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Figure 1. Our method SPECTRE performs visual-speech aware 3D reconstruction so that speech perception from the original footage is
preserved in the reconstructed talking head. On the left we include the word/phrase being said for each example. Please zoom-in for details
and refer to the Suppl. Material for videos of these results.

Abstract
The recent state of the art on monocular 3D face recon-

struction from image data has made some impressive ad-
vancements, thanks to the advent of Deep Learning. How-
ever, it has mostly focused on input coming from a single
RGB image, overlooking the following important factors: a)
Nowadays, the vast majority of facial image data of interest
do not originate from single images but rather from videos,
which contain rich dynamic information. b) Furthermore,
these videos typically capture individuals in some form of
verbal communication (public talks, teleconferences, au-
diovisual human-computer interactions, interviews, mono-
logues/dialogues in movies, etc). When existing 3D face
reconstruction methods are applied in such videos, the ar-
tifacts in the reconstruction of the shape and motion of the
mouth area are often severe, since they do not match well
with the speech audio.

To overcome the aforementioned limitations, we present
the first method for visual speech-informed perceptual re-
construction of 3D mouth expressions. We do this by

proposing a “lipreading” loss, which guides the fitting pro-
cess so that the elicited perception from the 3D recon-
structed talking head resembles that of the original video
footage. We demonstrate that, interestingly, the lipread-
ing loss is better suited for 3D reconstruction of mouth
movements compared to traditional landmark losses, and
even direct 3D supervision. Furthermore, the devised
method does not rely on any text transcriptions or corre-
sponding audio, rendering it ideal for training in unlabeled
datasets. We verify the efficiency of our method through
objective evaluations on three large-scale datasets, as well
as subjective evaluation with two web-based user studies.
Project webpage: https://filby89.github.io/
spectre/

1. Introduction
During the last years, Deep Learning frameworks

have succeeded in significantly increasing the accuracy of
monocular 3D face reconstruction, even in cases of uncon-
strained image data. The current state of the art is able
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to robustly reconstruct fine details of the 3D facial geom-
etry as well as yield a reliable estimation of the captured
subject’s facial anatomy. This is beneficial for multiple
applications, such as augmented reality, performance cap-
ture, visual effects, photo-realistic video synthesis, human-
computer interaction and personalized avatars, to name but
a few. greedy the On the other hand, the vast majority of
existing methods focus on 3D face reconstruction from a
single RGB image, without exploiting the rich dynamic in-
formation that is inherent in humans’ faces, especially dur-
ing speech. But even the few methods that include some
sort of dynamics modelling to reconstruct facial videos, do
not explicitly model the strong correlation between mouth
motions and articulated speech. At the same time, most fa-
cial videos of interest capture individuals involved in some
form of verbal communication. When existing 3D face re-
construction methods are applied in this kind of videos, the
artifacts in the reconstruction of the shape and motion of the
mouth area are often severe and overwhelming in terms of
human perception; the movements of the mouth that corre-
spond to speech are not captured well.

Arguably, a crucial factor for the limitations of existing
methods is the fact that most methods use weak 2D super-
vision from landmarks predicted by face alignment meth-
ods as a form of guidance [12, 25, 39, 52, 58, 61, 62, 69].
While these landmarks can yield a coarse estimation of the
facial shape, they fail to provide an accurate representation
of the expressive details of a highly-deformable mouth re-
gion. It is also important to note that the shapes of the hu-
man mouth are perceptually correlated with speech and the
realism of a 3D talking head is tightly coupled with the ut-
tered sentence. For example, a 3D model that talks without
the lips closing when uttering the bi-labial consonants (i.e.,
/m/, /p/, and /b/), or with no lip-roundness when uttering a
rounded-vowel (such as /o/ /u/) has a poor perceived natu-
ralness. EMOCA [21] made some important advancements
in terms of the expressivity of the 3D reconstructed head,
however the perceptual emotional consistency loss only af-
fected the movements that correspond to facial expressions.
Furthermore, the estimation of jaw articulation was not in-
cluded in the model, resulting often in poor reconstructions.

