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Abstract
With the advance of AI, road object detection has been a

prominent topic in computer vision, mostly using perspec-
tive cameras. Fisheye lens provides omnidirectional wide
coverage for using fewer cameras to monitor road inter-
sections, however with view distortions. To our knowledge,
there is no existing open dataset prepared for traffic surveil-
lance on fisheye cameras. This paper introduces an open
FishEye8K benchmark dataset for road object detection
tasks, which comprises 157K bounding boxes across five
classes (Pedestrian, Bike, Car, Bus, and Truck). In addition,
we present benchmark results of State-of-The-Art (SoTA)
models, including variations of YOLOv5, YOLOR, YOLO7,
and YOLOv8. The dataset comprises 8,000 images recorded
in 22 videos using 18 fisheye cameras for traffic monitor-
ing in Hsinchu, Taiwan, at resolutions of 1080×1080 and
1280×1280. The data annotation and validation process
were arduous and time-consuming, due to the ultra-wide
panoramic and hemispherical fisheye camera images with
large distortion and numerous road participants, particu-
larly people riding scooters. To avoid bias, frames from a
particular camera were assigned to either the training or
test sets, maintaining a ratio of about 70:30 for both the
number of images and bounding boxes in each class. Exper-
imental results show that YOLOv8 and YOLOR outperform
on input sizes 640×640 and 1280×1280, respectively. The
dataset will be available on the GitHub link with PASCAL
VOC, MS COCO, and YOLO annotation formats. The Fish-
Eye8K benchmark will provide significant contributions to
the fisheye video analytics and smart city applications.

Figure 1. Sample of the 5 classes in the FishEye8K dataset: Pedes-
trian (all visible people on the streets), Bike (people riding bicy-
cles, motorcycles, or scooters), Car (light vehicles such as sedans,
SUVs, Vans, etc.), Bus, and Truck (dump-truck, semi-trailers, etc.)

1. Introduction

Fisheye lenses have gained popularity owing to their nat-
ural, wide, and omnidirectional coverage, which traditional
cameras with narrow fields of view (FoV) cannot achieve.
In traffic monitoring systems, fisheye cameras are advanta-
geous as they effectively reduce the number of cameras re-
quired to cover broader views of streets and intersections.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Dataset Frame Boxes Task Vehicles Pedestrian Weather Occlusion Altitude View Classes Location Type

MIT-Car 2000 [15] 1.1K 1.1K D + - Surveillance 2D
KITTI-D 2014 [4] 15K 80.3K D + + + 3 Car 2D

UA-DETRAC 2015 [21] 140K 1210K D,T + + + 4 Surveillance 2D
Detection in LLC 2017 [9] 7.5K 15K D + + 12 Car 2D

CARPK 2017 [5] 1.5K 90K D + - Drone 2D
UAVDT 2017 [2] 80K 841.5K D,T + + + + + - Drone 2D
NEXET 2017 [6] 50K - D + + 5 Car 2D

BDD100k 2018 [22] 5.7K - D,T + + + 10 Car 2D
AAU RainSnow 2018 [1] 2.2K 13297 D,Seg + + Surveillance RGB&Thermal

MIO-TCD CCTV 2018 [12] 113K 200K D + + 5 Surveillance 2D
BDD100k Adas 2018 [24] 100K 250K D,Seg + + 10 Car 2D
Woodscape 2018/2019 [23] 10K - D,3D,T + + 7 Car Fish-Eye

CityFlow2D 2021 [14] - 313.9K D,T + Surveillance 2D
FishEye8K 2023 [our] 8K 157.0K D + + + 5 Surveillance Fish-Eye

Table 1. Summary of existing road traffic datasets. The second and third columns (1K = 103) indicate the number of images containing
at least one object on them and the unique object bounding boxes. Remaining columns: additional attributes for each dataset, i.e., ”D”:
target is a detection task, ”3D”: target is a three-dimensional detection task, ”T”: target is a tracking task, and the ”Seg”: target is a
segmentation task.

