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Abstract

Artificial intelligence-based surveillance system, one of
the essential systems for smart cities, plays a critical role
in ensuring the safety and well-being of individuals. In
this paper, we propose a real-time, low-computation cost
Multi-Camera Multi-Target (MCMT) tracking system for
people, leveraging deep-learning-based trajectory predic-
tion with spatial-temporal information and social informa-
tion. By predicting people’s future trajectories, our al-
gorithm effectively handles object occlusion problems and
maintains accurate tracking while keeping computational
costs low. Our approach addresses object occlusion without
relying on computationally expensive re-identification, and
improves MCMT tracking performance using graph-based
tracklet representation, and spectral clustering. As a re-
sult, our proposed approach is tested on the 2023 Al City
Challenge Track 1 test dataset, automatically generated on
the NVIDIA Omiverse Platform, our method achieves an
IDF1 score of 0.6171 and real-time performance at 27.6
FPS. Code and pre-trained models are publicly available at
https://github.com/yuntaeJ/SCIT-MCMT-Tracking.

1. Introduction

In recent years, the rapid development of artificial in-
telligence (AI) has enabled it to address the challenges of
urbanization and improve the quality of life for citizens. Es-
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Figure 1. Dataset visualization of MCMT tracking. The cen-
tral global map displays the blueprint of the site, with six dis-
tinct camera views (Camera #100, #101, #102, #103, #104, and
#105). MCMT tracking task is allocate a consistent ID to one ob-
ject across the different camera perspectives.

pecially for surveillance systems, where the data from mul-
tiple cameras is vast and manual monitoring of such volu-
minous data is challenging. Consequently, Multi-Camera
Multi-Target (MCMT) tracking becomes an attractive re-
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search problem and plays a crucial role in ensuring the
safety and well-being of individuals in a variety of envi-
ronments, including urban areas, industrial sites, and pub-
lic spaces. In the context of smart cities, the MCMT sys-
tem can be utilized for several purposes, such as monitoring
pedestrian traffic, optimizing transportation systems, and
detecting potential security threats. In addition, MCMT
tracking can be performed through the association of de-
tection and tracking results obtained from Single-Camera
Multi-Target (SCMT) tracking with data from multiple sen-
sors in real-time. The solution of data integration and as-
sociation from multiple sensors in real-time is essential for
leveraging Al in solving urban problems.

MCMT-based people tracking has garnered significant
attention over recent years, with numerous studies [3, 15,19,

,31,33] focusing on this subject, particularly through the
Al City Challenge [23, 24]. Prior research on MCMT has
generally followed the procedures, whereby object detec-
tors are utilized to detect objects, and inter-camera tracking
is performed using motion information and appearance in-
formation of the detected objects for SCMT tracking. Then,
proposed methods in prior research typically involve inter-
camera association through motion and appearance infor-
mation.

However, when objects are overlapped with each other,
or when an object is partially occluded by another obsta-
cle, there are still challenges that are hard to solve in some
cases such as: 1) Appearance information of the differ-
ent objects can be too similar within inter-camera views,
2) Appearance information can vary significantly between
intra-camera views, and 3) Computational cost of the re-
identification (ReID) model. The first case mainly occurs
in industrial environments where people wear similar uni-
forms while working. In such cases, the appearance in-
formation among objects is almost identical, rendering the
RelID model ineffective. The second case arises from the
different angles and detection backgrounds resulting from
the installation positions of cameras. Consequently, the ap-
pearance information extracted by the ReID model from
one view can differ from that extracted by another, making
the association even more challenging. To address these is-
sues, researchers have proposed various solutions, including
advanced detection and RelD models, transformer-based
RelD [14], graph neural networks-based RelID [32], and un-
supervised learning-based ReID [10]. However, these ap-
proaches often come with trade-offs between accuracy and
efficiency, making it challenging to achieve real-time which
is mentioned in the third problem.

In this paper, we propose a real-time trajectory
prediction-based multi-camera people-tracking method for
real-world applications. Our approach uses a lightweight
trajectory prediction model consisting of a few convolu-
tion neural network (CNN) layers without any ReID mod-

els. We were inspired by experiments conducted in Byte-
Track [40], comparing two different types of similarity met-
rics between Intersection-over-Union(IoU) and RelD on the
MOT17 dataset. In fact, the IDF1 [30] score was higher
when ReID was used, but using only IoU resulted in the
highest MOTA [4] score and was about 2.5 times faster than
RelD-based tracking.