We conclude that, although speech perception from
reconstructed 3D faces is important for various applica-
tions (e.g., augmented and virtual reality, gaming, affective
avatars etc.) [37, 47, 57], it is a commonly overlooked pa-
rameter in the existing literature. To overcome the limita-
tions of the existing literature, this work tackles the prob-
lem of monocular 3D face reconstruction from a video,
with a strong focus on the mouth area and its expressions
and movements that are connected with speech articula-
tion. We highlight and address the fact that an accurate
3D reconstruction of a human talking in a video should re-
tain those mouth expressions and movements that humans

perceive to correspond to speech. Our method, dubbed
SPECTRE, leverages a SoTA model of lip reading to min-
imize the “speech-informed perceptual” distance between
the rendered and the original input video. Our main contri-
butions can be summarized as follows:
• We design and implement the first (to our knowledge)
method for perceptual 3D reconstruction of human faces fo-
cusing on speech without the need for text transcriptions
of the corresponding audio, or costly 3D annotations.
• We propose a perceptual “lipreading” loss based on deep
features, minimizing the perceptual distance of speech-
related lip movements between the original and recon-
structed (through a differentiable 3D face renderer) videos.
• We conduct experiments over the effectiveness of deep
features against traditional geometric based metrics and
showcase numerous examples where SPECTRE signifi-
cantly outperforms other methods in speech-aligned mouth
perceptibility, as it can be clearly seen in the Suppl. video.
Our proposed system also generalizes well to other datasets,
as demonstrated by our cross-dataset experiments.
• We make our source code and models publicly available
at https://github.com/filby89/spectre.

2. Related Work
3D Models: There is extensive literature in the fields

of computer vision and graphics for creating and recon-
structing 3D face models from various input sources (RGB,
Depth) [24, 73]. 3D Morphable Models are by far the most
widely-used choice, since they offer compact representa-
tions as well as a convenient decoupling of expression and
identity variation, allowing better manipulation. The tra-
ditional 3DMMs were linear, PCA-based models of 3D
shape variation, but several non-linear and deep learning-
based extensions have been proposed during the last years
[2, 6, 19, 64]. In the last decades, several 3D face models
have been built from large datasets of 3D scans of human
faces [7, 11, 15, 16, 31, 45, 50, 66, 69].

Monocular 3D Face Reconstruction: A common ap-
plication of 3DMMs includes estimation of the model pa-
rameters that best fit to an RGB image. This can hap-
pen as a direct optimization procedure in an analysis-by-
synthesis framework [5, 10, 12, 60, 62]. However this is a
computationally expensive procedure to run on novel im-
ages every time. Due to this reason, various methods
have emerged that formulate the problem as a regression
from image data, leveraging the power of Deep Learn-
ing [22, 26, 30, 33, 39, 40, 51, 58, 63]. Combined with a re-
liable facial landmarker, this can lead to accurate results,
even without the need for 3D supervision.

For example, RingNet [53], performs 3D reconstruc-
tion using the FLAME model [45], by enforcing a shape-
consistency loss between images of the shape subject, to
decouple identity and expression. This is improved by
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DECA [25], which predicts the FLAME parameters jointly
from a CNN, using multiple loss terms. EMOCA [21] fo-
cuses on the expressiveness of the reconstructed models,
adding an emotion-related perceptual loss and training a
CNN that predicts the expression parameters of the 3DMM
on a large emotional dataset ExpNet [17] generates pseudo-
3DMM parameters by solving the optimization problem
given an accurate 3D reconstruction of an image with a
SoTA method and then training a CNN to predict them,
without the need for landmarks. In 3DDFA [34, 35, 71],
face alignment and 3D reconstruction takes place concur-
rently, using Cascaded CNNs. MICA [72] focuses on ac-
curate prediction of the identity parameters of a 3DMM,
by employing a medium-scale 3D annotated dataset in con-
junction with a large-scale 2D raw image dataset. DAD-
3DHeads [48], provides one of the first large-scale 3D head
datasets, that can be used for direct supervision of 3D re-
construction. Finally, most recently Wood et al. [68] used
synthetic data for monocular 3D reconstruction which gen-
eralizes to real world footage. Some methods also try to
deal with occlusions [23, 44, 54].

Even though the vast majority of methods reconstruct
single face images or work on a frame-by-frame fashion on
videos, there are a few methods that exploit the dynamic
information of monocular face videos to constrain the sub-
ject’s facial shape or impose temporal coherence on the face
reconstruction [11, 14, 28, 38, 42].

A recent rising trend is exploiting deep features as met-
rics that correlate better with human perception compared
to traditional metrics [70]. Our work is mostly similar
to EMOCA [21], in the sense that both are concerned
with perceptual reconstruction. In comparison, however,
EMOCA focuses on retaining affective information from
images while our work focuses on accurate reconstruction
of mouth and lips formations that correspond to speech pro-
duction. Furthermore, EMOCA failed to accurately predict
the jaw pose (opening and rotation) of the mouth due to dif-
ficulties in convergence and kept the jaw pose fixed.

