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Abstract

Facial expression recognition (FER) has received con-
siderable attention in computer vision, with “in-the-wild”
environments such as human-computer interaction and
video understanding. Recognizing dynamic facial expres-
sions in videos is generally considered a more practical and
reliable approach than still images. However, the dynamic
FER problem in videos has challenges in terms of both data
acquisition and the structural aspects of the learning model.
In particular, video frames that deviate from the target fa-
cial expression class can significantly degrade the perfor-
mance of dynamic FER. In this paper, we present an af-
fectivity extraction network (AEN) for dynamic FER. AEN
combines features of different semantic levels and classifies
both sentiment and specific emotion categories with emo-
tion grouping. To address the challenges of dynamic FER,
we propose frame-level emotion-guided loss functions and
a structural aspect of the learning model. The AEN has
two branches: a bottom-up branch that learns facial expres-
sions representation at different semantic levels and outputs
pseudo labels of facial expressions for each frame using
a 2D FER model, and a top-down branch that learns dis-
criminative representations by combining feature vectors of
each semantic level for recognizing facial expressions at the
corresponding emotion group. Additionally, the proposed
frame-level emotion-guided loss functions encourage AEN
to prevent the loss of emotional information and retain the
emotional probability of a video clip. Experimental results
on various video datasets show that the proposed AEN con-
sistently outperforms the state-of-the-art in Ekman and sen-
timent FER. Representative results demonstrate the promise
of the proposed AEN for dynamic FER in the video.

1. Introduction

Facial expression recognition (FER) is a high-level com-
puter vision task that classifies emotion class from images
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Figure 1. The examples of dynamic facial expression dataset. The
emotion label to the left of the frames corresponds to the entire
clip. The emotion label located at the bottom of each frame is
the estimation results of the 2D FER model trained with the RAF
dataset. In general, the emotions shown in the video are inconsis-
tent.

or videos. Facial emotional information is essential in next-
generation computer vision such as human-computer inter-
action and video understanding, [1, 19,41,48], etc. FER in
static/still images and “in-the-lab” environment have been
actively studied and shown good results [12,21,22,24-26,
29,35,40,43,46,52,58,59,65-69,71,72]. However, exist-
ing methods showed limitations from a generalization point
of view. So, researchers in emotion recognition consider
recognizing dynamic facial expressions in video rather than
static/still images as a more practical or reliable approach.
To improve the generalization performance of FER, video-
based FER in an “in-the-wild” environment is increasing
attention [20,23,27,33,34,47,61].

Several datasets, such as CAER, AFEW, DEFW, and
FERV39K, have been released to address the problem of
dynamic FER [6, 17,31, 60]. Dynamic FER suffers from
the presence of irrelevant frames to the target emotion of
the video clip as well as occlusion and non-frontal pose.
As shown in Figure 1, a happy video clip may contain an-
other facial expression such as Disgust that is not related
to happiness. Furthermore, the same video clip may con-
tain multiple facial expressions with different emotions that
are slightly related to the target emotion label because of
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facial changes resulting from conversation or eye blinking.
To tackle these challenges, various approaches have been
proposed [10,39,44,73], including 3D convolutional neural
networks (CNNs), recurrent neural networks, and temporal
transformers. These methods leverage the temporal char-
acteristics of facial expressions to capture the sequence of
emotional changes in videos. However, since the methods
compress spatio-temporal data with a single emotion label
of a video clip, a loss of emotional information occurs, and
this may degrade the performance of emotion recognition.

Recently, psychology-based emotion recognition models
have been proposed in various modalities such as image,
audio, and text [29, 30, 35, 37,42, 63]. These models con-
sider the fact that emotions share similar characteristics and
use a hierarchical emotion grouping approach, which rep-
resents fine-grained emotions (angry, disgust, fear, happy,
sad, and surprise) as a few basic categories (positive and
negative). Especially, hierarchical emotion grouping-based
models are attracting attention because they lead to avoid-
ing false alarm errors as well as improving detection perfor-
mance. Inspired by this, our paper presents a dynamic FER
that is based on a hierarchical emotion grouping approach
while reducing a loss of emotion information in the feature
extraction process of facial expression.