Despite these benefits, fisheye cameras present distorted
views that necessitate a non-trivial design for image undis-
tortion and unwarping or a dedicated design for handling
distortions during processing. It is worth noting that, to the
best of our knowledge, there is no open dataset available for
fisheye road object detection for traffic surveillance appli-
cations. The WoodScape dataset [23] was collected using
an in-car fisheye dash camera; however, it was intended for
self-driving scenarios.

In this paper, we present a new open FishEye8K bench-
mark dataset for the training and evaluation of 2D road ob-
ject detection tasks. The FighEye8K dataset consists of
8,000 image frames with 157K bounding box annotations of
5 object classes, namely, Pedestrian, Bike, Car, Truck, Bus,
and Truck; see Figure 1. A total of 22 short (8 to 20 min-
utes) videos were extracted from many hour-long videos
collected from 35 fisheye cameras. These traffic surveil-
lance cameras are properties of the police department of
Hsinchu City, Taiwan, and our data collection is free from
user consent agreements or license issues. However, efforts
are performed in blurring out visible faces and license plates
in the video frames. The dataset comprises different traffic
patterns and conditions, including urban highways, road in-
tersections, various illumination, and shooting angles of the
five road object classes in various scales.

The labeling of objects of interest is meticulous. Specif-
ically, we labeled all visible and recognizable objects even
if they are located far away. The FishEye8K sample im-
ages are split into the training and test sets, with a ratio of
about 70:30. Efforts are made to keep a similar ratio for
each class of road objects. To avoid bias, the train and test
sets do not share frames from the same camera. Annotations
are provided in several standard formats, including Pascal-
VOC [3], MS COCO [11], and YOLO [18].

We also provide benchmarking results of the latest
State-of-The-Art (SoTA) two-stage object detection mod-

els, including YOLOv5x [7], YOLOR [19], YOLOv7 [20],
and YOLOv8, and report in standard metrics including
Precision, Recall, mAP s, AP S, APM, AP L, F1−score,
and their inference time.

The FishEye8K benchmark dataset will be available at
https://github.com/MoyoG/FishEye8K upon
paper acceptance.

2. Related Works

Road datasets. High-resolution, diverse, and large-scale
road datasets play a critical role in advancing and enhancing
traffic monitoring systems. In the last decade, the number of
open road datasets [1,2,4–6,9,12,14,15,21–24] for 2D and
3D road object detection, single and multiple object track-
ing, object segmentation tasks have significantly increased.
Table 1 provides a summary of popular road datasets that
are used in both model development as well as for bench-
marking and public contests. In terms of camera locations,
the following datasets are captured using fixed surveillance
cameras: MIT-Car [15], UA-DETRAC [21], AAU Rain-
Snow [1], MIO-TCD [12], and AI-City [14] datasets. The
CARPK [5] and UAVDT [2] dataasets are captured using
drones. The KITTI [4], Detection in LLC [9], NEXET [6],
BDD100K [22], and Woodscape [23] datasets are captured
using in-dash cameras mounted on a car. In terms of FoV,
all the datasets were constructed using standard perspective
cameras, with the drawback of narrow FoV. The only excep-
tion is the WoodScape dataset [23] that are captured using
an in-dash 180° fisheye camera. To our knowledge, the pro-
posed FishEye8K dataset is the first of the kind among the
open datasets, that are designed and constructed specifically
for the development and evaluation of road object detection
using fisheye traffic surveillance cameras.