Mouth/Lip Reconstruction: Some of the earliest works
focusing on the dynamics of mouth and lips for 3D recon-
struction include the works of Basu et al. [8, 9] which used
a combined-statistical model, Gregor et al. [41] who used
markers to follow the lip motions, and Cheng et al. [18] who
performed mouth tracking from 2D images using Adaboost
and a Kalman filter. The most recent work concerned with
lip tracking from video is the work of Garrido et al. [29],
who achieved remarkable results of 3D reconstructed lips,
using the ground truth shapes of a high quality 3D stereo
database along with radial basis functions.

3. Proposed Method
Our work is based on the state-of-the-art DECA [25]

framework for monocular 3D reconstruction from static

RGB images. As such, we adopt the notation from the
DECA paper. In the original DECA, given an input image
I , a coarse encoder (a ResNet50 CNN) jointly predicts the
identity parameters β ∈ R100, neck pose and jaw θ ∈ R6,
expression parameters ψ ∈ R50, albedo α ∈ R50, light-
ing I ∈ R27, and camera (scale and translation) c ∈ R3.
Note that these parameters are a subset of the parameters
of the FLAME 3D face model. Afterwards, these parame-
ters are used to render the predicted 3D face. DECA also
included a detail encoder which predicted a latent vector
associated with a UV-displacement map, that models high-
frequency person-specific details such as wrinkles. More
recently, EMOCA [21] further built upon DECA by adding
an extra expression encoder (ResNet50) which was used in
order to predict the expression vector ψ, so that the per-
ceived emotion of the reconstructed face is similar to that
of the original image. We use these two works as start-
ing points and design an architecture that improves the per-
ceived expressions of the input video, concentrating on the
mouth area, leading to realistic articulation movements.

3.1. Architecture

A high-level overview of the architecture is shown in
Figure 2. Given a sequence of K RGB frames sampled from
an input video V , our method reconstructs for each frame I
the 3D mesh of the face in FLAME topology, such that the
mouth movements and general facial expressions are per-
ceptually preserved. Following the FLAME nomenclature,
we separate the estimated parameters into two distinct sets:

Rigid & Identity parameters: We borrow the coarse
encoder from DECA to predict independently for each im-
age I in the input sequence the identity β, neck pose θneck,
albedo α ∈ R50, lighting l ∈ R27, and camera c. Like
EMOCA [21], this network remains fixed through training.

Expression & Jaw parameters: The expression ψ
and jaw pose θjaw parameters that correspond to the in-
put sequence is predicted by an additional “perceptual”
CNN encoder, driven by deep perceptual losses that will
be described shortly. These parameters explicitly control
the mouth expressions and movements under the FLAME
framework and therefore should be properly estimated by
our approach. We employ a lightweight MobileNet v2 ar-
chitecture, but also insert a temporal convolution kernel
on its output, to model the temporal dynamics of mouth
movements and facial expressions in the input. We selected
the aforementioned lightweight option of MobileNet to re-
duce the computational overhead of our system - contrary to
EMOCA- since the existing DECA backbone already uses
a resource-demanding ResNet50 model.

In a nutshell, we assume an architecture akin to the one
introduced in EMOCA [21], with two parallel paths of pa-
rameters as described above. Nevertheless, our focus is
shifted to a very different problem and thus a set of ap-
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Figure 2. Overview of our architecture for perceptual 3D reconstruction. First a fixed encoder detects scene, identity, and a coarse estimate
of jaw and expression. Then, a perceptual encoder refines the expression and jaw, and a differentiable renderer renders the predicted 3D
shape (with texture). Finally, the input and rendered mouth are differentiably cropped and a pretrained lip reader is used to calculate the
perceptual lip reading distance. Similarly, a perceptual expression loss is used on the full face based on an emotion recognition network.
Inference requires only the 3D reconstruction component.

propriate “directions” and “constraints” should be learned
through the use of the proposed set of losses, as described
in the following section.

3.2. Training Losses

In order to train the perceptual encoder, we use two per-
ceptual loss functions for guiding the reconstruction, along
with geometric constraints. These losses are expected to
correlate better with human perception (similarly to the loss
functions based on deep features presented in [70]).

Perceptual Expression Loss: The output of the percep-
tual encoder is used along with the predictions of identity,
albedo, camera, and lighting in order to differentiably ren-
der a sequence of textured 3D meshes, which correspond
to the original input video. Then, the input video and the
reconstructed 3D mesh are fed into an emotion recognition
network (borrowed from EMOCA [21]) and two sequences
of feature vectors are obtained. The perceptual expression
loss Lem that we use corresponds to the distance between
the two sequences of feature vectors. Interestingly, since the
emotion recognition network is trained to predict emotions,
it can faithfully retain a set of helpful facial characteristics.
Therefore, such a loss is responsible for learning general fa-
cial expressions, also related to emotions that promote the
realism of the derived reconstruction. Notably, this loss pos-
itively affects the eyes, leading to a more faithful estimation
of eye closure, frowning actions, etc.