This paper presents an affectivity extraction network
(AEN) that combines features of different semantic levels
for a hierarchical emotion grouping approach. AEN con-
sists of two branches with 2D CNN, temporal transform-
ers, semantic-to-affective converters (S2ACs), and classi-
fiers. The bottom-up branch learns facial expressions at
the different semantic levels and outputs probabilities for
a facial expression class for each frame using a 2D FER
model. Feature maps extracted from convolution layers in
CNN have different semantic levels, and the feature map of
higher semantic levels is extracted at deeper layers. While
feature maps at lower semantic levels are spatially fine but
semantically weak, those at higher semantic levels are spa-
tially coarse but semantically strong [38]. According to the
method proposed by FPN [38], a fusion of feature maps at
low-level and high-level is an essential factor in detecting
small objects. If the concept of a small object in FPN is
viewed from emotion recognition, it can be replaced with
the granularity of emotions. That is, in a two-level hierar-
chical emotion grouping model, a high affective level in-
creases the granularity of emotions, and in order to recog-
nize the fine-grained emotion categories well, the combin-
ing of a low-level semantic feature map with a high-level se-
mantic feature map is essential. The top-down branch learns
discriminative feature representation by combining feature
vectors of each semantic level and a high semantic level for
recognizing facial expressions at the corresponding affec-
tive level. To generate effectively combined feature vectors,
we introduce an attention-based semantic-to-affective con-

verter. To reduce the loss of emotional information in AEN,
we propose two frame-level emotion-guided loss functions
guided by the emotional probabilities of each frame. The
frame-level emotion-guided loss functions consist of a tem-
poral affectivity extraction loss and a global affectivity ex-
traction loss. The temporal affectivity extraction loss func-
tion allows the temporal transformer to maintain emotional
feature representation corresponding to the target emotion
while compressing the changes in facial expression. The
global affectivity extraction loss function aims that the emo-
tional probability of each affective level follows that of each
semantic level. The proposed two loss functions allow AEN
to understand what emotions are included in the video clip.

2. Related Work

2.1. Dynamic Facial Expression Recognition in
Videos

The recent advancements in deep learning and the ar-
rangement of dynamic facial expression recognition chal-
lenges [5] have paved the way for the development of
spatio-temporal deep network algorithms to understand fa-
cial expression sequences. Prior studies, such as [7, 32,

, 49, 62], utilized 2D CNN and temporal-based deep
networks, such as recurrent neural network (RNN), Long
Short-Term Memory (LSTM), or Gated Recurrent Unit
(GRU), to learn spatial and temporal information. To jointly
extract spatio-temporal features from video, researchers
have adopted 3D CNN, which can capture temporal corre-
lation, in studies such as [11,28,57,70]. Additionally, some
studies, such as [32,49], used audio signals in conjunction
with facial information and designed multi-modal network
architectures to generate discriminative features.

More recently, transformer-based methods have been
proposed for dynamic facial expression recognition due
to their powerful learning ability in various computer vi-
sion tasks. Former-DFER [73] was the first study to ap-
ply the temporal transformer for dynamic FER and enable
the network to learn contextual information. This study
serves as the baseline method for our proposed method.
STT [47] designed a spatio-temporal transformer to cap-
ture discriminative features by utilizing spatial attention and
temporal attention and employing a compact cross-entropy
loss function, which trains the close intra-class correlation
and the large inter-class distance. NR-DFERNet [34] pre-
sented a noise-robust dynamic FER network to suppress in-
terference of target irrelevant frames at the temporal stage
using self-attention. DPCNet [61] proposed a dual path
multi-excitation collaborative network to produce a prac-
tical spatio-temporal relation from limited input frames,
and it shows that only the crucial regions of input frames
and keyframes determine accurate expressions of video se-
quences. GCA+IAL [33] designed an intensity-aware loss
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Figure 2. An overview of AEN and its sub-network architecture. The proposed AEN is based on two-level emotion hierarchical assumption.
The backbone network (ResNet18) is pretrained with the FER dataset for a single image. The two pre-trained networks are employed for
training AEN, one is the backbone network, which is finetuned with dynamic facial expression video, and the other one provides emotion
probability So € RT*¥ of each frame without finetune. K> denotes the number of fine-grained emotion labels. s and @ are semantic and

affective levels, respectively.

function inspired by the fact that all non-neutral expressions
tend to approach neutral expressions when the emotional in-
tensity converges to zero. This loss function maximizes the
probability of the target class while minimizing the largest
logit excluding the target class, and the trained network can
understand the intensity of expression.

