Exploring Expression-related Self-supervised Learning and Spatial Reserve Pooling for Affective Behaviour Analysis

Fanglei Xue1* Yifan Sun2 Yi Yang3†
1 University of Technology Sydney 2 Baidu Inc. 3 Zhejiang University
xuefanglei9@mails.ucas.ac.cn, sunyf15@tsinghua.org.cn, yangyics@zju.edu.cn

Abstract

Self-supervised learning (SSL) methods have gained attention for reducing dependence on labeled data. However, SSL methods are less investigated for facial expression recognition (FER), which requires expensive expression annotation, especially for large-scale video databases. In this paper, we explore an expression-related self-supervised learning (SSL) method called ContraWarping to perform expression classification in the 5th Affective Behavior Analysis in-the-wild (ABAW) competition. We also conduct a new spatial reserve pooling module to utilize all facial details for expression recognition. By evaluating on the AffWild2 dataset, we demonstrate that ContraWarping outperforms existing supervised methods and other general SSL methods with only 0.7M trainable parameters and shows great application potential in the affective analysis area. Codes have been released at https://github.com/youqingxiaozhua/ABAW5.

1. Introduction

Affective computing aims to recognize expressions from static images or videos automatically. With affective computing, people could build applications in society analysis, human-computer interaction systems, driver fatigue monitoring, and so on. For the past few years, many methods [9, 26, 31, 35, 38, 46, 47] have been proposed to recognize expressions. However, these methods all rely on precise human annotations to learn. Although some of them [34, 46, 47] could learn from noisy labels, they can not learn from unlabeled data. Unfortunately, expressions are subjective and subtle, making annotation a large-scale expression database very expensive and limiting the scale of current databases.

Recently, some researchers proposed some self-supervised learning methods to learn from unlabeled data.

Contrastive learning-based methods (such as SimCLR [2], MoCo [11], BYOL [7], etc.) learn image features from different views of the same images with a Siamese network. Differently, MAE [10] try to reconstruct a masked image to learn semantic features. Some works also adopt these ideas for face tasks. SSPL [33] learns the spatial-semantic relationship of face images by correct rotated patches, face parsing, and area classification tasks. He et al. [13] try to benefit the face recognition task by adopting a 3D reconstruction task. TCAE [28] and FaceCycle [43] learn face representation by disentangling pose, expression, and identity features from each other. Most recently, a contrastive learning method, ContraWarping [36], is proposed to learn expression-related features by directly simulating muscle movements. All these methods demonstrate their effectiveness in static image databases [1, 23, 26].

Aff-wild2 [15–24, 40] is a large-scale video database for ABAW competitions. It annotated 548 videos, around 2.7M frames, into eight pre-defined categories: anger, disgust, fear, happiness, sadness, surprise, neutral, and others. Thanks to the release of this database, we conduct experiments to explore the effectiveness of ContraWarping on this in-the-wild video database. By directly fine-tuning a part

Figure 1. The traditional global average pooling (GAP) method pools multiple feature maps among the spatial dimension, resulting in a single scalar for each feature map. This causes the loss of spatial information. However, the proposed spatial reserve pooling (SRP) module could address this issue by preserving spatial features to better utilize features from different facial areas.
of the pre-trained weights from ContraWarping, we demonstrate that recent SSL methods could extract more informative features than face recognition supervised counterparts. And the expression-related method, ContraWarping, performs better than other general SSL methods, indicating a great potential in expression recognition tasks.

On the other hand, current image classification methods always adopt a global average pooling (GAP) module to pool the 3D feature maps to a vector. In this process, the features on the same channel are averaged along the spatial dimension (both height and width), which loses the spatial information. We visualize the attention map of the feature maps from the backbone in Fig. 2. As we can see, the model pays attention to a large area among the faces, mainly including areas around eyebrows, eyes, nose, and mouth. Intuitively, the model needs both semantic and these spatial features to recognize the expression. To retain spatial information, we propose a spatial-reserved pooling (SRP) module to replace the traditional GAP. Specifically, two convolutional layers are utilized to reduce the channel and spatial dimensions. After that, the features are flattened instead of global pooling to reserve all information.