Perceptual Lip Movements Loss: The perceptual ex-
pression loss does not retain enough detailed information
about the mouth, and as such, an additional mouth-related
loss is needed. Instead of relying only on a geometric loss
with weak supervision using 2D landmarks, we use an addi-
tional perceptual loss, that guides the output jaw and expres-
sion coefficients to capture the intricacies of mouth move-
ments related to speech articulation. The necessity of such
a perceptual mouth-oriented loss is further highlighted by

the inaccuracies detected in the extracted 2D landmarks
(please refer to the Suppl. Material for related examples).

For this purpose we use a network that has been trained
on the LRS3 (Lip Reading in the Wild 3) dataset [46]. The
lipreading network is the pretrained model provided by Ma
et al. [46] that takes sequences of grayscale images cropped
around the mouth as input and outputs the predicted charac-
ter sequence. The network has been trained with a com-
bination of Connectionist Temporal Classification (CTC)
loss with attention. The model architecture consists of a
3D convolutional kernel, followed by a 2D ResNet-18, a
12-layer conformer, and finally a transformer decoder layer
which outputs the predicted sequence (for more details,
see [46]). Our goal here is to minimize the perceptual
distance of speech-related movements between the original
and the output image sequences. To that end, we take the
differentiably rendered image sequences and subsequently
crop them around the mouth area using the predicted land-
marks. We calculate the corresponding feature vectors ϵI
and ϵR, from the output of the 2D ResNet-18 of the lipread-
ing network. We empirically found that these features bet-
ter model the spatial structure of the mouth, while poten-
tially alternative features based on the output of the con-
former are largely influenced by the sequence context and
do not preserve this much-needed spatial structure. Exam-
ples of this behavior can be found in the Suppl. Material.
After calculating the feature vectors, we minimize the per-
ceptual lip reading loss between the input image sequence
and the output rendered sequence. The loss is defined as
Llr = 1

K

∑K
i=1 d(ϵ

i
I , ϵ

i
R), where d is the cosine distance

and K the length of the input sequence. As a sidenote, ini-
tial experiments included an explicit lip reading loss based
on the CTC loss over the predicted output of the existing lip
reading network, given the original transcription of the sen-
tence. However, this approach had major downsides apart
from the need of the video transcription. First, it had a
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significant computational overhead since whole sentences
should be processed at once. In contrast, the proposed
approach simply samples a subset of consecutive frames
and tries to minimize the extracted mouth-related features.
Moreover, it was proven ineffective in practice, suffering
from the same behavior as with the conformer’s features.

Geometric Constraints: Due to the domain mismatch
between the rendered and the original images, although the
perceptual losses help retain the high level information on
perception, they also tend to create artifacts in some cases.
This is to be expected; the perceptual losses rely on pre-
trained task-specific CNNs that do not guarantee in any
way that the input manifold corresponds to realistic im-
ages. For example, as we report in Suppl. Material, we
can create unrealistic images of distorted facial reconstruc-
tion that produce good lip reading results - a typical prob-
lem in the adversarial examples topic [32]. Thus, we guide
the training process by enforcing the following geometric
constraints: We regularize the expression and jaw parame-
ters by penalizing their L2 norm: ||ψ||2 and ||θjaw||2. We
also apply an L1 loss (average per-landmark distance) be-
tween the landmarks of the nose, face outline and eyes of the
3D model and the predicted landmarks of a face alignment
method [13]. For the mouth area we employ a more re-
laxed L2 relative loss between the intra-distances of mouth
landmarks. The aforementioned landmark losses comprise
an alternative to explicitly imposing a geometric loss based
on distance between the predicted 2D landmarks of the re-
constructed face and the 2D landmarks of the original im-
age. Such a straightforward loss can lead to erroneous re-
construction, as the ablation study in Suppl. Material high-
lights, since perceptual losses and the 2D landmark loss
were often contradicting. Using the proposed version of rel-
ative landmark losses achieves retaining the much needed
geometric structure of the face without an overly strict con-
straint that limits the perceptual losses.

Finally, the total loss used for training is then: L =
λlrLlr + λemLem + Lc, where Lc includes the previously
stated geometric constraints.