2.2. Emotion Group Learning

Several methods to adopt an easy-to-difficult strategy in
emotion recognition are inspired by the cognitive model of
human beings. The approach first judges coarsely the cat-
egories of emotions, and then determines finely the cate-
gories of emotions. Facial expressions often require similar
muscle movements causing small muscle contractions [9].
For instance, anger and sadness produce highly similar
changes in the eyes and mouth, while disgust often changes
the corner of the mouth slightly. KTN [35] grouped and
redefined coarse labels (positive, negative, neutral, and sur-
prise) based on basic Ekman emotions (angry, disgust, fear,
happy, sad, surprise, and neutral) using the coarse-to-fine
labels strategy. They proposed fine-stream, which focuses
on directly learning the original fine label information of
facial expressions, and coarse-stream, which obtains the
coarse label information. The authors of KTN then leverage
knowledge distillation using information from the coarse-
stream to improve the representation power of fine-stream.
[64] proposed coarse-to-fine cascaded network to address
the label ambiguity problem in facial expression recognition
in video, which consists of the coarse-net and the negative-
net. The negative-net focus on classifying four negative
expressions and coarse-net predicts other emotion classes.
They can capture both universal and unique features of each
emotion using smooth predicting. In visual emotion recog-

nition, MDAN [63] defined a multi-level emotion hierar-
chy and grouped fine-grained emotions according to [50].
MDAN also includes a local classifier at each semantic level
of the top-down branch, with each local classifier focusing
on learning the discrimination among emotions at a par-
ticular emotion level. Emotion group learning allows net-
works to learn important expression information and has
been demonstrated to be effective.

3. Proposed Method

In this section, we describe the AEN architecture with
emotion grouping and two loss functions guided by the
emotional probabilities of each frame. The AEN consists
of a bottom-up branch for providing features of different se-
mantic levels and a top-down branch for generating discrim-
inative representations at each affective level. To ensure that
the proposed model structure is suitable for dynamic FER,
we present two frame-level emotion-guided loss functions
and emotion group learning.

3.1. Affective Extraction Networks

As shown in Figure 2, AEN consists of two hierarchical
branches: a bottom-up and a top-down branch. The bottom-
up branch generates spatio-temporal feature representations
of different semantic levels and a top-down branch provides
discriminative features based on the affective levels by com-
bining feature vectors of each semantic level and a high
semantic level. We employ ResNet18 [15] as a backbone
network of the bottom-up branch to extract static informa-
tion. Facial images are input to ResNet18 to output feature
maps of different semantic levels. The semantic levels con-
sist of three stages such as low, middle, and high layers.
The feature maps at each semantic level are transformed to
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I, € RTxCs g = 0,1, 2, using squeeze operation, which
consists of point-wise convolution and flattening. The trans-
formed feature maps are forwarded into the temporal trans-
former of each semantic level to capture temporal correla-
tion. The output of temporal transformers at each semantic
level, V, € RC=*1 g = 0,1,2, denotes spatio-temporal
feature vectors representing each semantic level. We also
employ another ResNet18 network pretrained with a facial
expression recognition dataset of 2D images to make prob-
abilities of 7" input facial images. The probabilities are used
as a pseudo label in section 3.3.

A top-down branch consists of two S2AC and three clas-
sifiers, and Vs is forwarded to the S2AC. The high seman-
tic information V5 is forwarded to the global classifier. To
compensate for semantic information of semantically low
feature, V,_; is fed to a linear layer, and the number of
dimensions is expanded to fit V; as shown in the right of
Figure. 2. We discover all element-wise dependencies be-
tween features at the neighboring affective level. For affec-
tive level a, S2AC is formulated as:

WiF,_1Vy,

Ph“”ﬁﬂ( C
2—a

>‘/2—a;a_172 (1)

where W; and W, are weights of linear layer and p de-
notes row-wise softmax function. Fj is set to V5. A fusion
of low-level features with high-level semantic information
increases the granularity of emotions. Through S2AC, we
convert feature representation to be interpretable at the af-
fective level. Since affective level of F5 is higher than F7,
F5 is useful to determine specific emotion categories. Com-
bined features F and F5 are forwarded to each local clas-
sifier, respectively.