Combining with the expression-related SSL method ContraWarping and the new proposed SRP module, we get the performance of 37.57% f1-score on the validation set of Expression (Expr) Classification Challenge with a Res-50 backbone, significantly outperforming the supervised one. And without any temporal information, our method ranked 6th on the test set of ABAW5 with only 0.7M trainable parameters.
cation. Before introducing the architecture and implementation details, we first introduce some preliminaries of self-supervised learning methods in the facial area.

3.1. Preliminaries

Recently, self-supervised learning methods have raised wide attention to learning from unlabelled data directly, giving a new solution to address the expensive annotation problem of FER databases. Different from supervised learning from human annotations, these methods push the model to solve a no annotation needed pretext task to learn representations, for example: predicting relative patches [5, 10], image inpainting [30], solving jigsaw [29], contrastive learning [8], masked image model [10], and so on. For example, various works [27, 41] in ABAW competitions have adopted MAE to pre-train their models on a combination of numerous facial recognition databases and achieve promising performance. However, these pretext tasks are still designed for the common image classification task, which aims to recognize the species of foreground objects. It is less efficient to extract expression-related features by directly applying these methods to FER.

To bring expression information to the pretext task, CRS-CONT [25] adopts coarse-grained expression labels in the pre-training stage. Although coarse labels are more accessible to collect than fine-grained labels, they still need to label a great number of images. Recently, ContraWarping [36] was proposed to address this issue. It proposed a local warping method to simulate muscle movements and change the original expression without any human annotation. By pushing warped faces away in the feature space, it could learn expression-related features in a self-supervised learning manner. Fig. 3 illustrate the contrastive concept of ContraWarping.

3.2. Architecture

3.2.1 Overview

Empowered by this expression-related self-supervised learning method, models could learn to distinguish muscle movements and extract abundant expression features. Thus, we adopted a simple pipeline to investigate the capacity of ContraWarping on the Aff-Wild2 dataset. As illustrated in Fig. 4, the facial image (denoted as I) was firstly extracted by the backbone:

\[f_{map} = B(I) \]

where B denotes the backbone network, and \(f_{map} \) denotes the extracted feature maps. The feature maps are further aggregated by our proposed Spatial Reserve Pooling module to reduce dimensions and reserve spatial information. The per-class scores are calculated by a fully-connected layer:

\[scores = \text{Softmax}(FC(SRP(f_{map}))) \]

The model is trained with the cross-entropy loss, which can be formulated as:

\[\mathcal{L} = -\sum_{i=1}^{N} \sum_{j=1}^{C} y_{ij}\log(haty_{ij}) \]

where \(N \) is the number of batch samples, \(C \) is the number of predicted classes (eight for Aff-Wild2), and \(y_{ij} \), \(haty_{ij} \) represent the gound-truth label and predicted scores, respectively.

3.2.2 Backbone

Following [41], we simply adopt 2D backbones (such as ResNet [12], ViT [6], etc.) to extract features from every frames. We do not use temporal features for simplicity and mainly focus on the evaluation of the effectiveness of SSL methods.

Since the ContraWarping adopted Res-18 and Res-50 as backbones, we utilized these two pre-trained backbones to finetune on the Aff-Wild2 dataset. As illustrated in Fig. 4, the backbone typically consists of four stages: the shallow stages are corresponding to extracting low-level features, such as lines and shapes while the deep stages are mainly focused on extracting abstract semantic features based on shallow layers’ output.

Since the backbone is pre-trained with ContraWarping methods on a large number of face images, it has learned to distinguish muscle movements among faces and could extract informative and expression-related features. Experiments on RAF-DB also demonstrate good linear evaluation performance which freezes the whole backbone. To better utilize the capability of pre-training and adopt the pretrained method on this large-scale video dataset, we freeze the first three stages (denoted as a snow mark in Fig. 4) and only finetune the last stage of the backbone to adapt semantic features to the downstream database.

3.2.3 Spatial Reserve Pooling

Multiple feature maps are extracted from the backbone model. As illustrated in Fig. 5, given a face image with shape \(224 \times 224 \), every feature map has a shape of \(7 \times 7 \). This indicates that every pixel in the feature map represents a semantic feature of a small region of the original input face image. As we have illustrated in 2, the model may need sufficient information from multiple face areas to distinguish one expression category from another. In other words, the spatial information in the feature maps is essential for facial expression recognition.