4. Experiments
We evaluate our method both qualitatively and quantita-

tively, following a similar evaluation procedure to [21]. The
considered datasets are the following:
• LRS3 [3]: We use Lip Reading Sentences 3 (LRS3)
dataset [3], the largest publicly available dataset for lip read-
ing in the wild, for training and testing our system. The offi-
cial trainval set (31,982 utterances) is used for training and
validating our model, while evaluation is performed on the
test set of LRS3 (1,321 utterances).
• MEAD [65]: This is a recent dataset containing 48 ac-
tors (28M, 20F) from multiple races uttering sentences from
TIMIT [27] in 7 emotions and 3 different levels of intensity.

The whole dataset includes 31,059 sentences. We randomly
sampled 2,000 in order to create a test set, stratifying for
subject, emotion, and intensity level.
• TCD-TIMIT [36]: This corpus includes 62 English ac-
tors reading 6913 sentences from the TIMIT [27] corpus.
We use the official test split for evaluation.
• VOCASET [20]: VOCASET includes 12 subjects speak-
ing 40 utterances each. It is the only dataset which includes
ground truth registered vertices in the FLAME mesh topol-
ogy, enabling evaluation with geometric-based metrics. We
use the official test split for evaluation.

Training Details: We follow a two-stage training scheme
using Adam optimizer with batch size 1 and sequence
length K = 20. Source code and more details on the train-
ing procedure are provided in the Suppl. Material.

Comparisons: We compare our method to the following
recent state-of-the-art methods on 3D facial reconstruction:
DECA [25], EMOCA [21], 3DDFAv2 [34], and DAD-
3DHeads, which uses direct 3D supervision from the large-
scale annotated DAD-3DHeads [48] dataset. Note that these
methods, as almost all recent methods for visual reconstruc-
tion of the 3D face geometry, are using a single RGB image
as input. Therefore, in order to reconstruct the entire input
video, we apply them in every frame of the video. Espe-
cially for 3DDFAv2, we apply temporal smoothing as pro-
vided by the official implementation. For all methods we
use the official implementation. In Fig. 3 multiple visual
comparisons with the other methods can be seen. Addi-
tional results are provided in the Suppl. Material.

4.1. Quantitative Evaluation

In this section, we seek to quantify speech-related per-
ceptual cues. A straightforward way is to evaluate the com-
pared methods objectively in terms of lip reading metrics by
applying a pretrained lipreading network on the output ren-
dered images. To remove bias, we use a different architec-
ture and pretrained lipreading model for evaluation than the
one used for the lipreading loss, which is based on the Hu-
bert transformer architecture, called AV-HuBERT [55, 56].
The following lipreading metrics are considered: Charac-
ter Error Rate (CER), and Viseme Error Rate (VER) (ob-
tained by converting the predicted and ground truth tran-
scriptions to visemes using the Amazon Polly phoneme-to-
viseme mapping [1]) when using greedy decoding, as well
as the per-frame accuracy of AV-HuBERT, which predicts
for each frame one from 1000 subword classes.

We first present results on the VOCASET dataset, which
contains ground truth 3D reconstruction, in Table 1. Apart
from the CER and VER, we also report the L2 per-vertex
error in mm, for the mouth, non-mouth and full face re-
gions. Note how lipreading results are not correlated with
the latter set of geometric errors/scores. Specifically, our
approach leads to significantly improved lipreading metrics
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Figure 3. Visual comparison with other methods on the MEAD, TCDTIMIT, and LRS3 datasets. Note that our method is only trained on
the LRS3 train test. From left to right: original footage, 3DDFAv2 [34], DAD [48], DECA [25], EMOCA [21], ours. We also highlight
with red boxes some erroneous results, and with green boxes some examples of retaining the original mouth formation.

CER ↓ VER ↓ mouth L2 ↓ non-mouth L2 ↓ full L2 ↓
Orig. 42.6 32.6 - - -

DECA 100.9 89.9 5.92 5.14 5.25
EMOCA 100.9 90.7 6.64 5.19 5.39
DAD 92.3 86.6 4.07 4.89 4.78
SPECTRE 87.6 77.0 5.39 5.55 5.56

Table 1. Lipreading (CER, VER) and geometric metrics on ver-
tices (mouth, nonmouth, and full face L2) are reported on the VO-
CASET test set. While SPECTRE achieves significantly better
lipreading metrics, this result is not reflected on traditional geo-
metric errors (L2 scaled by ×103).

compared to the other reconstruction methods, as expected,
while DAD achieves the best L2 scores, powered by its de-
tailed 3D supervision approach. Compared to DECA and
EMOCA, our method achieves a better mouth L2 value de-
spite being trained on the proposed lipreading loss and thus
expecting loose geometric correspondence. For further val-
idation, we show two example snapshots from VOCASET
in Fig. 4 where it can be seen that the per-vertex geomet-
ric error does not represent well the mouth formation and is
not representative of the perceived 3D reconstruction qual-
ity. This result has been highlighted by various previous
works, which have pointed out that geometric errors of fa-
cial/mouth expressions do not correlate well with human
perception [4, 21, 29, 49, 59, 67].