3.2. Emotion Group Learning

Emotion group learning encourages AEN to mimic the
cognitive mode of human beings and to learn important ex-
pression information. As shown in Figure 2, we grouped
emotion categories of ¢ = 2 into emotion classes of a = 1.
For example, we grouped happy and surprise categories
with a = 2 into "positive” with a = 1. In order for the pro-
posed AEN to be used effectively, we need a multi-class loss
function that reflects the hierarchical emotion group learn-
ing. Recall that [63] trains deep networks with a multi-class
cross-entropy loss to learn global and local discrimination.
We define a multi-class cross-entropy loss function that re-
flects the predictions of the global emotion classifier and the
local emotion classifier for each affective level. Unlike [63]
which recognizes visual emotion in a single image, the aim
of our emotion group learning is to find common represen-
tations of facial regions in videos. The multi-class loss func-
tion for emotion group learning can be formulated as

Ho |Kal

Lme==Y_ > Y{P§,, )

a=1 k=1

where H, means the number of affective levels. | K;| is the
number of emotion groups at affective level a, and Y} de-
notes the ground truth value of the emotion class belonging
to the affective level. Pg refers to the overall prediction at
each affective level and is defined as

P§ =axp(Pr) + (1 —a) x p(Pg), 3)

where P; and Pg are the outputs of the local classifiers
and the global classifier, respectively. « is a fusion pa-
rameter, which controls the relative importance between
Pr, and Pg. Then, the global prediction for group j at
a—1, p(ngjl) is acquired by summing the global prob-
ability of all sub-categories k at a of group j at a — 1,
p(Pg;jl) = > ke, P(P& ). In Equation 3, the multi-class
loss is simply the cross entropy between a one-hot distribu-
tion Y;* and estimated probability p(Fg ;). By minimizing
Ly, AEN is simultaneously optimized to learn discrimi-
native feature representations at each affective level, i.e., an
image is classified in positive at « = 1 and is classified in
happy at a = 2.

3.3. Frame Level Emotion Guided Loss Function

In dynamic FER, there are several problems, which
cause performance degradation. The temporal transformer
plays the role of converting spatio-temporal information
into the discriminant feature vector. However, it is diffi-
cult for the temporal transformer to convert feature maps at
each semantic level into discriminant feature vectors with-
out frame-level guide information since compressed seman-
tic information is used as input. Also, if the video input
data contains frames different from the emotion of the video
clip, the temporal transformer cannot guarantee the acqui-
sition of the discriminant feature vector. That is, if only
the cross-entropy loss function is used in model training,
there is a limit to extracting discriminant features for emo-
tion recognition because cross-entropy does not consider
the ambiguity that comes from video data actually contain-
ing multiple emotions. To address this issue, we propose
frame-level emotion-guided loss functions induced by the
emotional probabilities of each frame, which consists of a
temporal affectivity extraction loss and a global affectivity
extraction loss. The pre-trained 2D FER model is used not
only as a backbone network in AEN but also as a guide net-
work for a pseudo-label generation. In training process, we
acquire the emotional probabilities Sy € RT*K2 and use
one-hot encoded target Y e ¢ RK2x1,

The temporal affectivity extraction loss allows trans-
former encoders to reduce the loss of information related
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to the target emotion of the video clip. The temporal affec-
tivity extraction loss can be formulated as

2

Lia = Y _|IVi = 1] SoY oI5, )
=0

where SoY e € RT*! denotes the probability of emotion
of each frame related to the ground truth emotion of the
video clip and is considered as the importance weights of
the input of the temporal transformer. L., is defined the
difference between V; and the weighted sum of I,. By
minimizing L;,, the transformer encoder directly learns
to ignore irrelevant frames while highlighting frames cor-
responding to the emotion of the video clip. Then, the
output of the temporal transformer V; has the information
with dominant emotion as well as the correlation between
frames.