Fixed perspective traffic camera-based datasets. Ta-
ble 1 shows that most datasets are captured using fixed,
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Figure 2. Sample images of FishEye8K dataset: (Top) the original unlabelled images, (Middle) the labeled ground truths, (Bottom) the
YOLOv5x6 [7] detected objects. The columns illustrate several viewing angles, time of day, various intersections and road participants in
the dataset.

perspective cameras, which are limited by the narrow FoV.
All the datasets have annotations for 2D road object detec-
tion task; on top of it, a few datasets [2, 14] have multi-
ple objects tracking annotation, and one [1] has segmenta-
tion mask annotation. In 2000, MIT-Car dataset [15] was
publicly offered as a flagship dataset pioneering the road
automation research field. The dataset has 1.1K frames,
including 1.1K bounding boxes for the vehicle detection
task. In 2016, UA-DETRAC [21] dataset was offered with
140K frames, including rich annotations of illumination,
vehicle type, occlusion, and 1210K bounding boxes. The
dataset has four classes (car, van, bus, and others) for de-
tection and multiple object detection tasks. In the same
year, similarly, MIO-TCD CCTV [12] dataset is offered
with 113K frames, including 200K bounding boxes for the
detection task. In 2018, the AAU RainSnow [1] dataset was
offered as a benchmark for evaluating state-of-the-art rain
removal algorithms. The dataset has 22 five-minute real-
world camera video sequences collected from 7 urban in-
tersections covering various weather conditions, i.e., snow,
rain, haze, and fog. They have extracted 100 frames from
each five-minute video to construct 2200 frames, including
13297 bounding boxes. Recently, in 2021, AI-City Chal-
lenge [14] was held, including vehicle detection and re-
identification on CityFlowV2-ReID dataset and multi-target
multi-camera vehicle tracking challenge on CityFlow2D
dataset. CityFlow2D dataset has 313.9K bounding boxes
for 880 distinct vehicles.

Drone based datasets. Lately, drone road datasets have
been publicly offered in the literature, namely CARPK [5]
and UAVDT [2]. Both datasets were captured from a high
altitude with a viewing angle of the top by narrow FOV
cameras for the drone-based road monitoring systems. Thus

they are not suitable for fixed surveillance camera-based
traffic monitoring.

3. The FishEye8K Dataset
We provide detailed information on the new FishEye8K

road object detection dataset. The dataset consists of 8,000
annotated images with 157K bounding boxes of five object
classes. Figure 2 shows sample images of the wide-angle
fisheye views, which provide new opportunities for large
coverage, but also new challenges of large distortions of the
road objects.

3.1. Video Acquisition

We have acquired a total of 35 fisheye videos captured
using 20 traffic surveillance cameras at 60 FPS in Hsinchu
City, Taiwan. Among them, the first set of 30 videos (Set
1) was recorded by the cameras mounted at Nanching Hwy
Road on July 17, 2018, with 1920 × 1080 resolution, and
each video lasts about 50-60 minutes. The second set of 5
videos (Set 2) was recorded at 1920× 1920 resolution, and
each video lasts about 20 minutes.

All cameras are the property of the local police depart-
ment, so there is no issue of user consent or license issues.
All images in the dataset will be made available to the pub-
lic for academic and R&D use.

3.2. Dataset Preparation and Characteristics

Sampling. We chose 18 videos from the recorded
footage, with 15 videos coming from Set 1. These were
cropped into shorter videos, each lasting approximately 8
to 10 minutes, except for one that lasted 16 minutes. Us-
ing a sampling method of one frame per 50 and 200 frames
for Set 1 and Set 2 videos, respectively, we extracted over
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Figure 3. The class distributions of objects in terms of (a) Splits for FishEye8K dataset; (b) Illumination; and (c) Scale.

10,000 frames. The resulting images were then resized to
1080 × 1080 and 1280 × 1280 for Set 1 and Set 2, respec-
tively.

To incorporate a wide range of perspectives on road con-
ditions, we carefully selected videos for our dataset that fea-
ture diverse camera angles, including side-view and front-
view shots, as well as varying video quality. The dataset
also includes images from different intersection types, such
as T-junctions, Y-junctions, cross-intersections, midblocks,
pedestrian crossings, and non-conventional intersections.
The videos were captured under various lighting condi-
tions, including morning, afternoon, evening, and night,
and diverse traffic congestion levels ranging from free-
flowing to steady and busy. Figure 2 illustrates some of
the wide-ranging road conditions with ground truth anno-
tations of road objects and detection results obtained from
YOLOv5x6 [7].