However, Traditional recognition models typically adopt a Global Average Pooling (GAP) between the backbone and
Figure 4. The illustration of the pipeline of our method. The image is first passed through a backbone to extract feature maps. These feature maps are then input into the proposed SRP module, which pools them to reduce dimensions while preserving spatial features. Finally, a single fully-connected layer is used to classify the pooled features into eight expression categories. The backbone is typically composed of four stages, denoted as S1-S4. During training, the first three stages of the backbone are frozen (indicated by a snow icon) to fully utilize the capacity of SSL pretraining.

Figure 5. Illustration of the structure of our proposed special reserve pooling (SRP) module. C denotes the number of the feature map, e.g. 512 for a Res-18 backbone. The feature maps have a 7×7 spatial shape which indicates different expression features in different face areas. Our proposed SRP module aggregates these spatial features and reduces its dimension by two convolutional layers. Then the features are flattened to reserve expression features from all facial areas.

3.3. Implementation

3.3.1 Dataset

For this ABAW challenge, Kollias et al. collected a large-scale video database named Aff-Wild2. It consists of 548 videos and was labeled frame-by-frame. For the expression classification challenge, every frame in the video is annotated with one of eight pre-defined expression categories: anger, disgust, fear, happiness, sadness, surprise, neutral, and others.

3.3.2 Metrics

The average f1 Score across all eight categories on the validation set is measured as a performance assessment.

$$P = \frac{1}{8} \sum_{i=1}^{8} F_1$$ (4)

where F_1 denotes f1-score, is calculated by:

$$F_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$ (5)
Table 1. Performance comparison with different initialization of the Res-18 backbone.

<table>
<thead>
<tr>
<th>Pre-trained</th>
<th>F1-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sup. MS1M</td>
<td>27.71</td>
</tr>
<tr>
<td>SimSiam [3]</td>
<td>25.40</td>
</tr>
<tr>
<td>BYOL [7]</td>
<td>31.74</td>
</tr>
<tr>
<td>ContraWarping [36]</td>
<td>34.85</td>
</tr>
</tbody>
</table>

3.3.3 Experiment Setup

We adopt random cropping and horizontal flip for data augmentation to prevent over-fitting. The model is fine-tuned with the SGD optimizer for 8000 iters. The learning rate is set to 5e-3 with a cosine decay. The batch size is set to 128. Since the adjacent frames in the video are very similar, we randomly sample one frame of every ten frames for training.

By default, the Res-18 [12] network without the last classifier is adopted as the backbone for ablation studies. It takes about 10 minutes to train our method with two NVIDIA V100 GPUs. The Res-50 is utilized to generate the final results on the test set. The hidden dimension of two down-sampling convolution layers is set to 256.

4. Experiments

4.1. Ablation Studies

Comparison with different SSL methods. SimSiam [3] and BYOL [7] are two recently proposed SSL methods that utilize contrastive learning to learn informative features from unlabeled data. We compare them with supervised training on MS1M, a large-scale facial recognition database. The results are illustrated on Tab. 1. The SimSiam performs the worst since it does not rely on any supervised information during training, and it can not extract enough discriminative features for recognition. The supervised pre-training performs better than SimSiam but performs inferior compared with BYOL and ContraWarping. This indicates that the supervised pre-training could make the model convergence well so it avoids the model learning from scratch in downstream tasks. However, the face recognition task aims to recognize the identity of the face, which makes the model learns to suppress expression features. This task mismatch limits the performance of supervised ones. ContraWarping introduces expression-related contrastive information to the pre-training period by simulating muscle movements to change the expression. Experiment results also proved that expression-related pre-training could benefit downstream training.

Comparison with GAP with our proposed SRP. The GAP is widely used in image classification methods to reduce the dimension of the feature maps. However, it lost spatial information when performing the global average. To address this problem, we propose a spatial reserve pooling (SRP) module to combine both semantic and spatial information for recognition. To evaluate the effectiveness of the new proposed SRP, we conduct experiments with Res-18. As illustrated in Tab. 2, our proposed SRP increases the f1-score from 30.92% to 34.85%, indicating that spatial information is crucial for expression recognition and our SRP is efficient at delivering spatial information.