To apply a global affectivity extraction loss function, we
independently translate each output of local-classifiers P}
into the range 0-1 using the sigmoid(c) function. We can
interpret the output of sigmoid as the emotional probability
of the input video. We aim that the emotional probability of
each affective level in AEN follows that of each semantic
level. So, we add a global affectivity extraction loss that
encourages AEN to predict emotional distribution at each
local classifier as follows:

H,
Lga =Y _Billo(Pf) — p(STD)|[3, )

a=1

where (; is weights of loss corresponding to affective level,
1 € RT*! denotes one-vector that all elements are one, and
frame-level emotional probabilities at each affective level
can be represented S .1 = ) ;¢ j Sk, according to emo-
tion grouping. Pj is the output of local classifier at affec-
tive level a, and it is transformed between O and 1 using
sigmoid function 0. p(ST1) means the mean of frame-level
probabilities for the emotion class in each affective level.
Ly, is the difference between the output of local classi-
fier and pseudo probabilities generated by frame-level emo-
tional probabilities.
AEN is trained with the following total loss function:

L= Lpe+ ALig + A2Lgaa (6)

where A\; and )\, are regularization parameters. By optimiz-
ing our proposed loss function, AEN is trained like human
cognitive models and learns contextual information.

4. Experiments

4.1. Datasets

DFEW: The DFEW [17] consists of over 16,000 video clips
from more than 1500 movies, such as tragedies, comedies

and romantic, etc. These video clips contain natural facial
expressions and then is a significantly challenging dataset
because of the unconstrained conditions, illumination, and
occlusions. All samples on DFEW have been split into five
same-size parts without overlap. So, we implement five-
fold cross-validation, which takes one part of the samples
for the testing set and the others for the training set.
AFEW: AFEW [6] dataset served as an evaluation plat-
form for the EmotiW challenge from 2013 to 2019. This
dataset contains about 1800 video clips collected from TV
programs and movies, so AFEW is very close to real-world
data. All samples on AFEW have been split into three sub-
sets: training, validation, and testing set. We train AEN on
the training set and evaluate results on the validation set as
the previous methods did.

FERV39K: The FERV39K [60] dataset is proposed re-
cently, which is the current largest benchmark for dynamic
FER in the wild. This dataset contains over 38000 video
clips collected from several scenarios, which can be par-
titioned into various scenes (i.e., daily life, business, and
school). All samples on FERV39K have been split into two
subsets: training, and testing sets without overlapping.

4.2. Metrics

We use the unweighted average recall (UAR) and the
weighted average recall (WAR) as the evaluation metrics.
UAR and WAR are generally considered important metrics
in almost dynamic FER research including baseline [17,73].
UAR is an unweighted average recall and denotes the ac-
curacy per class divided by the number of classes without
consideration of instances per class. WAR is weighted av-
erage recall and means general accuracy. We evaluate ac-
curacy for a 3-emotion and 7-emotion category because the
aim of our proposed method is not only to classify fine-
grained emotions but also to classify coarse labels, and this
is an important metric that demonstrates the robustness of
a model [63,64]. The accuracy for a 3-emotion category is
calculated by considering it as the correct answer when se-
lecting the emotion class of the same group as the label in
the 7 specific classes. High accuracy for 3 emotions denotes
that the model reduces the hierarchy violation.

4.3. Implementation Details

Preprocessing For DFEW and FERV39K datasets, the
video frames’ face region is publicly available, then we train
and evaluate the processed data directly. For the AFEW
dataset, the FFmpeg toolkit [53] is used to extract frames
from the raw videos. The face region of the video frame is
detected using the Dlib toolbox [18]. All the face images
are resized to 112x 112 pixels to input AEN.

