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Abstract

Multi-camera multiple people tracking has become an
increasingly important area of research due to the grow-
ing demand for accurate and efficient indoor people track-
ing systems, particularly in settings such as retail, health-
care centers, and transit hubs. We proposed a novel
multi-camera multiple people tracking method that uses
anchor-guided clustering for cross-camera re-identification
and spatio-temporal consistency for geometry-based cross-
camera ID reassigning. Our approach aims to improve the
accuracy of tracking by identifying key features that are
unique to every individual and utilizing the overlap of views
between cameras to predict accurate trajectories without
needing the actual camera parameters. The method has
demonstrated robustness and effectiveness in handling both
synthetic and real-world data. The proposed method is
evaluated on CVPR AI City Challenge 2023 dataset, achiev-
ing IDF1 of 95.36% with the first-place ranking in the chal-
lenge. The code is available at: https://github.
com/ipl-uw/AIC23_Track1_UWIPL_ETRI.

1. Introduction
Multi-people tracking, which involves detecting and

monitoring human movement, has become an essential tool
in various industries. Such tracking utilizes techniques like
sensors, cameras, and deep learning algorithms to track peo-
ple’s positions, motions, and directions with time. It plays
a critical role in ensuring security surveillance and bunis-
ness analytics as well as works with closed-circuit televi-
sion (CCTV) to prevent accidents.

The demand for indoor people tracking has increased in
recent years. Besides tracking people’s movements, indoor

* indicates equal contributions.

Figure 1. Illustration of Multi-Camera People Tracking (MCPT).
The task involves detecting and tracking the same individuals
across multiple cameras. The goal is to maintain the identity of
each individual and their trajectory across different views, while
dealing with challenges such as occlusion and camera viewpoint
variations.

environments necessitate advanced technology to detect and
monitor people’s activities. In the healthcare sector, it is vi-
tal for tracking patients and staff, equipment and inventory,
and optimizing workflows [47]. Similarly, the retail indus-
try can enhance the shopping experience by analyzing cus-
tomer behavior, and security and safety can leverage this
technology to detect and respond to emergencies. More-
over, the recent COVID-19 pandemic has underscored the
need for quarantine measures such as social distancing [31].

However, due to the privacy issue, the data are limited for
researching deep learning based people tracking methods.
Therefore, researchers are exploring the use of synthetic im-
agery as an alternative [23,37,39]. Synthetic imagery mim-
ics real-world footage and can be used as training data for
machine learning models to create large training datasets in
a cost-effective manner. This approach also benefits consis-
tency and predictability, enabling customization for specific
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user needs, such as class balance considerations. Moreover,
it can enhance the generalization capability of models that
are challenging to train with limited real-world data and ad-
dress privacy concerns. However, since synthetic data may
not capture the full complexity and variability of real-world
data, models trained on this data could be biased or inaccu-
rate.

The AI City Challenge recently released data on in-
door people tracking using synthetic videos under mutli-
camera settings. The dataset focuses on multi-camera cross-
view scenarios. So, we develop a multi-camera people
tracking method (MCPT) composed of three main com-
ponents: single-camera tracking, anchor-guided clustering
for multi-camera re-identification, and 3D-based spatio-
temporal consistency ID re-assignment for post-processing.
Our proposed method outperformed all others in AI City
Challenge Track 1, resulting in the best performance.
Therefore, we assert three main contributions in this paper:

• We present a robust anchor-guided clustering method
for multi-camera people tracking and re-identification.

• We leverage the spatio-temporal consistency of each
track for post-processing enabled by self-camera cali-
brations. which can significantly improve the tracking
accuracy of people with similar appearances.

• Achieved the best performance with an IDF1 of 95.36,
in the 2023 AI City Challenge Track 1 on the public
testing set which consists of data from real and syn-
thetic multi-camera settings.

The subsequent sections of the paper are structured
as follows: Section 2 provides an overview of related
works. Section 3 describes the proposed method. Section 4
presents the results of the detailed implementation and ex-
periment results. Lastly, Section 5 provides the discussion
and conclusions drawn from the study.