For the rest of datasets we do not have ground truth land-
marks, and predicted ones tend to not capture mouth forma-
tions well (see Suppl. Material for examples). As a result,
we evaluate only the aforementioned lipreading metrics.

Figure 4. Comparison of mouth area 3D reconstructions from a
VOCASET clip with reported L2, CER, and VER errors (best re-
sults in bold). L2 errors are scaled by ×103. Notice the discrep-
ancy in the ranking of the different methods between L2 metrics
and CER/VER metrics. We observe that the perceived quality of
mouth reconstruction seems to have a much better correlation with
CER and VER metrics, rather than L2. For better inspection of the
results, please zoom in and refer to the Suppl. video.

First, we show results for CER and VER in Table 2. Our
method achieves considerably lower CER and VER scores
compared to the other methods, both in the LRS3 test set,
as well as in the cross-dataset evaluations of TCDTIMIT
and MEAD. In the same Table we also include results on
the original video footage, which showcase the domain gap
“problem” (more information about this in Discussion sec-
tion) of the used lip reading systems: the pre-trained models
have been trained to the initial images without the possible
visual degradation introduced by the rendering procedure.

Fig. 5 also shows a detailed lipread analysis on all
datasets using top-k accuracy curve for varying k (across
1000 AV-HuBERT classes). SPECTRE’s curve is con-
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Figure 5. Top-k lip reading accuracy (1000 classes) for varying
k in VOCASET, MEAD, LRS3 and TCDTIMIT datasets. SPEC-
TRE’s curve is consistently above other methods.

sistently higher, confirming its lip modeling performance.
This boost is achieved despite missing features like tongue
and teeth, by effectively encoding speech-related features.

LRS3 TCD-TIMIT MEAD

CER ↓ VER ↓ CER ↓ VER ↓ CER ↓ VER ↓
Original vid 24.9 22.0 35.7 29.6 49.7 42.8
DECA 77.5 70.8 84.2 75.8 84.8 77.8
EMOCA 83.3 76.3 86.4 79.2 85.1 77.9
3DDFAv2 97.5 95.3 101.8 98 94.5 90.2
DAD 84.1 78.2 87.3 81 86.0 79.9
SPECTRE 67.5 60.9 78.1 69.6 78.5 71.1

Table 2. Lipreading results on the LRS3-test, TCD-TIMIT and
MEAD datasets (network trained on LRS3-train set). Our method
significantly outperforms all other 3D reconstruction methods.

4.2. User Studies

The quantitative evaluation highlighted the difficulty to
pin down well-received perceptual cues into a concrete ge-
ometric error. In fact, introducing a realistic, non-excessive
over-articulation should be favorable with respect to human
perception despite the expected deviation from geometric
errors, as pointed out in [4]. Arguably, the ultimate goal of
a talking head is for humans to perceive it as natural and as
realistic as possible. To assess the realism and perception
of the 3D reconstructed faces by humans, we have designed
and conducted two web user studies [43]. In order to miti-
gate any intra-dataset bias that might arise from training on
the LRS3 trainset, for these studies, we used only videos
from the MEAD and TCD-TIMIT datasets.

First Study: Realism of Articulation. For this study,
we selected a preference test design, by showing users pairs
of videos with 3D face reconstruction results, alongside
the original footage, and asking them to select the most
realistic one in terms of mouth movements and articula-
tion. We created a question bank consisting of 30 videos
from the MEAD dataset (21 emotional videos for each level
of intensity and emotion and 9 neutral), and 10 videos
from the TCD-TIMIT dataset and performed 3D reconstruc-
tion using the previously stated 5 methods (DAD, DECA,
EMOCA, 3DDFAv2 and ours). Then, users were presented

with two randomly ordered reconstructed faces, alongside
the original footage, and were asked to choose the most re-
alistic one in terms of mouth movements and articulation.
Each user answered 28 randomly sampled questions from
the bank (7 questions for each pair - ours vs the others), and
a total of 34 users completed this study.