Training and Inference Details We train AEN with the Py-
torch platform with an NVIDIA RTX 3090 GPU. We first
pre-train the backbone network with RAF dataset [36] to ex-
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Figure 3. Effect of fusing parameter « for P and Pg on 3 and 7
emotion classification WAR. « is the weight of Pr,

Method Il Ler | Lne | Lta | Lga | WAR (%)
Former-DFER [73] v X X X 66.57
DPCNet [61] v X X X 65.78
AEN v X X X 68.10
AEN X v X X 67.97
AEN X X v X 70.23
AEN X X X v 69.76
AEN X v v X 71.13
AEN X v v v 71.64

Table 1. Ablation study for the proposed loss functions on DFEW
foldl. L., denotes that AEN is trained with loss function that
considers a = 2.

tract emotion probability unlike STT [47], which pretrained
backbone network with MS-Celeb-1M [13]. The settings
for training and testing our model are the same as for the
baseline method [73] So, we can acquire 7' = 16 facial
frames as the input. The highest affective level H, is set
2. We empirically set & = 0.7. By and 5 are 1.4 and 0.6,
respectively. The regularization parameters \; and A\ are
0.4 and 0.5, respectively.

4.4. Ablation Study

In this section, we show the impact both of AEN and
proposed loss functions will be verified, and then the per-
formance differences according to the emotion groups and
hyper-parameter are presented. All the experiments are con-
ducted on the DFEW dataset with fold1 as one of five cross-
validation sets.

Evaluation of o. Figure 3 shows the WAR variation at
coarse and fine-grained labels (3 and 7 emotion class) when
a ranges from 0.0 to 1.0. As « increases from 0 to 0.7, we
can see a trend of improved performance. We acquire the
best performances for 3 and 7 emotions at & = 0.7 and then
the accuracy decreases rapidly for both 3 and 7 emotion la-
bels. This result proves the effect of local classifiers at dif-
ferent affective levels and implies that the balance between
global and local classifiers should be adjusted appropriately.
Evaluation of different loss functions. Table 1 demon-
strates that our proposed loss functions are effective for
dynamic FER. L., denotes the general cross-entropy loss
function for seven emotion classes in the above experiment.

Emotion grouping

Positive [ Neutral Negative WAR (%)
Happy, Anger Neutral, Sad Fear, Disgust, Surprise 67.79
Happy Neutral, Surprise | Fear, Disgust, Sad, Anger 71.23
Happy, Surprise Neutral Fear, Disgust, Sad, Anger 71.64

Table 2. Evaluation of AEN with different emotion groups on
DFEW fold1. The first row is a completely misgrouped case. The
second and third rows are categories that are generally considered
in psychology.

In the fourth row, solely optimizing multi-class loss func-
tion L,,. for emotion group learning degrades the perfor-
mance of AEN. In contrast, the emotion group learning
strategy succeeded by solving problems of dynamic FER
using L and Ly, in the 7th and 8th rows. The results im-
ply that utilizing frame-level emotion-guided loss produces
more discriminative features by reducing the loss of emo-
tional information. Then, this maximizes the effect of emo-
tion group learning.

Evaluation of different emotion groups We experimented
with three categorical emotion groups: (1) completely
mixed group (first row), (2) sentiment group considered
at [4] (second row), (3) emotion grouping of Ekman emo-
tions [8] (third row) as shown in Table 2. AEN with a group
(1) leads to significant performance drop and instability dur-
ing training. The difference between group (2) and group
(3) is a small difference in whether the surprise class is in-
cluded in neutral or positive in the parent category, but us-
ing group (3) outperforms AEN trained with a group (2) for
emotion group learning strategy. Therefore, we use group
(3) in all experiments. This result indicates that the proper
emotion group learning strategy encourages AEN to learn
highly discriminative feature representation. In addition, we
can see that surprise has many characteristics more similar
to happy than neutral in dynamic facial expression.

4.5. Comparison with State-of-the-art Methods

Our proposed method is compared with the state-of-the-
art on three datasets. The comparison methods can be di-
vided into 3D and 2D CNN-based methods. The best per-
formance is marked in bold.