Object classes: We annotate 5 major classes for road ob-
jects, namely, Pedestrian (all visible people on the streets),
Bike (riders on bicycles, motorcycles, or scooters), Car
(light vehicles such as sedans, SUVs, vans, etc.), Bus, and
Truck (dump-truck, semi-trailers, etc.).

Distant objects: The wide fisheye lens creates a wide
FoV but also results in a panoramic hemispherical image
that is notably distorted with a barrel effect. Additionally,
the camera has a tendency to produce blurred images of
objects located around the edges of the lens. As a conse-
quence, distant objects can appear minuscule and indistinct.
Annotating these distant objects can be an arduous or even
impossible task due to their lack of clarity.

Illumination: Four categories of illumination condi-
tions were identified, namely morning (sunrise), afternoon
(sunny), evening (sunset), and night. The distribution of
video sequences based on their respective illumination at-
tributes is illustrated in Figure 3(b), with the majority of
bounding boxes falling under the afternoon category. Night-
time sequences follow in second place, with morning and
evening categories trailing behind respectively. Notably, the
distribution of classes across all times of day is remarkably
similar

Object scale: We define the scale of the bounding boxes
of road participants based on their size (length and width)
in pixels. The MS COCO evaluator is employed for small

and medium, and large scaled objects. However, as the size
of the image grows toward 1080 × 1080 or 1280 × 1280,
respectively for Sets 1 and 2, we doubled the size of stan-
dard scales, i.e., small (pixels ≤ 64×64), medium (64×64
< pixels ≤ 192×192), and large (pixels > 192×192). The
distribution of road participants in the dataset in terms of
scale is presented in Figure 3 (c), where small and medium-
scaled objects make the most of the dataset. Bus and Truck
classes have a similar number of small and medium scaled
objects. On the contrary, other classes have a compara-
tively high number of small-scaled objects than medium and
large-scale objects.

3.3. Annotation

Annotation Rule. The road participants were annotated
based on their clarity and recognizability to the annotators,
regardless of their location. In some cases, distant objects
were also annotated based on this criterion.

Annotation. Two researchers/annotators manually la-
beled over 10,000 frames using the DarkLabel annotation
program over a period of one year. After cleaning the
dataset, a total of 8,000 frames containing 157012 bounding
boxes remained. Unsuitable frames were removed, includ-
ing those featuring road participants outside the five classes
of interest.

The distribution of objects per class for each video is
depicted in Figure 4. Notably, the night video captured by
Camera 3 has the highest number of objects. In this dataset,
the dominant classes are Bike (88,373) and Car (50,597),
which can be attributed to the semi-tropical location of the
country where the videos were recorded. On the other hand,
the classes of Truck (3,317) and Bus (2,982) have the lowest
number of objects, rendering the dataset highly imbalanced.
Figure 1 displays a selection of samples from all classes,
showcasing various scales. Furthermore, the distributions
of classes are depicted as bar graphs in Figure 3.

For the sake of convenience, we provide three differ-
ent formats for the annotations of FishEye8K datasets, i.e.,
Pascal-VOC [3], MS COCO [11], and YOLO [18].

3.4. Validation

Given the complexity and effort required for the labeling
task, human errors were inevitable, and it was necessary to
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Figure 4. Heat maps represent the number of extracted objects per class from all 22 short videos recorded by 18 cameras for training and
test sets of the FishEye8K dataset. For the training set, the darkest blue color refers to 13461 labeled bikes from the video recorded at night
with Camera 3.

correct them to avoid inaccurate results. Therefore, in order
to minimize human error, we employed two semi-automatic
approaches to validate all bounding boxes.