The results of this study can be seen in Table 3. We
can see that our method is significantly preferred to all
other methods (p < 0.01 with binomial test, adjusting
for multiple comparisons using the Bonferroni method).
3DDFAv2 [34] was the least preferred method, with DECA
and EMOCA following. The results clearly highlight the
importance of the proposed method from the speech-aware
perspective and how humans favorably perceive the recon-
structed mouth movements as more realistic in SPECTRE,
compared to the other methods.

DECA EMOCA 3DDFAv2 DAD

SPECTRE 201/37 185/53 218/20 150/88

Table 3. First subjective study preference results: “a/b” indi-
cates SPECTRE (left) was preferred a times, while the competing
method was chosen b times (238 pairs assessed). SPECTRE is
significantly more realistic in mouth movements and articulation.

Second Study: Lip Reading. In the second study, a dif-
ferent set of users were presented with a muted video of a
person uttering a single word in the form of a 3D talking
head reconstructed from one of the compared methods and
then were asked to select the correct word among 4 different
alternatives (multiple choice). For this, we cropped 40 sin-
gle words from the MEAD and TCD-TIMIT datasets, cov-
ering different visemes, and presented each user with a ran-
dom subset of 30 words (6 words for each method in each
questionnaire). A total of 31 users completed this study.
Classification results are shown in Table 4. In a similar fash-
ion with the objective results, SPECTRE outperforms other
methods in terms of word classification. An interesting re-
sult is the fact that EMOCA achieves a relatively high result
compared to objective results. This could be due to the fact
that in some cases, e.g., unrealistically exaggerated expres-
sions as seen in EMOCA, can be sufficient for distinguish
specific words. A per word analysis with visual examples is
also provided in the Suppl. Material.

SPECTRE DECA EMOCA 3DDFAv2 DAD

47.56% 39.83% 45.12% 23.17% 45.12%

Table 4. Word classification accuracy in the second user study.

4.3. Visual Comparisons and Ablation

We conduct an ablation study on the effect of the tempo-
ral convolution and the lip reading loss. First in Tab. 5 we
show an L2-based evaluation of the 3D rec. quality on VO-
CASET. Without the lipread loss, mouth L2 is much higher,
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(a) (b) (a) (b)

Figure 6. Training without (a) and with (b) geometric constraints.
Lack of constraints causes artifacts in eyes/nose, while excluding
mouth landmarks may lead to failures in mouth area.

since the geometric constraints include only the relative po-
sitions of mouth landmarks. Omitting the temporal con-
volution degrades results too, since the temporal dynamics
of the lipread network (which also uses temporal convolu-
tions) are not properly accounted for. Second, in Tab. 6 we
also show the results of a user study (with 22 users) on the
perceived realism when omitting these components. We see
that users significantly preferred the full model, compared
to the models that did not employ temporal convolution or
the lipread loss. Finally, in Fig. 6 we also show results of
training the network with and without the geometric con-
straints from landmarks. In some cases, removing geomet-
ric constraints and training only with perceptual losses leads
to artifacts around the eyes, nose and mouth shape. For
more ablation studies, see the Suppl. Material.

temporal conv. lipread loss mouth L2 non-mouth L2 full L2
✓ ✗ 7.49 5.33 5.63
✗ ✓ 8.69 5.56 6.01
✓ ✓ 5.39 5.55 5.56

Table 5. Ablation study on the effect of removing the temporal
convolution or the lip reading loss from SPECTRE.

5. Discussion
We performed an important step towards perceptually re-

alistic 3D talking heads, as shown by our extensive evalu-
ations against other SoTA methods. Notably, our method
even outperforms DAD in terms of realism, which was
trained with 3D annotated data on a large-scale dataset.
Even though DAD was shown to achieve a geometrically
accurate 3D shape, the lack of perceptual losses rendered
the result less realistic, compared to SPECTRE. It should
also be pointed out (also seen in Figure 3), that the lipread
loss, not only retains the motions and shape of the mouth,
but it also makes it more distinct in the rendered mesh. It be-
comes apparent that in order to achieve realism in terms of
speech, we need to opt for more perceptual losses. This has
also been done in previous methods regarding emotional ex-
pression [21] as well as 3D shape [25, 72]. SPECTRE also
has various applications, including audio/text-driven talking
heads. It enables acquiring high-quality 3D data from in-
the-wild videos, bypassing time-consuming 3D data collec-
tion for audio/text-driven training. Alternatively, the lipread
loss can be directly used for training other models.

ours w/o temporal conv ours w/o lipread
Ours 97/35 98/34

Table 6. Ablation user study on the effect of removing the tempo-
ral convolution or the lip reading loss from SPECTRE.