Our baseline Former-DFER shows lower performance
than the latest methods as shown in Table 3. In contrast,
our AEN produces the best results for UAR and WAR in
3 and 7 emotion classes. Specifically, GCA-IAL [33] is the
state-of-the-art method with the UAR 55.71% and the WAR
of 69.24% for 7 emotions, and DPCNet [61] has the high-
est accuracy among the previous methods with the UAR
71.58% and the WAR 71.95% for 3 emotions. Our AEN
outperforms GCA-TAL by 0.95% and 0.13% in terms of the
UAR and the WAR for 7 emotions, respectively. Moreover,
AEN obtains better results with respect to the UAR and the
WAR of 3 emotions compared with DPCNet by 3.02% and
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Method Accuracy of Emotions (%) 3 Emotions (%) | 7 Emotions (%)
Happiness  Sadness  Neutral ~Anger Surprise  Disgust  Fear UAR WAR UAR  WAR

3D Resnet18 [14] 76.32 50.21 64.18 62.85 47.52 0.00 24.56 - - 46.52  58.27
Resnet] 8+LSTM [15, 16] 83.56 61.56 68.27 65.29 51.26 0.00 29.34 - - 5132 63.85
Resnet18+GRU [3, 15] 82.87 63.83 65.06 68.51 52.00 0.86 30.14 - - 51.68  64.02
Former-DFER [73] 84.05 62.57 67.52 70.03 56.43 3.45 31.78 | 69.96  70.57 | 53.69  65.70
STT [47] 87.36 67.90 64.97 71.24 53.10 3.49 34.04 - - 54.58  66.65
NR-DFERNet-v1 [34] 88.47 64.84 70.03 75.09 61.60 0.00 19.43 - - 5421  68.19
NR-DFERNet-v2 [34] 86.42 65.10 70.40 72.88 50.10 0.00 45.44 - - 55.77  68.01
DPCNet [61] 89.93 64.61 67.12 63.18 53.67 15.86 31.56 | 71.58 7195 | 55.13  66.32
GCA+IAL [33] 87.95 67.21 70.10 76.06 62.22 0.00 26.44 - - 5571  69.24
AEN 89.24 69.38 70.67 72.08 59.07 4.17 32.00 | 74.60 74.96 | 56.66  69.37

Table 3. Comparison with state-of-the-art methods on DFEW. Five-fold cross-validation is implemented.
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Figure 4. The confusion matrices of our baseline (Former-DFER)
and our proposed AEN were evaluated on DFEW fold1. The top
and bottom figures are the confusion matrices for fine-grained and
coarse emotion labels, respectively.

3.01%, respectively.

Figure 4 shows confusion matrices for fine-grained and
coarse labels. The left and right figures represent the confu-
sion matrices of DFER-Former and AEN, respectively. In
DFER-Former on the DFEW dataset, a phenomenon occurs
where the prediction is concentrated in the neutral class.
Our AEN seems to solve the above problem somewhat. Es-
pecially, confusion matrices for the coarse emotion classes
show AEN has fewer hierarchy violation cases compared
with Former-DFER.

As shown in Table 4, we evaluate our AEN on the AFEW
dataset. STT [47] is the state-of-the-art method with the
UAR and the WAR for 3 and 7 emotions. Our proposed
AEN achieves the best results both in UAR and WAR for the
3 and 7 emotions class. The proposed method outperforms
STT by 1.77% and 0.41% with respect to the UAR and
WAR for 7 emotions, respectively. AEN also produces bet-

3 Emotions (%) | 7 Emotions (%)

Method UAR  WAR | UAR WAR
EmotiW-2019 Baseline [5] - - - 38.81
C3D [54] - - 43.75  46.72
I3D-RGB [2] - - 41.86 45.41
R(2+1)D [55] - - 42.89 46.19

3D ResNetl8 [14] - - 42.14  45.67
ResNet18+LSTM [15, 16] - - 43.96 48.82
ResNet18+GRU [3, 15] - - 4375  46.72
Former-DFER [73] 63.94 63.66 | 4742 5092
STT [47] 66.45 67.03 | 49.11 54.23
NR-DFERNet [34] - - 48.37 53.54
DPCNet [61] 5747 64.06 | 47.86 51.67

AEN 6749 67.38 | 50.88 54.64

Table 4. Comparison with state-of-the-art methods on AFEW.

ter results in terms of the UAR and the WAR of 3 emotions
compared with STT by 1.04% and 0.35%, respectively.