2. Related Works
2.1. Re-Identification

Since the the advent of deep learning technology, CNN
features have been used dominantly [48], studies on per-
son re-identification have been conducted from three main
categories: network structure, loss definition, and sampling
method.
Network Structure. [2] extracted features from each of the
two images and computed relationships between them to
train a model. [13] reviewed prior research on feature drop
and localizing different body parts as their proposed model
included a global branch for encoding global salient rep-
resentations and a feature-dropping branch for randomly
dropping the same region of all input maps in a batch.
[52] proposed a CNN architecture that leverages multiple
scales with different receptive field sizes and dynamically

fused them using channel-wise adaptive aggregation. They
demonstrated that their system was significantly smaller
than previous models by utilizing factorized convolutions
in the building blocks. [24] highlighted the tokens gener-
ated by the region level and introduced a region-based fea-
ture pooling method for obtaining more granular areas of
interest.
Loss Definition. [33] introduced a new loss called triplet
loss, which has inspired numerous subsequent studies in re-
id and metric learning. [17] demonstrated that a variant of
triplet loss outperformed other losses, which contradicted
the prevailing belief that triplet loss was inferior to surrogate
loss functions.
Sampling Method. Early work typically used random
sampling [4, 11]. [33] proposed semi-hard negative mining,
which required a large batch size. [34] utilized hard nega-
tive mining in a siamese network. [43] focused on selecting
more informative and stable examples than traditional ap-
proaches by employing a margin-based loss.

2.2. Monocular Multi-Object Tracking

The field of Monocular Multi-Object Tracking has ad-
vanced significantly since the advent of deep learning tech-
nology, with studies typically following the tracking-by-
detection paradigm [1, 3, 6, 8, 22, 42, 49]. This involves de-
tecting the location of objects to be tracked in each frame
and associating them based on the similarity of their real
and predicted locations, which is calculated using motion
information to produce a trajectory. Early studies [7] ex-
plored the use of the Intersection of Union (IoU) metric to
improve tracking speed. Another work [6] focused on im-
proving tracking performance with simple motion predic-
tion using a Kalman filter to predict object location in the
next frame. While this approach is fast and effective in sim-
ple environments, it has limitations in complex scenarios
with a high number of objects to track. Other studies, such
as [42], focused on using appearance information to match
objects, by extracting feature vectors from detected objects
and comparing them across frames.

Many studies [5, 14, 21, 38, 40, 44, 45, 50, 51] have pro-
posed various approaches to enhance Multi-Object Track-
ing (MOT) performance with low computational cost. [5]
addressed the issue of the lack of a tracking dataset com-
pared to the detection dataset. Meanwhile, [38] thought that
bounding box level tracking is saturating and introduced
pixel-level tracking as a way to improve performance. Other
studies, such as [44], focused on learning instance embed-
dings using 2D point cloud representations to avoid back-
ground features. [40] proposed a real-time Joint Detec-
tion and Embedding (JDE) system for MOT, which out-
performed the Separate Detection and Embedding (SDE)
system used in previous studies. [51] treated MOT as a
multi-task learning problem of object detection and asso-
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Figure 2. The overall pipeline of our Multi-Camera Multi-people Tracking (MCMT) framework. (1) Single-Camera Tracking is first
conducted with a standard tracking-by-detection scheme, where the extracted frames are fed into a detector and a feature extractor to get
the detections and re-id features for the preliminary tracking. (2) Then Anchor-Guided Clustering will assign a global ID as well as
fixing the ID switches for each trajectory. (3) Lastly, Spatio-Temporal Consistency ID Reassignment will utilize the 2D human pose
with camera self-calibration to reproject on the map for final post-processing.

ciation and presented detailed designs to avoid competition
between these tasks. [14] demonstrated that simple designs
could perform well with a few additional tricks. [50] pro-
posed a method that associated almost every detection box,
rather than just the high score ones. [9] computed a virtual
trajectory over the occlusion period based on object obser-
vations. Finally, [1] proposed some bag of tricks to achieve
high performance on public MOT datasets.

2.3. Multi-Camera Multi-Object Tracking

Following in the development of single-camera multi-
object tracking, Multi-camera multi-object tracking has
been studied actively. Previous studies were based on
the graph-based approaches to associate across frames and
cameras [10, 16, 18, 41]. As is the case with single cam-
eras, the deep feature was soon introduced in the multi-
cameras [19, 32, 35]. [32] proposed an adaptive weight loss
and hard-identity mining scheme for learning better fea-
tures. [19, 20] proposed the trajectory-based camera link
model including deep feature re-identification. They uti-
lized the TrackletNet Tracker (TNT) to generate the moving

trajectories and the camera link model to constrain the or-
der by the spatial and temporal information. [46] proposed a
unified framework that can effectively adopt monocular 2D
bounding boxes and 2D poses jointly to produce robust 3D
trajectories to track across mutli-camera with overlapping
views. [29] proposed multi-camera multiple object tracking
approach based on a spatial-temporal lifted multicut formu-
lation utilizing 3D geometry projection.