In the case of mislabeled objects, we followed a two-step
approach. Firstly, we cropped and copied the objects based
on their respective bounding boxes into the corresponding
directories. Secondly, our annotators manually verified if
the objects were correctly placed in their designated direc-
tories through simple inspection, which is highly accurate
and requires less time and effort. However, this approach
is blind to objects that were not labeled in the first place,
which is known as a missing label error. To address this
issue, we inspected the False Positives generated by the
YOLOv7 model [20] trained on FishEye8K, which helped
identify numerous missing label errors. This approach was
especially effective in identifying errors in distant areas and
regions with high traffic density of vehicles and bikes.

3.5. Dataset Splits

In order to minimize dataset bias, we ensured that frames
from the same camera were not included in both the train
and test sets. Specifically, all frames from a given camera
were assigned to either the train or test set. Figure 4 illus-
trates the heat maps of 22 videos (captured during morning,
afternoon, evening, and night) recorded by Cameras 1-18,
from which all images were extracted to create the Fish-
Eye8K dataset. To satisfy the criteria, we selected Cameras
1, 2, 4, and 7 for the test set and the remaining cameras for
the training set. This division resulted in a training set that
constitutes 66.07% of the dataset, while the test set consti-
tutes 33.93%.

In order to maintain a roughly 70:30 ratio of objects for
each class, the training set was composed of 111,835 ob-

jects and the test set contained 45,193 objects, which cor-
respond to 71.28% and 28.78% of all objects, respectively.
The classes Bike, Bus, and Car follow this ratio in both sets.

3.6. Data Anonymization

The identification of road participants such as people’s
faces and vehicle license plates from the dataset images was
found to be unfeasible due for various reasons. The cam-
eras used for capturing the images were installed at a higher
ground level, making it difficult to capture clear facial fea-
tures or license plates, especially when they are far away.
Additionally, the pedestrians are not looking at the cameras,
and license plates appear too small when viewed from a dis-
tance. However, to maintain ethical compliance and protect
the privacy of the road participants, we blurred the areas
of the images containing the faces of pedestrians and the
license plates of vehicles, whenever they were visible.

4. Benchmark
4.1. One-Stage 2D Object Detection Methods

In order to assess the performance of 2D object detection
methods, particularly for pedestrian and vehicle detection,
we conducted a benchmark of the latest state-of-the-art one-
stage detectors. Our selection process involved reviewing
the literature and identifying the best-performing models,
including YOLOv5 [7], YOLOR [19], YOLOv7 [20], and
the latest YOLOv8. One-stage detectors predict bounding
boxes on images without requiring a region proposal step,
which results in faster processing times and makes them
suitable for real-time applications. However, these detectors
prioritize inference speed and may not perform as well for
recognizing irregularly shaped objects or groups of small
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objects. Table 2 presents the results of our benchmark of
the one-stage detectors.

4.2. Training Procedure

We utilized several frameworks and platforms, i.e.,
Darknet [17], Pytorch [16], and PaddlePaddle [13], for the
model training.

Hyperparameters. All YOLO variations were pre-
trained on MS COCO [11] dataset. Among the models,
we trained four models (YOLOv7 [20], YOLOv7-X [20],
YOLOv8l, and YOLOv8x on the input size 640×640. Six
models (YOLOv5x6 [7], YOLOv5l6 [7], YOLOR-W6 [19],
YOLOR-P6 [19], YOLOv7-D6 [20], YOLOv7-E6E [20])
on the input size 1280×1280. All models have trained
with the same training procedures for 250 epochs, Adam
[8] optimizer with the momentum of 0.937 except for
YOLOv5 [7] which employed SGD optimizer. The confi-
dence and NMS (Non Max Suppression) IoU (Intersection
over Union) thresholds were both 0.5, and a learning rate of
0.01.

Data preprocessing. For the purpose of training and
testing, the input images were resized to 640×640 and
1280×1280 for particular models, see Table 2.