As shown in Table 5, we conduct a further evalua-
tion of FERV39K. GCA+IAL is the state-of-the-art method
with the WAR for 7 emotions. Although GCA+IAL has
a slightly higher WAR than ours in 7 emotion classes, the
UAR performance of this model is significantly lower than
our baseline as well as the proposed model. This is a result
of emotion group learning, which leads to balanced training.
In 3 emotion classes, our AEN outperforms our baseline by
2%/3.44% of UAR/WAR. AEN’s confusion matrix for the
FERV39K dataset can be seen in Figure 5.

4.6. Visualization

To demonstrate that our proposed AEN and loss function
work as intended, we visualize the learned feature map. As
shown in Figure 6, we visualize activation maps generated
by Grad-CAM [51] for the proposed AEN. We extract acti-
vation maps for the temporal transformer at each semantic
level and the left of the figure indicates the semantic level
s. Since the input of global classifier V5, should be trained
as a discriminative feature for both coarse and fine-grained
labels, the activation map at s = 2 pays attention general
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3 Emotions (%) | 7 Emotions (%)

Method UAR WAR | UAR  WAR

C3D 5] B T [ 2268 3169
I3D-RGB [7] ; - 13017 3878
RQ2+D)D [55] ; - | 3155 4128
3D ResNet18 [14] ; - | 2667 3757
ResNetI8+LSTM [15,16] || - - 13092 4295
Former-DFER [73] 5933 6135 | 3694  46.13
NR-DFERNet [34] ) - 13399 4597
GCA+IAL [33] ; - | 3582 4854
AEN 6133 6479 | 3818 47.88

Table 5. Comparison with state-of-the-art methods on FERV39K.

Confusion Matrix Confusion Matrix

19 1765 647 162 169 015 2250
Positive s9.82 1958 2061
2116 145 206 313 283
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Predicted label Predicted label

Figure 5. The confusion matrices of our proposed AEN were eval-
uated on FERV39K dataset.

face area. To classify only coarse labels at local classifier,
F1 is combined with the general face area and some local
areas of the face if necessary. To classify fine-grained la-
bels, local classifier at a = 2 focuses on the specific regions
of the face (mouth and wrinkles) while utilizing the general
face area. Hence, it can be seen that AEN learns according
to an easy-to-difficult strategy inspired by human cognitive
mode.

To verify that the model is properly trained with emotion
grouping, moreover, we utilize t-SNE [56] to visualize fea-
ture distributions on DFEW fold 1 as shown in Figrue 7. We
extracted Vj for the input frames and implemented t-SNE.
In our proposed AEN, it is clearly observed that the feature
distribution of fine-grained emotion labels is clustered into
coarse labels (Positive, Neutral, and Negative) compared
to the baseline Former-DFER. Moreover, the boundaries of
the feature distributions between different classes generated
from AEN are more obvious, whereas the feature distribu-
tions generated from the baseline seem relatively vague. It
was confirmed that our model generates discriminative fea-
tures for each class, and our proposed method satisfies the
emotion group learning strategy.

5. Conclusion

The videos of the “in-the-wild” environment are chal-
lenging because these datasets generally contain uncon-
strained dynamic facial expressions with inconsistent emo-

Figure 6. Visualization of the activation maps generated by Grad-
CAM for the proposed AEN.

Neutral %

Positive

Former-DFER AEN

Figure 7. t-SNE visualization results of feature distributions about
Former-DFER and our proposed AEN on DFEW fold1. ‘Positive’,
‘Neutral’ and ‘Negative’ denote coarse labels.

tion, which include some expressions that do not match the
target label. Existing methods directly learn to extract dis-
criminative features without any guide. In this paper, we
proposed the AEN with emotion group learning and frame-
level emotion-guided loss functions. A bottom-up branch
in AEN extracts feature representation at the different se-
mantic levels and a top-down branch learns discriminative
representations at each affective level by combining fea-
ture vectors of each semantic level using S2AC. The frame-
level emotion-guided loss functions allow temporal trans-
former to prevent the loss of target emotional information
and to understand what emotions are included in the video
clip. The evaluation results have shown that our proposed
method exceeded state-of-the-art methods on challenging
dynamic FER datasets. Although we have not completely
solved the data imbalance problem with the frame-level
emotion-guided loss functions, we have seen the potential,
so it is necessary to solve the data imbalance problem using
single image datasets in future studies.
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