The release of many public datasets has driven progress
in this field. [26, 27, 36] released a city-scale traffic camera
dataset consisting of more than 3 hours of HD videos. [15]
proposed a novel method to construct a large-scale multi-
camera tracking dataset called MMPTrack to alleviate the
occlusion issue. They utilized depth and RGB cameras to
build 3D tracking results and projected them to create 2D
tracking results. This helped to build a reliable benchmark
for multi-camera multi-object tracking systems in cluttered
and crowded environments.
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Figure 3. The process for anchor-guided multi-camera people tracking involves periodically sampling frame-based appearance features
from each camera, and performing hierarchical clustering to obtain anchors with corresponding feature banks. Single camera tracking is
then performed to obtain preliminary trajectories with ID switches denoted in different colors in the same row. Each detection from the
preliminary trajectories are further assigned a global ID by the anchor using the Hungarian algorithm. Finally, sliding window majority
vote is performed to obtain the final trajectories.

3. Methods
3.1. Single-Camera Tracking

Single-camera tracking algorithms generally follow the
tracking-by-detection paradigm, which involves using an
independent detector on the input image and then an asso-
ciation algorithm to link bounding boxes across frames. To
incorporate appearance features into the tracking process,
we employ the Re-ID version of BoT-SORT [1] as a single-
camera tracking algorithm to obtain preliminary object tra-
jectories. BoT-SORT is designed to leverage both object
motion and appearance for the association, which has led to
achieving state-of-the-art tracking performance on several
multi-object tracking benchmarks.

3.2. Anchor-Guided Clustering

Upon completion of single-camera tracking, preliminary
trajectories are often obtained, which may suffer from nu-
merous ID switches due to occlusion, unaligned object IDs
of the same identity between different cameras in the same
scenario, and a lack of a re-entry handling method in the
camera field of view. The absence of such a method makes
it difficult to assign a unique object ID to identities that re-
enter the camera field of view after exiting for a certain time.

To address all three of these problems simultaneously,

we propose an effective method called anchor-guided clus-
tering and global ID assignment. Our method elegantly en-
ables the assignment of the same unique object ID to re-
entering identities, and it can handle occlusion-induced ID
switches and unaligned object IDs of the same identity be-
tween different cameras in the same scenario.

The proposed method involves periodic sampling of de-
tection appearance features for a certain number of frames
from each camera in the same scene. After the sampling
process is completed, hierarchical clustering is performed
to obtain several anchors, where each anchor contains mul-
tiple features that represent the same identity’s appearance
feature under different detection sizes, lighting conditions,
and rotation angles. Each anchor has a unique ID that will
be used as the identity’s global ID in multi-camera tracking.

Subsequently, the detections in the same frame t and the
anchors will perform the Hungarian algorithm with cost de-
scribed in the following formula:

cost(di,t, aj) = 1− 1

k

k∑
l=1

di,t · aj,l
|di,t| |aj,l|

(1)

We use the cosine distance between the detection’s ap-
pearance feature di,t (where t is the frame ID of the de-
tection) and each appearance feature vector aj,k in the an-
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chor aj as the cost for global ID assignment. Specifically,
we compute the average of the cosine distances between
di,t and all aj,k to obtain the final cost. Note that each an-
chor contains multiple appearance feature vectors, denoted
as aj,l, and the number of these vectors are denoted as k.

After performing the Hungarian algorithm, each single-
camera tracking trajectory obtains a global ID list with the
same length as the original trajectory. To assign the final
global ID, we use a sliding window majority voting ap-
proach. This method effectively fixes ID switches in single-
camera tracking, assigns global IDs robustly by considering
multiple frames, and correctly re-identifies individuals who
re-enter the camera field of view by assigning them the same
global ID.

3.3. Spatio-Temporal Consistency ID Reassignment

Assuming that the multi-view videos are synchronized
and overlapped, it is expected that a person’s trajectories
will exhibit both spatial and temporal consistency in terms
of position and motion across all views. Therefore, by re-
lying on such cross-view consistency, it becomes possible
to match the 2D tracklets under different views to the same
person and further re-assigned the incorrect global IDs in
the previous tracking stage either due to similar appearance
or heavy occlusion.

