing relatively faster, still produces
sub-optimal filtering results. The ScoreDenoise runtime
mentioned in Table 10 corresponds to filtered results after
the default number of 30 gradient ascent steps, i.e., 30 test
time iterations. However, as filtered results retain signifi-
cant amounts of noise, additional iterations will be required
to further decrease this noise which inevitably contributes
to higher runtimes. GPDNet, Pointfilter and PCN perform
worst in terms of efficiency. In the case of Pointfilter and
PCN, the one patch per central point filtering strategy con-
tributes to these high runtimes since each input patch is used
to filter a single central point. By contrast, our method fil-
ters all patch points simultaneously while performing iter-
ative filtering internally and, coupled with the generalized
patch stitching mechanism we introduce, yields the best fil-
tering results with short runtimes.
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