Our method builds upon the ByteTrack [40] platform,
which was initially designed for tracking every detection
box with tracklets and utilizes similarities to recover oc-
cluded objects and filter out background detections. We
also utilize Social-Implict [22] for trajectory prediction in
MCMT tracking. We adapt our method to the Multi-Camera
People Tracking synthetic dataset (Fig.1) which is gener-
ated by the NVIDIA Omniverse Platform and demonstrate
its effectiveness in assigning consistent identities to people
across different cameras and maintaining accuracy and in-
ference rate.

Our main contributions can be summarized as follows:

1. We propose a method that utilizes temporal motion
information to predict future trajectories, which en-
hances tracking performance for multi-camera multi-
object tracking systems.

2. We propose a data association method for integrat-
ing single-camera multi-object tracking results across
multiple cameras, leading to improved tracking consis-
tency.

3. We demonstrate that our multi-camera-based object
tracking system runs in real-time with low computa-
tional power, making it suitable for edge devices and
practical real-world applications, such as smart city
monitoring and analysis.

The rest of the paper is organized as follows: an
overview of related work is described in Section 2. Section
3 introduces our proposed framework in detail. In Section
4, we demonstrate sufficient experiments of our method on
track 1 of CVPR 2023 7th AI City Challenge [25]. Finally,
we present the conclusion in Section 5.

2. Related Work
2.1. Object Detection

Object detection, a crucial component of object tracking,
has evolved with the development of one-stage and two-
stage detectors [42]. One-stage detectors, such as YOLO
series [11,27,28], RetinaNet [20], and CenterNet [&], of-
fer a balance between accuracy and speed, making them
suitable for real-time tracking applications. Two-stage de-
tectors, like Faster R-CNN [12], provide higher accuracy
but at the expense of increased processing time. In this
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work, we use the YOLOX [11] model, an anchor-free de-
tector, which simplifies the model and reduces the number
of design parameters that require heuristic tuning, making it
more straightforward during training and decoding phases.

2.2. Person Re-Identification

Person RelD [10,13] also can be used for object tracking,
playing a role in solution for object overlap to compare the
appearance information of objects to ensure that the object
ID does not change before and after overlapping occurs. Re-
cently, the transformer-based model [14] has improved per-
son RelD considerably. However, in our paper, we do not
use RelD model due to its computational demands, instead,
we use a deep-learning-based trajectory prediction model
for leveraging motion information. This approach not only
replaces the traditional role of RelD by solving the occlu-
sion problem but also increases the efficiency of the model,
rate and computational cost.

2.3. Trajectory Prediction

Some researchers [9, 38] utilize deep-learning-based tra-
jectory prediction for object tracking. Recently, trajectory
prediction has emerged as a critical research area, with
applications spanning autonomous vehicles, robotics, and
crowd analysis, among others. Several approaches have
been proposed to address this challenge, including deep
learning-based techniques such as Long Short-Term Mem-
ory (LSTM) networks [2, 34], Convolutional Neural Net-
works (CNNs) [22], and Graph Neural Networks (GNN5)
[18,21]. In trajectory prediction research, it is common to
incorporate three types of information: scene information
obtained from segmenting the background map, spatial-
temporal information derived from individual movement
paths, and social information that considers interactions be-
tween people. This comprehensive approach helps to cre-
ate more accurate and realistic trajectory predictions by ac-
counting for environmental factors, personal preferences,
and interpersonal dynamics. In our research, we utilize a
Social-Implicit [22] based on CNNs, which only take into
account spatial-temporal information and social informa-
tion. This approach allows us to focus on the key factors
influencing human movement and interactions, leading to
effective trajectory predictions.

2.4. Single-Camera Object Tracking

Single-Camera object tracking methods can be divided
into tracking-by-detection and joint-detection-tracking
methods. The former, such as SORT [5] and DeepSORT
[37], detect objects first and then associate them based on
appearance and motion cues. These methods have been
dominant in single-camera multi-target tracking tasks, but
are limited in accuracy. The latter, such as FairMOT [41]
and ByteTrack [40], incorporate appearance embedding or

motion prediction into detection frameworks, offering com-
parable performance with low computational costs. How-
ever, there can be competition between different compo-
nents that lower the upper bound of tracking performance.
Recently, BotSORT [!] with RelD surpassed ByteTrack
by utilizing both motion and appearance information. We
follow the ByteTrack platform replacing the Kalman Fil-
ter [16] algorithm to a deep-learning-based trajectory pre-
diction model and add the Hungarian Algorithm [17] for ID
matching based on IoU distance.