Given the tracking results after the anchor-guided clus-
tering ID assignment, where Xk

t,id ∈ R4 representing the
2D information of each detection (x, y, w, h) under k-th
camera-view at frame t. The function Fg takes any de-
tection Xk

t,id as input and outputs 2D coordinates in image
space representing the ground-plane location on which each
target is located whenever both the left and right ankle key-
points (xla, yla) and (xra, yra) are available:

Fg(X
k
t,id) =

{
( (xla+xra)

2 , (yla+yra)
2 ) if cla, cra ≥ τpose

(x+ w/2, y + h) otherwise
(2)

where cla and cra are the confidence scores of the keypoints
predicted by the 2D pose estimator. The τpose is the thresh-
olding that controls whether we decided the top-down loca-
tion of each target by pose-based analysis or simply com-
pute from the bounding box’s information.

Then, given the homography matrix Hk ∈ R3×3 of k-th
camera-view obtained via camera self-calibration, we can
obtained the top-down coordinate of any detection Xcam

t

by reprojecting the ground-plane coordinates of each detec-
tions in image space using:

F3D(Xk
t,id) = Hk · Fg(X

k
t,id)

T , (3)

we hereby used the notation X̂k
t,id ∈ R6 representing the

2D information of each detection (x, y, w, h) and 3D infor-
mation (x3D, y3D) under k-th camera-view at frame t.

The spatial consistency in our work refers to the level
of agreement of the top-down location of each ID from all
of the camera views. With X̂k

t,id representing the 3D infor-
mation (x3D, y3D) under k-th camera-view at frame t, the
spatial consistency across multi-view is defined as:

Dspatial(X̂
k
t,id, t, id) = || 1

N

∑
l ̸=k

X̂ l
t,id − X̂k

t,id||2, (4)

as it is worth mentioning that we will exclude the outliers
identified by the function O(·) prior to computing the av-
erage coordinates. These outliers are typically detections
with similar appearances that are likely to be misclassified
as a different identity in our previous single-camera tracking
or anchor-guided clustering. Finally, we use a self-defined
confidence score as a threshold to determine which detec-
tions we will reassign identities to:

confi→j(X̂
k
t,i) = 1−

Dspatial(X̂
k
t,i, t, i)

Dspatial(X̂k
t,i, t, j)

(5)

In addition, if we regard any sudden changes in the lo-
cations of tracks as irregular, we can enhance their consis-
tency over time by employing a straightforward method of
performing a weighted summation of track locations within
a sliding window. This generates a smoothed location esti-
mate that captures the general movement of the track over
time. This method can be highly beneficial in scenarios
where the data contains noise or missing information that
may result in abrupt changes in track locations, which are
not due to actual movements but rather measurement errors.
We can establish temporal consistency by replacing the ini-
tial average coordinate calculation with a weighted variant.
This involves assigning weights to the coordinates based on
their relevance to the sliding time window, and computing
the weighted average instead.

4. Implementation Details
4.1. Dataset

The Multi-camera People Tracking dataset consists of
multiple camera feeds captured in various real-world and
synthetic settings. The real-world data were collected from
a warehouse while the large-scale synthetic data were syn-
thesized using the NVIDIA Omniverse Platform across six
different indoor scenes. The videos are in high-resolution
1080p feeds at 30 frames per second with tracking annota-
tions across camera views. However, it is important to note
that there are 10 and 5 synthetic sets in the training and vali-
dation data respectively while there are 6 synthetic sets plus
an additional real set in the testing data. Our experiments
exclusively used the data from the dataset and did not in-
corporate any external data, whether real or synthetic.
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Dataset Split # of Scenes (Cams) # of Frames # of Dets
Training (syn) 10 (58) 1,065,602 4,375,736
Validation (syn) 5 (28) 504,252 1,950,917
Testing (real) 1 (7) 388,671 -
Testing (syn) 6 (36) 648,360 -

Table 1. Basic information of the Multi-camera People Tracking
dataset presented in 2023 AI City Challenge Track 1. The anno-
tations of the testing data are and will most likely remain private
therefore no accurate number of total detections can be provided.

Furthermore, for the real data in the testing set, we only
employed pre-trained detector, 2D pose estimator, and re-
id feature extractor to demonstrate the effectiveness and
robustness of our proposed multi-camera people tracking
method.

4.2. Evaluation Metrics

We adopt the mean Average Precision (mAP) for
detection-related tasks while using the Rank-1 accuracy for
Re-ID tasks. As for the multi-camera tracking, we will use
the IDF1 score, which measures the ratio of correctly iden-
tified detections over the average number of ground-truth
and computed detections. The challenge submission plat-
form also provided with other MOT-related evaluation mea-
sures, such as IDF1, IDP, IDR, precision (detection), and re-
call (detection). Other MOTChallenge evaluation measures,
such as MOTA, MOTP, MT, and FAR will not only be used
as self-evaluation metrics.