Loss Objective. We employed the Focal loss [10] as it
is commonly used in the multi-object detection and multi-
label image classification domain. The loss function is de-
fined as:

FL(pt) = −αt(1− pt)
γ log(pt), (1)

where by default γ = 0.5 and α = 0.5, pt is the predicted
probability for the object indexed by t.

4.3. Metrics

All models are analyzed and evaluated with the same
metrics, i.e., Precision, Recall, mAP s, AP S, APM,
AP L, F1− score, and their inference time.

F1-score metric measures the balance between Preci-
sion and Recall. When both Precision and Recall are high,
the F1 score is high as well, indicating good model perfor-
mance. On the other hand, a low F1 score indicates that the
Precision and Recall values are imbalanced, and the model
is not performing well. The F1 score is calculated as below:

F1 =
2× Precision×Recall

Precision+Recall
(2)

Average Precision (AP ) represents all Precision and
Recall values into a single score. The AP is calculated ac-
cording to:

AP =

n−1∑
k=0

[Recall(k+1) −Recall(k)] ∗ Precision(k+1),

where k is an index of the frame, and n is the number of
frames for a given class.

Intersection over Union (IoU). The model predicts the
bounding boxes of the detected objects; however, it is ex-
pected that the predicted box will not match exactly the
ground truth box. Intersection over Union (IoU) is em-
ployed to quantify the measure to score how the ground
truth and predicted boxes match: IoU = Intersection Area

Union Area .
Normalized Confusion Matrix is used to determine the

prediction quality of the model by each class. A confusion
matrix is made up of 4 components, namely, True Positive
(TP), True Negative (TN), False Positive (FP), and False
Negative (FN).

Mean Average Precision (mAP s) is the mean of the
AP s for all classes. The mAP of the object detection
model is calculated according to:

mAP =
1

n

n∑
k=1

APk, (3)

where n is the number of classes in the dataset and AP (k)
is the average precision (AP ) for a given class k.

4.4. Performance

In this subsection, we report the experimental results of
variations of YOLOv5 [7], YOLOR [19], YOLOv7 [20],
and YOLOv8.

Table 2 presents two sets of models that were trained on
the FishEye8K dataset, with input sizes of 1280×1280 and
640×640.

4.4.1 Results on Input Size 640 × 640

For input size 640×640, the highest two mAP 0.5s of
0.6146 and 0.612 are achieved by YOLOv8x and YOLOv8l,
respectively. The lowest mAP 0.5s of 0.4235 is result
of YOLOv7 [20]. In terms of F1-score and Recall,
YOLOv7-X achieved the highest performance with 0.5794
and 0.4888, respectively. Further, in terms of object
scale, YOLOv7-X outperformed on all three scales (small,
medium, and large) as well.

The confusion matrix for the best-performing model,
YOLOv8x, on the input size of 640×640, is presented in
Figure 5, and Table 3 tabulates the results. The Car class
achieved the highest mAP 0.5 score of 0.749, followed by
Bus, Bike, Truck, and finally Pedestrian with a score of
0.4596. Surprisingly, the Bike class had the highest FP
rate of 0.82, with many objects mispredicted as Bike on the
background. Additionally, a significant portion of objects
across all classes were undetected, with normalized FNs
ranging from 0.45 to 0.84. However, the model performed
significantly well in terms of Precision for all classes, with
values ranging from 0.74 to 0.94. The Pedestrian class had
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Model Version Input Size Precision Recall mAP0.5 mAP.5-.95 F1-score APS APM APL
Inference

[ms]

YOLOv5 [7] YOLOv5l6 1280×1280 0.7929 0.4076 0.6139 0.4098 0.535 0.1299 0.434 0.6665 22.7
YOLOv5x6 1280×1280 0.8224 0.4313 0.6387 0.4268 0.5588 0.133 0.452 0.6925 43.9