Limitations We point out that the objective evaluation
results on CER and WER, remain much higher compared
to the original footage. This can be attributed to the differ-
ent domains of the rendered images compared to the ground
truth, as well as the absence of teeth and tongue, which are
important for detecting specific types of phonemes/visemes.
This domain adaptation problem is not fully addressed in
this work, since our approach is effective in practice, but it
remains a hindrance to unleashing the full potential of the
described perceptual losses, which are also affected. These
losses they assume that the original images and the rendered
ones belong to the same visual “domain”. Nonetheless, this
domain gap between these two feature spaces may lead to
inconsistencies; this is why we needed to have relative land-
marks. As a result, the geometric loss and the lipreading
loss sometimes compete against each other: on one hand,
lip reading tries to improve the perception of the talking
head while landmarks, if not detected accurately, tend to
reduce the realism. On the other hand, we observed that be-
low a certain threshold, reduction of lip reading loss tends
to create artifacts; which is why we needed the constrains
from landmarks to retain the realism of the facial shape.
Also, while our method includes an emotion recognition
loss ( [21]), since it was trained only on the LRS3 dataset
(which does not include emotional samples) results tend
to not achieve the emotional intensity in EMOCA. Finally,
while SPECTRE does not use text or audio, these modalities
could be leveraged in order to improve the total perception,
or, bypass problems such as visual occlusions.

6. Conclusion
We presented the first method for visual speech-

informed perceptual 3D reconstruction of talking heads.
Our method does not use text transcriptions or audio but
employs a “lipreading” loss, to increase mouth perception.
Our extensive evaluations verified that our method is signifi-
cantly preferred to counterparts which rely only on geomet-
ric losses for mouth movements, as well as to ones that use
direct 3D supervision. This is an important step towards re-
constructing perceptually realistic talking heads, by focus-
ing not only on the purely geometric-based aspects, but also
on human perception of speech articulation.
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Krashenyi, Jiři Matas, and Viktoriia Sharmanska. Dad-
3dheads: A large-scale dense, accurate and diverse dataset
for 3d head alignment from a single image. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2022. 3, 5, 6

[49] Masahiro Mori, Karl F MacDorman, and Norri Kageki. The
uncanny valley [from the field]. IEEE Robotics & automa-
tion magazine, 19(2):98–100, 2012. 6

[50] Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami
Romdhani, and Thomas Vetter. A 3d face model for pose
and illumination invariant face recognition. In 2009 sixth
IEEE international conference on advanced video and sig-
nal based surveillance, pages 296–301. Ieee, 2009. 2

[51] Zeyu Ruan, Changqing Zou, Longhai Wu, Gangshan Wu,
and Limin Wang. Sadrnet: Self-aligned dual face regression
networks for robust 3d dense face alignment and reconstruc-
tion. IEEE Transactions on Image Processing, 30:5793–
5806, 2021. 2

[52] Shunsuke Saito, Tianye Li, and Hao Li. Real-time facial
segmentation and performance capture from rgb input. In
European conference on computer vision, pages 244–261.
Springer, 2016. 2

[53] Soubhik Sanyal, Timo Bolkart, Haiwen Feng, and Michael
Black. Learning to regress 3d face shape and expression from
an image without 3d supervision. In Proceedings IEEE Conf.

5754



on Computer Vision and Pattern Recognition (CVPR), June
2019. 2

[54] Jiaxiang Shang, Tianwei Shen, Shiwei Li, Lei Zhou,
Mingmin Zhen, Tian Fang, and Long Quan. Self-
supervised monocular 3d face reconstruction by occlusion-
aware multi-view geometry consistency. arXiv preprint
arXiv:2007.12494, 2020. 3

[55] Bowen Shi, Wei-Ning Hsu, Kushal Lakhotia, and Abdelrah-
man Mohamed. Learning audio-visual speech representa-
tion by masked multimodal cluster prediction. arXiv preprint
arXiv:2201.02184, 2022. 5

[56] Bowen Shi, Wei-Ning Hsu, and Abdelrahman Mohamed.
Robust self-supervised audio-visual speech recognition.
arXiv preprint arXiv:2201.01763, 2022. 5

[57] Jacob Stuart, Karen Aul, Anita Stephen, Michael D Bum-
bach, and Benjamin Lok. The effect of virtual human ren-
dering style on user perceptions of visual cues. Frontiers in
Virtual Reality, page 58, 2022. 2

[58] Ayush Tewari, Michael Zollöfer, Hyeongwoo Kim, Pablo
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