4.3. Camera Calibration

The WILDTRACK and MMP-Track datasets provide
camera calibration files with the pinhole camera model
with both extrinsic and intrinsic parameters for each camera
given. However, in Challenge Track 1: Multi-Camera Peo-
ple Tracking (MCPT), the calibration is not provided with
the dataset but the top-down view map is available for each
subset.

We choose correspondences between the camera-view
frames and the top-down view map to compute the homog-
raphy matrices H for each camera in order to project the
ground-plane location for each target from the 2D image
space to the 3D world space. We adopt the semi-automatic
camera calibration based on the Perspective-n-Point method
to compute the homography matrix for each camera. For
each camera view, we manually select 6 to 12 pairs of points
as input, using the approaches including (1) a Least-Squares
method using all the points, (2) a RANSAC-based robust
method, (3) a Least-Median-of-Squares method or (4) a
PROSAC-based robust method.

4.4. Detector

Synthetic Data. With the high frame rate at 30, the training
and validation sets consist of 1M and 500k high-resolution
frames each from 15 sequences with a total of 6.3M detec-
tions. In order to maintain a balance between the long train-
ing elapsed time and the detection performance, we eventu-
ally decide to conduct our first-stage of pretraining under a
sampling rate of 20 using all the scenes and second-stage of
fine-tuning under a sampling rate of 15 for specific scene.

We use YOLOv7 as our backbone and COCO-pretrained
weights from [12] for initialization. Our first-stage pre-
trained model were trained for 60 epochs with a batch size
of 8 and an initial learning rate of 0.0025. Our second-stage
scene-specific fine-tuned models were trained for 10 epochs
with a batch size of 8 and an initial learning rate of 0.00025.
Real Data. The only real world data in the dataset is
sequence S001 from test split. Although supervised and
unsupervised domain adaptation methods on object detec-
tion [25, 30] show promising results on label-scarce target
datasets. The lack of corresponding real data in training
or validation split make it difficult for us to evaluate the
performance of cross-domain human detection. Therefore
for the purpose of challenge, we directly employ the pub-
lic available pretrained YOLOX x model from [50] train on
CrowdHuman, MOT17, Cityperson and ETHZ.

This allows us to have a benchmark performance for
cross-domain human detection on the dataset, but further
research and experimentation would be necessary to im-
prove the performance of the models on the dataset. It is
also important to note that the lack of real-world data in the
dataset may limit its applicability to certain real-world use
cases, and therefore, collecting more diverse and represen-
tative data would be necessary for the dataset to be more
widely applicable.
2D Pose Estimation. Since there are no 2D pose annota-
tions in the dataset, we directly impose the top-down human
pose estimation method, HigherHRNet, using pre-trained
weights from [15]. The inputs are cropped out based on the
bounding boxes predict from the YOLO detector, then 17
keypoints are estimated under COCO format.

4.5. Re-ID Model

In our multi-camera people tracking system, we have
chosen OSNet as the person re-identification (ReID) model.
The OSNet architecture has shown to be effective in person
ReID tasks using the unified aggregation gate to fuse the
features from different scales and has achieved state-of-the-
art performance on several benchmark datasets.
Synthetic Data. The ReID training data is sampled from
the training and validation set of the 2023 AI City Challenge
Track1 dataset. We random sample each trajectory and di-
vided the samples into training, testing, and query sets. The
ReID dataset used in our training process contains 56,181
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Figure 4. Top: Self-camera calibration visualizing the estimated ground plane (red grid lines) for different camera views for the testing
sequence S001. Bottom: Field of view for different cameras projected on the top-down map for the testing sequence S001 .

Model Re-ID Dataset

OSNet Market1501
OSNet MSMT17
OSNet Market1501 + CUHK03 + MSMT17
OSNet-IBN Market1501 + CUHK03 + MSMT17
OSNet-AIN Market1501 + CUHK03 + MSMT17

Table 2. Pre-trained models used for re-id on the real scene.

training images, 17,027 testing images, and 2,846 query
images from different cameras and scenes. The OSNet is
trained for 60 epochs, Adam optimizer, and 0.0003 learn-
ing rate with data augmentation like random flip. The final
model achieves 97.9% Rank-1 accuracy and 97.6% mAP on
the sampled testing set.
Real Data. Due to the lack of real-world data in the training
set of the challenge, several pre-trained models on other hu-
man Re-ID datasets are used for the multi-camera tracking
in the real-world scenario in the testing set. Three differ-
ent model architectures are used, including OSNet, OSNet-
IBN, and OSNet-AIN. A total of five models pre-trained
on different dataset combinations are used, the model ar-
chitectures and the pre-trained dataset used can be found in
the following table. The features extracted from these mod-
els are directly concatenated together for the use of single-
camera tracking and multi-camera tracking.