YOLOR [19] YOLOR-W6 1280×1280 0.7871 0.4718 0.6466 0.4442 0.5899 0.1325 0.4707 0.6901 16.4
YOLOR-P6 1280×1280 0.8019 0.4937 0.6632 0.4406 0.6111 0.1419 0.4805 0.7216 13.4

YOLOv7 [20] YOLOv7-D6 1280×1280 0.7803 0.4111 0.3977 0.2633 0.5197 0.1261 0.4462 0.6777 26.4
YOLOv7-E6E 1280×1280 0.8005 0.5252 0.5081 0.3265 0.6294 0.1684 0.5019 0.6927 29.8

YOLOv7 [20] YOLOv7 640×640 0.7917 0.4373 0.4235 0.2473 0.5453 0.1108 0.4438 0.6804 4.3
YOLOv7-X 640×640 0.7402 0.4888 0.4674 0.2919 0.5794 0.1332 0.4605 0.7212 6.7

YOLOv8 YOLOv8l 640×640 0.7835 0.3877 0.612 0.4012 0.5187 0.1038 0.4043 0.6577 8.5
YOLOv8x 640×640 0.8418 0.3665 0.6146 0.4029 0.5106 0.0997 0.4147 0.7083 13.4

Table 2. Results of state-of-the-art models trained on FishEye8K datasets. The table consists of two groups of various versions of YOLO
object detection models for input sizes 1280×1280 and 640×640.

Figure 5. Normalized Confusion Matrix of YOLOv8x model on
the input size 640 × 640.

YOLOv8x-640×640
Classes Precision Recall mAP0.5 mAP.5-.95 F1-score
Bus 0.9331 0.4796 0.7156 0.5419 0.6335
Bike 0.8035 0.377 0.6062 0.3208 0.5132
Car 0.9493 0.5331 0.749 0.5208 0.6827
Pedestrian 0.7785 0.1402 0.4596 0.2168 0.2376
Truck 0.7444 0.3028 0.5424 0.4141 0.4304
All 0.8418 0.3665 0.6146 0.4029 0.5106

Table 3. Results of YOLOv8x model on the input size 640 × 640.

the lowest normalized TP rate at 0.14, indicating incorrect
predictions of this class as others, mainly as Background
which has the maximum normalized FN rate at 0.76.

4.4.2 Results on Input Size 1280 × 1280

Table 2 shows that for an input size of 1280 × 1280,
YOLOR-P6 [19] and YOLOR-W6 [19] achieved the high-
est mAP 0.5 scores of 0.6632 and 0.6466, respectively. In
contrast, YOLOv7-D6 [20] yielded the lowest mAP 0.5
score of 0.3977. YOLOv7-E6E [20] demonstrated the high-
est performance in terms of F1-score and Recall, with val-
ues of 0.6294 and 0.5252, respectively.

Furthermore, with regard to object scale, YOLOv7-E6E

Figure 6. Normalized Confusion Matrix of YOLOR-P6 model on
input size 1280 × 1280.

YOLOR-P6-1280×1280 [19]
Classes Precision Recall mAP0.5 mAP.5-.95 F1-score
Bus 0.9429 0.6753 0.8161 0.6271 0.7869
Bike 0.8537 0.4316 0.6553 0.3725 0.5733
Car 0.9473 0.6062 0.7876 0.5575 0.7393
Pedestrian 0.4903 0.2014 0.3621 0.2007 0.2855
Truck 0.7753 0.5541 0.695 0.4451 0.6462
All 0.8019 0.4937 0.6632 0.4406 0.6111

Table 4. Results of YOLOR-P6 model on the input size
1280×1280.

[20] exhibited higher performance over the other models in
detecting small and medium-sized objects, achieving APs
of 0.1684 and 0.5019, respectively. In contrast, YOLOR-P6
[19] demonstrated exceptional accuracy in detecting large
objects, with an APL of 0.7216.