2.5. Multi-Camera Object Tracking

Multi-Camera object tracking research has progressed
significantly by employing techniques such as object de-
tection, appearance feature extraction for RelD, and inter-
camera tracklets matching. The main issue about MCMT
is a tracklets clustering problem and focuses on reducing
the search space. Hierarchical trajectory composition ap-
proach [39] that utilizes multiple mutually complementary
2D and 3D cues, such as ground occupancy consistency,
appearance similarity, and motion coherence. Others sug-
gest Tracklet-Plane matching [26] approach enhances mul-
tiple object tracking by organizing temporally-related ob-
ject detections into planes and reducing confusion among
similar tracklets. Graph-based matching [7] approach cre-
ates a graph model between multiple tracklets from differ-
ent cameras, optimizing for MTMC tracking solution. Our
research uses a graph model to represent the tracklets from
multiple cameras, then Spectral Clustering [35] is executed
on the graph for inter-camera tracklets matching.

3. Methodology

We propose a real-time and computation-effective
MCMT tracking of people. Firstly, we detect bounding
boxes (bbox) and keypoints using an object detector from
every single camera. Then, we can obtain spatial informa-
tion about the position of each object and temporal infor-
mation from continuous frames captured by the cameras.
Our method also considers social information that can affect
each object by taking into account the spatial-temporal in-
formation between the objects. Finally, we integrate track-
lets from different single-camera in real-time as an online
method, which utilizes only motion information for MCMT
tracking.

3.1. Object Detection

In order to perform object tracking, object detection re-
sults are first required. We utilized YOLOX [ 1] model,
which is an anchor-free based object detection model based
on the 1-stage method, to enable the model to run in real-
time with low computation cost. The advantage of the
YOLOX model over other object detection models is its
ability to achieve high detection accuracy when objects are
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Figure 2. Proposed Pipeline. Our MCMT tracking is performed in the following sequence. First, for each camera with different views,
objects are detected through detection, and trajectory prediction is performed using the spatio-temporal info and social info of the detection
results. Then, Single-Camera Tracking is performed based on the IoU Distance. Next, the tracklets are projected onto the global map, and
finally, the tracklets are associated with each other using motion features-based spectral clustering, completing the MCMT process.
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Figure 3. Trajectory Prediction Process. Where D is the dimen-
sion of input(x-y coordinates), N is the number of objects, and k
is the sequence of motion information. The first step involves ex-
tracting spatio-temporal information for individual objects, while
the second step focuses on extracting spatio-temporal information
for multiple objects, which represents social information. By con-
sidering both local and global weights, we can effectively predict
future trajectories. Redraw from Social-Implicit [22].

overlapped each other. However, the most important thing
in object detection tasks is the quality and diversity of train-
ing data, since a well-curated and representative dataset is
crucial for achieving optimal performance, regardless of
the chosen model architecture. As a result, during this
challenge, we refined the training dataset provided by the
NVIDIA Omniverse platform. This was necessary because
the automatically generated dataset contained noisy data,
including occluded objects or partially visible body parts
like heads or legs only.

Furthermore, in addition to detecting bounding boxes,
we also use a person keypoints detection model for estimat-
ing the position of a person’s ankles. If the human keypoint

detection results show only up to the waist or shoulder area
instead of the feet, we can estimate the position of the legs
by utilizing the proportional relationship between the de-
tected keypoints. In order to run the model in real-time, we
used the YOLOV7 [36] pose estimation model, and since
the keypoint training dataset was not provided in the com-
petition dataset, a pre-trained model is utilized.

3.2. Trajectory Prediction

In order to assign IDs to detected objects in consecu-
tive frames, it is essential to have feature values for the re-
spective objects. In this paper, we propose using a deep-
learning-based trajectory prediction model to perform this
task based on the IoU distance values between motion fea-
tures. We propose a novel approach to address the object
occlusion problem in object tracking tasks by using deep
learning-based trajectory prediction instead of ReID mod-
els, possible for real-time application. We utilize the Social-
Implicit [22] model for this purpose, which performs trajec-
tory prediction using both spatial-temporal information and
social information.