Comparison with different sample methods for training. The expression changing in videos is continuous. However, we find that adjacent frames are very similar. There are about 2.7 million frames in the Aff-wild2 database. Using all frames for training is computationally expensive and inefficient. To reduce the computation cost and retrain the diversity of training frames as much as possible, we choose every one frame for training for every ten frames (denoted as 1/10). Specifically, we randomly set an offset value (denoted as j), and the frames are only selected if its frame id (i) is exactly divisible by j. The j is randomly selected for every epoch to retrain diversity.

To evaluate the effectiveness of this sampling method, we compare it with the default no-sampling method (denoted as 1/1) in Tab. 3. As we can see, the 1/10 sample strategy performs similarly (34.85%) and is one point better than the traditional no-sampling strategy (32.23%). This may be because our training period is short to prevent over-fitting but indicates that our 1/10 sampling is efficient.

Determine the best freeze number of the backbone. Considering the backbone is already pre-trained with expression-related tasks, we try to freeze shadow stages of the backbone to keep the model’s ability to extract expression features. This is also beneficial to preventing over-fitting. As more parameters are frozen, fewer parameters are left to adapt to the target database, we conduct experiments on the validation set to determine the best freeze number.

Table 2. Performance comparison with GAP and our proposed SRP.

<table>
<thead>
<tr>
<th>Pooling Method</th>
<th>F1-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAP</td>
<td>30.92</td>
</tr>
<tr>
<td>SRP</td>
<td>34.85</td>
</tr>
</tbody>
</table>

Table 3. Performance comparison with global average pooling and our proposed spatial reserve pooling.

<table>
<thead>
<tr>
<th>Sample Method</th>
<th>F1-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>32.23</td>
</tr>
<tr>
<td>1/10</td>
<td>34.85</td>
</tr>
</tbody>
</table>
Table 4. Performance comparison with global average pooling and our proposed spatial reserve pooling.

<table>
<thead>
<tr>
<th>Freeze number</th>
<th>F1-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>33.24</td>
</tr>
<tr>
<td>1</td>
<td>29.90</td>
</tr>
<tr>
<td>2</td>
<td>30.60</td>
</tr>
<tr>
<td>3</td>
<td>34.85</td>
</tr>
<tr>
<td>4</td>
<td>32.65</td>
</tr>
</tbody>
</table>

Table 5. Results with different backbones and pre-trained weights. Sup. indicates supervised pre-training with manually annotated labels.

<table>
<thead>
<tr>
<th>Backbone</th>
<th>Pre-trained</th>
<th>F1-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR-50 [4]</td>
<td>Sup. MS1M</td>
<td>30.78</td>
</tr>
<tr>
<td>APViT [39]</td>
<td>Sup. MS1M</td>
<td>35.48</td>
</tr>
<tr>
<td>APViT [39]</td>
<td>Sup. RAF-DB</td>
<td>35.63</td>
</tr>
<tr>
<td>Res-18 [12]</td>
<td>ContraWarping</td>
<td>34.85</td>
</tr>
<tr>
<td>Res-50 [12]</td>
<td>ContraWarping</td>
<td>37.57</td>
</tr>
</tbody>
</table>

Table 6. Results with different backbones and pre-trained weights. Sup. indicates supervised pre-training with manually annotated labels.

<table>
<thead>
<tr>
<th>Team</th>
<th>Rank</th>
<th>F1-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netease Fuxi Virtual Human [44]</td>
<td># 1</td>
<td>0.4121</td>
</tr>
<tr>
<td>SituTech</td>
<td># 2</td>
<td>0.4072</td>
</tr>
<tr>
<td>CtyunAI [49]</td>
<td># 3</td>
<td>0.3532</td>
</tr>
<tr>
<td>HFUT-MAC [48]</td>
<td># 4</td>
<td>0.3337</td>
</tr>
<tr>
<td>HSE-NN-SberAI [32]</td>
<td># 5</td>
<td>0.3292</td>
</tr>
<tr>
<td>Ours</td>
<td># 6</td>
<td>0.3218</td>
</tr>
</tbody>
</table>

As shown in Tab. 4, when finetuning the whole model (zero stage is frozen), it achieves 33.24% f1-score. But as we freeze more stages, the performance first decay to 39.90% and gradually increase to 34.85% when freezing the first three stages. The model could also achieve 32.65% on the f1-score without tuning the whole backbone, indicating the effectiveness of extracted features by ContraWarping.