Figure 6 shows the confusion matrix and Table 4 tab-
ulates the results provided by the best-performing model
YOLOR-P6 [19] on the input size of 1280×1280. The most
accurately predicted class is Bus with an mAP 0.5 of 0.8161
followed by Car, Truck, Bike and finally Pedestrian with
mAP 0.5 of 0.3621.

The Bike has the maximum normalized FP rate at 0.65
when the background is incorrectly detected as Bike. Ad-
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ditionally, a substantial fraction of objects in each class
remains undetected, as indicated by their normalized FN
rates varying between 0.29 to 0.72. Despite this, the model
demonstrates comparatively good performance in terms of
Precision across all classes, with values ranging from 0.77
to 0.95, with the exception of the Pedestrian class, which
displays a significantly low Precision of 0.49.

4.4.3 Inference Time

The inference time for each model was measured on a work-
station featuring an 11th Gen i7 CPU and an Nvidia RTX
3080 GPU, and the results are presented in Table 2. The
outcomes demonstrate that all models perform efficiently
on this high-end computer, with inference times varying be-
tween 4.3 ms to 43.9 ms.

5. Discussions
The majority of the dataset, consisting of images from

Cameras 1-15, were derived from fisheye surveillance cam-
era footage captured on a single day in July 2018 in Taiwan.
Although the dataset contains images of 5 major road partic-
ipants captured from varying angles and under different il-
lumination conditions, it lacks diversity in terms of weather
conditions, such as fog, rain, snow, and storms. Addition-
ally, the dataset is imbalanced, with the class Bike having
the highest number of objects at 88K, while the Bus class
has the lowest number at 2.98K.

Hard cases of the best-performing YOLOR-W6 [19] are
represented by few samples in Figure 7.

In Figure 7(a), several examples of false positives
are shown where the labeled objects are not detected.
These instances can be categorized into two groups:
parked/stationary vehicles and road participants in motion.
In the top left, only two out of nine scooters parked in a row
on the sidewalk are correctly detected. On the top right, two
partially visible cars parked in a garage are not detected.
The presence of numerous parked vehicles in the dataset
and the misdetection of such vehicles contribute to the high
false negative rates observed across all classes.

The second type of false positives involves road partic-
ipants in motion, such as a truck, a pedestrian, and a bus
shown in the three crops at the bottom of Figure 7(a)

The examples shown in Figure 7(b) illustrate instances
where the background is misclassified as one of the object
classes, resulting in higher false positive rates. Specifically,
in the top left, a road sign is incorrectly detected as a Pedes-
trian, while in the bottom left, a yellow building is misclas-
sified as a Bus. In the center, a building pillar is erroneously
labeled as a Pedestrian, and on the right, a horizontal road
sign is detected as a Bike.

In Figure 7(c), we can observe cases where classes are
misclassified as other classes. The four images, from the

Figure 7. Some samples of hard cases of YOLOR-P6 detections
on input size 1280 × 1280.

bottom to the top, show how the predictions change as
Pedestrians walk away from the camera. We can see that
misclassification occurs when the size of the objects gets
smaller. Specifically, the objects were initially correctly de-
tected as Pedestrians when they were closer to the camera,
but as they moved away and became smaller, they were mis-
classified as Bikes.

6. Conclusions

We presented the FishEye8K benchmark dataset along
with the evaluation of the SoTA one-stage object detectors
for the use of fisheye cameras for road object detection.
This dataset fills the gap in the lack of a fisheye surveil-
lance camera dataset for road 2D object detection tasks.
The anonymized dataset includes 8000 frames with 157K
bounding boxes of 5 different road participants and various
aspects of road conditions. Our evaluation results show that
YOLOv8 and YOLOR models [19], which are pretrained
on MS-COCO [11], outperforms the other models. There-
fore the FishEye8K dataset will be a significant contribution
to the fisheye video analytics and smart city applications.

Future work includes the creation of a large and more
balanced dataset with more diverse street object categories
that can be used for object re-identification model training
and evaluation.
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