Spatio-Temporal Information, based on motion infor-
mation of an object in space during continuous frames, sig-
nificantly impacts regression tasks with sequences as in-
puts and outputs. While observing from frame 1 to Zqps,
the motion states of one object, denoted as my,.q,,
{mg|t € [t1,- -+ ,tovs]}» where m; € RP*¥S_ The symbol
D represents the dimension of the input motion state. In

5402



this context, it pertains to the x-y coordinates of an object’s
position, making D = 2. From the observed motion infor-
mation, firstly we extract the key motion information from
continuous frames. Therefore, we cluster m; based on the
pre-defined cluster size 7, the number of near frames. When
clustering, we apply Fast Fourier Transformation (FFT) for
extracting key motion information to remove noise. Per-
form the FFT on the clustered m = (mq, ma, ..., m;) :

F.(z) = FFT(z), F,(y) =FFT(y) (1)

where x, y are x-y coordinates at m;. Then define the bi-
nary filter, which removes high-frequency components and
keeps only the low-frequency components:

Filter:{f,»|fi:{1’ leST.’T} )
0, otherwise

where f; is the binary value of the filter array at index i,
T is the total number of frequency components same as the
pre-defined cluster size, and r is also a pre-defined param-
eter about cutoff frequency ratio between 0 and 0.5. Then
apply the filter by element-wise multiplication. This op-
eration removes the high-frequency components from the
transformed data. Perform the Inverse Fast Fourier Trans-
form (IFFT) on the filtered frequency data to obtain the fil-
tered time-domain data (x-y coordinates). Since the result
of the IFFT can be complex, we take the real part of the
result:

filtered_x = real(IFFT(F,(x) - Filter)

filtered_y = real(IFFT(Fy(y) - Filter) ©)
where filtered_r and filtered_y are the key motion in-
formation of one cluster. After clustering, each object’s mo-
tion information can express to m; € RP*k [ is from the
length of obs divided by 7. Fig.3 illustrated clustered mo-
tion information of the single object. To extract the spatio-
temporal information of a single object we use 2 CNN lay-
ers as follows:

Utear = ReLU(Conv1D(m,)

Vres = Conv1D(my)

Uspatial = Ufeat T Ures X
Vres = Conv 1D (Vgpagial)

Uspatio-temporal — COHVID(Uspatial) + Vres

where Uspatio-temporal 1 Spatio-temporal information of one
object, which would be utilized for trajectory prediction
fused with social information explained in the next section.
Social information refers to the data related to the inter-
actions and relationships between multiple objects within a

given environment. The motion information of multi ob-
jects can be expressed to M; € RP*N*F where N means
the number of objects. To extract the relationships between
multiple objects we execute 2D convolution to M;:

Vieat = ReLU(Conv2D(M;)

Vies = Conv2D (M)

Vipatial = Vieat + Vies )
Vies = Conv2D(Vipagiar)

Vipatio-temporal = Conv2D(Vipatial) + Vies

where Vpagio-temporal 18 social information about total N
objects, and it could be fused with each object’s spatio-
temporal information to predict the future trajectory:

V=wy vg+w-u (6)

where w, and w; are weights of global and local, respec-
tively, vy and v; are spatio-temporal information of global
and local, and V represents the predicted future positions of
objects, Mtk+1:tk+pred~

Trajectory Prediction based Tracking utilizes motion
information of target objects. Recently, ByteTrack [40] pro-
posed an object detection threshold-based two-step match-
ing algorithm for tracking every detection box with tracklets
and utilizes similarities to recover occluded objects. We ap-
ply the ByteTrack platform replacing the Kalman Filter [16]
algorithm-based results to V' from our proposed method.
Based on the predicted future positions, V', we can calcu-
late IoU distance. The IoU distance is an effective measure
for evaluating the similarity between two bounding boxes,
as it quantifies the ratio of the intersection area to the union
area of the boxes. In our method, we predict the future po-
sitions of the objects and compute the IoU distance between
the predicted and actual bounding boxes in the subsequent
frames. The IoU distance is then utilized as a cost function
for associating objects across frames, which is given by the
following equation:

area(AN B)
foU(4,B) = area(AU B) ™
where A and B are the bounding boxes of two objects
being compared. To ensure proper assignment of object
identities during occlusions, we employ the Hungarian al-
gorithm [17] for data association, which is a combinatorial
optimization algorithm that solves the assignment problem
in polynomial time. Given a cost matrix representing the
IoU distances between the predicted and actual bounding
boxes, the Hungarian algorithm finds the optimal assign-
ment that minimizes the overall cost. The cost matrix can
be formulated as follows:

Cij =1- IOU(P“ DJ) (8)
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Figure 4. Visualization of trajectory prediction based match-
ing when object occlusion occurs. First, our model predicts the
future trajectories for each object. Then, after overlap occurs, we
check whether the ID is properly maintained without changing.

where Cj; is the cost associated with assigning the pre-
dicted bounding box F; to the detected bounding box Dj;.
The Hungarian algorithm operates on this cost matrix to
find the optimal assignment that minimizes the overall cost,
which can be represented as:

mjnz ZCiinj )

i=1 j=1

subject to the constraints:
m

jiAM:L > Ay=1 (10)
i=1 j=1

where A;; is a binary variable indicating whether the
predicted bounding box P; is assigned to the detected
bounding box Dj, and n and m are the number of pre-
dicted and detected bounding boxes, respectively. By em-
ploying the Hungarian algorithm, our method ensures cor-
rect identity assignment for objects even after occlusions,
which significantly improves the tracking consistency in
multi-camera systems.

3.3. Multi-camera Object Tracking

We suggest MCMT tracking system based on SCMT
tracking results. Our approach involves extracting track-
lets about all objects from each camera view, projecting
them onto a global map, and creating a graph representa-
tion based on each tracklet’s motion features. Subsequently,
we apply spectral clustering for tracklet association, as ex-
pressed in Fig. 2.

3.3.1 Tracklet Projection

We aim to project SCMT tracklets onto a global map using
a homography matrix. The homography matrix is utilized
to establish a relationship between the coordinates in the

camera frame and the global map, allowing us to extract
global tracklet positions from the SCMT tracklets. Given
a point p} in the camera frame and its corresponding point
p5 in the global map, we compute the homography matrix
H and apply the transformation as follows:

py =H [¢; by 1] (11)

where ¢, and b, represent the center and bottom y-
coordinate of the bounding box, respectively. Finally, we
normalize the resulting point p} to extract the global track-
let position in the global map:

2/
p2= o (12)

By employing this method, we can effectively project
SCMT tracklets onto a global map, enabling a comprehen-
sive analysis of objects’ movements in a unified coordinate
system.

3.3.2 Tracklet Association

We elaborate on the graph-based tracklet representation and
the association process using spectral clustering. We first
construct an affinity graph G = (V, E), where V denotes
the set of tracklets and F represents the weighted edges
based on motion features between tracklets. The affinity
matrix A is defined as:

|F; — Fy)?

Aij = eXp(— 2 ) (13)

g

where F; and I represent the motion features of track-

lets 7 and j, and o is a scaling factor. Spectral clustering is

applied to partition the affinity graph into disjoint clusters.
To do this, we compute the graph Laplacian L:

L=D-A (14)

where D is the degree matrix, with D;; = > j Ajj.
Then, we find the k smallest eigenvectors of L to form a ma-
trix U € R"*¥ where n is the number of tracklets. Next,
we normalize the rows of U to form a matrix 7"

Uij
T, = 15

Finally, we apply the k-means algorithm to cluster the
rows of T into k clusters, where each cluster corresponds to
a unique object tracked across multiple cameras. This ap-
proach enables a robust and efficient association of tracklets
across different camera views, resulting in improved track-
ing performance in multi-camera systems.
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Figure 5. Visualization of SCMT tracking according to object occlusion. Frame ¢; shows the situation before objects overlap, t2 shows
the moment when the overlap occurs, and frame ¢3 shows the situation after the overlap has taken place. (a) Our method demonstrates
solving the object overlapping issue that (b) Bytetrack [40] could not resolve previously, while maintaining real-time processing speed

without RelD.