4.6. Tracking

Single Camera Tracking. For filtering the detection re-
sults, the synthetic scenario tracking has the high score
threshold of 0.6 and low score threshold of 0.1. For the
real world scenario, the high score threshold is 0.6 while
the low score is carefully fine-tuned in each camera. All the
other parameters used in the single camera tracking is the
default parameters of BoT-SORT. Since the camera is sta-
tionary, the camera motion compensation part is removed to
reduce computational cost.

Mutlil-Camera Tracking. There are several parameters
in the multi-camera tracking system, including the hierar-
chical clustering threshold and the length of majority vote
sliding windows. The hierarchical clustering threshold is
carefully fine-tuned to make sure the anchor cluster results
are accurate. The length of sliding windows should be big
enough to achieve robustness in the voting process, while
it can not be too big so that the ID switch can not be fixed
immediately after ID switch happened in the single cam-
era tracking. In our final system, we use the majority vote
length of 15 to achieve balance between ID assignment ro-
bustness and the ability for ID correction in single camera
tracking. Finally, linear interpolation is performed to all the
tracking results before submission.
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Figure 5. Visualization of our final tracking results on the testing synthetic dataset.

Method IDF1 IDP IDR Precision Recall
Baseline 89.57 91.89 87.36 92.79 88.21
+ FT 92.98 92.01 93.97 92.83 94.81
+ FT + STCRA 93.62 92.90 94.35 93.61 95.08
+ FT + i-STCRA 95.36 95.83 94.88 96.44 95.49

Table 3. The experimental results on the public test set of Track 1.

4.7. Results on AI City Challenge

Several methods with different models and post-
processing are evaluated on the public test set of the
2023 AI City Challenge Track 1 [28] as shown in Ta-
ble 3. Our baseline method is the anchor-guided clus-
tering multi-camera people tracking approach without any
spatial-temporal re-assignment, which achieves an IDF1
score of 89.57%. We then conduct experiments with three
variations of the method: using the Fine-Tuned detector
models for each specific scene (FT), introducing Spatio-
Temporal Consistency Re-Assignment (STCRA) into the
framework, and iterative refinement of the latter technique,
named iterative spatio-temporal consistency re-assignment
(i-STCRA). For i-STCRA, which is our final submission,
we use a k = 3 with an ascending confidence score thresh-
olding and a descending outlier thresholding to ensure that
the re-assignments are stricter after each iteration.

Our experiments demonstrate that each variation leads
to improved performance, with the best result achieved by
the method with spatio-temporal consistency iterative re-
assignment, obtaining an IDF1 score of 95.36, IDP score of
95.83, and IDR score of 94.88 ranking the first-place among
27 teams as shown in Table 4.

5. Conclusion

We proposed a multi-camera people tracking framework
that assigns global ID using anchor-based clustering method

Ranking Team ID Team Name IDF1
1 6 UWIPL ETRI (ours) 95.36
2 9 HCMIU-CVIP 94.17
3 41 AILab 93.31
4 51 FraunhoferIOSB 92.84
5 113 hust432 92.07
6 133 ctcore 91.09
7 34 Team 34 91.04
8 82 PersonMatching 89.81
9 151 AIO2022 VGU 89.68

10 38 NetsPresso 86.76

Table 4. Leaderboard of Track 1 in the AICity Challenge 2023:
Multi-Camera People Tracking. Our proposed method obtained
an IDF1 score of 95.36 ranking in the first-place.

then calibrates them using spatio-temporal consistency with
the self-calibration of cameras. Our approach can success-
fully improve the accuracy of tracking by identifying key
features that are unique to every individual and utilizing the
overlap of views between cameras to predict accurate tra-
jectories without needing the actual camera parameters. Ex-
periments and results on a multi-camera dataset with vari-
ous real and synthetic scenes demonstrated the effectiveness
and robustness of our work. Our proposed method ranked
first on the public test set of 2023 AI City Challenge Track
1 in IDF1.
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