Comparison under multiple backbones and pre-trained methods. To investigate the effectiveness of ContraWarping on this in-the-wild video database, we conduct experiments with several backbones and pre-trained weights on the validation set of ABAW5. As illustrated in Tab. 5, models with more parameters are not always better. APViT [39] is a recently proposed state-of-the-art method that combines both CNN and ViT for feature extraction. It boosts IR-50 from 30.78 to 35.48. However, it fails to outperform Res-50 with ContraWarping pre-trained, which achieves 37.57 on the validation set. The ContraWarping could increase the performance significantly. Even a simple Res-18 could outperform IR-50 with 34.85, indicating that ContraWarping pre-training is more suitable for expression analysis.

4.2. Results on the Test Set

We illustrate the performance of participants on the test set in Fig. 6. Our simple strategy achieves an f1-score of 0.3218, ranked sixth on the leaderboard.

The champion of the ABAW5 track [44] achieved an f1-score of 0.4121. They pre-trained the Masked Autoencoder (MAE) model on various large-scale facial image datasets and used it as a visual feature extractor. Their model also consists of a temporal and multi-modal fusion to leverage temporal and multi-modal information from videos. It is worth noting that they relied on a crowdsourcing platform to check and remove incorrect images in the processing progress. The second-place team [49] achieved a very competitive performance on the test set with an f1-score of 0.4072. The third team [49] also combined audio and image information as well as temporal features. Different from the champion strategy, the visual and audio features were first input into their respective temporal modules and then concatenated while the champion team first concatenated multi-modal features and passed them to temporal modules. The ranked fourth team [48] adopted a large number of state-of-the-art methods to extract visual features and proposed an affine module to align different features. The rank fifth team [32] ensemble multiple models from the EmotiEffNet family and achieved an f1-score of 0.3292.

The first-ranked method used multi-modality features, temporal features, model ensembles, and output smoothing strategies to improve performance. The third and fourth-ranked methods also used multi-modality and temporal features. The fifth-ranked method used model ensembles and output smoothing. Unlike these methods that aimed to improve performance, our goal was to investigate the effectiveness of expression-related SSL methods. We did not use the above-mentioned techniques and directly predicted every frame. Even so, we achieved an F1-score of 0.3218 on the test set, indicating the effectiveness of the ContraWarping pre-training method. Combining with multi-modality features and other good designs could also benefit performance.

5. Conclusion

In this paper, we adopt a simple pipeline to evaluate the effectiveness of ContraWarping, a self-supervised learning method for affective analysis on Aff-Wild2. The ContraWarping could learn expression-related features from unlabeled data by simulating muscle movements and could adapt well to downstream databases even with the first
three stages frozen. Experiments on Aff-Wild2 indicate that models initialized with ContraWarping pre-trained weights could extract more informative features and performs better than supervised ones.

References

[10] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked Autoencoders Are Scalable Vision Learners. In CVPR, pages 16000–16009, 2022. 1, 3

Yifan Li, Haomiao Sun, Zhaorui Liu, and Hu Han. Affective behavior analysis using pretrained model with facial priori, 2022. 2, 3

Andrey V. Savchenko. Emotieffnet facial features in uni-task emotion recognition in video at abaw-5 competition, 2023. 6

Fanglei Xue, Yifan Sun, and Yi Yang. Unsupervised facial expression representation learning with contrastive local warping, 2023. 1, 2, 3, 5

Wei Zhang, Bowen Ma, Feng Qiu, and Yu Ding. Multimodal facial affective analysis based on masked autoencoder, 2023. 6

Ziyang Zhang, Liuwei An, Zishun Cui, Ao Xu, Tengteng Dong, Yueqi Jiang, Jingyi Shi, Xin Liu, Xiao Sun, and Meng Wang. Affective recognition based on transformer encoder and audiovisual fusion for the abaw5 challenge, 2023. 6

Weiwei Zhou, Jiada Lu, Zhaolong Xiong, and Weifeng Wang. Continuous emotion recognition based on tcn and transformer, 2023. 6