4. Experiments
4.1. Dataset

2023 Al City Challenge [25] dataset for track 1, which
includes data from 1,440 minutes of video captured by 129
cameras across 22 indoor sites, with 10 sites for training, 5
for validation, and 7 for testing. The dataset contains both
real-world data from various settings such as warehouses
and buildings, as well as synthetically generated data from
multiple indoor environments created using the NVIDIA
Omniverse Platform. All video feeds are high-resolution
1080p at 30 frames per second. For object detection train-
ing, we preprocessed the training dataset, extracted images,
and filtered out noisy images based on certain rules, result-
ing in 15,539 images with 61,314 bounding boxes. One of
the difficulties with the provided dataset is that almost every
frame and object is labeled, and in some cases, the object
size is so minute that it appears impossible for humans to
recognize. As a result, we perform extensive preprocessing
on all frames and objects, filtering out minute and difficult-
to-recognize objects using a threshold. For trajectory pre-
diction training, we used the full train dataset and employed

an FFT-based method for key motion information extrac-
tion.

4.2. Evaluation Metric

The IDF1 score evaluates the multi-camera object track-
ing system by measuring trajectory consistency within the
camera network, calculated as:

2-IDTP
IDF1 = 16
2-IDTP+ IDFP+ IDFN (16)
where IDTP is the count of true positive identities,
IDFP is the quantity of false-positive identities, and

IDF N is the total of false negative identities.

4.3. Implementation Detail

The training process was conducted on two NVIDIA
A6000 GPUs, and the testing was performed on one A6000
GPU. PyTorch 1.11.0 was used as the deep learning frame-
work. For object detection, we used YOLOX [ 1] to gener-
ate bounding boxes. We used the COCO-pre-trained model
with a threshold of 0.1 and trained it for 300 epochs with a
learning rate of 0.001 and a batch size of 8 on resized im-
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ages (1333x800 pixels). We trained the model using the
MMDetection [6] toolbox. For keypoint estimation, we di-
rectly used the YOLOV7 [36] pose-estimation model with
the pre-trained model. Finally, for the trajectory predic-
tion, we use Social-Implicit [22] model, and trained it for 50
epochs with a learning rate of 0.01 and a batch size of 128.
We utilize ByteTrack [40] for SCMT tracking and based on
that result, finally, we run our MCMT tracking system for
this challenge.

4.4. Quantitive Result

We test our proposed MCMT tracking system on the
2023 AI City Challenge [25] test dataset, and the results
can get an IDF1 score of 0.6171, shown in Table 1. We also
compare the inference rate based on the test set, shown in
Table 2. Our method demonstrates the advantage of incor-
porating trajectory prediction for object tracking, achiev-
ing real-time performance at 27.6 FPS. This is faster than
other methods that use RelD, such as DeepSort and BotSort,
which operate at 15.6 FPS and 13.6 FPS, respectively. A
key benefit of our proposed method is its ability to address
the object occlusion problem without relying on computa-
tionally expensive RelD techniques. By predicting object
trajectories, our algorithm can effectively handle occlusions
and maintain accurate tracking, while keeping the computa-
tional cost relatively low. Table 3 proves that our trajectory
prediction (TP) technique can address the issues present in
the baseline ByteTrack model. Finally, when we add an
FFT component to our method, resulting in an IDF1 score
of 0.6171.

Table 1. The results of 2023 AI City Challenge Trackl.

Rank Team IDF1
1 Team 6 0.9536
2 Team 9 0.9417
3 Team 41 0.9331
13 Team 20 (Ours) 0.6171
14 Team 64 0.4660
15 Team 191 0.4546

4.5. Qualitive Result

Figure 5 demonstrates that our proposed method is capa-
ble of resolving the ID switching issue that occurs in over-
lapping situations when using the ByteTrack [40]. Up until
now, many studies have addressed this problem by employ-
ing RelD-based solutions such as BotSORT [!]. However,
our research shows that by utilizing trajectory prediction, it
is possible to solve this issue without the need for a RelD
model, thereby maintaining real-time inference speeds and
enhancing object tracking performance.

Table 2. The comparison of SCMT tracking models.

Model module FPS
Motion RelD TP

SORT [5] v 33.2

DeepSORT [3] v v 15.6

ByteTrack [40] v 33.1

BotSORT [1] v v 13.6

Ours v v 276

Table 3. The performance of each proposed module.

Model IDF1 IDP IDR
baseline 0.4752 0.4989 0.4537
+ TP 0.5940 0.6156 0.5738
+ TP + FFT (Ours) 0.6171 0.6392  0.5965

5. Conclusion

In this paper, we have presented a novel Multi-Camera
Multi-Target (MCMT) tracking system based on people’s
future trajectories prediction. Our approach effectively han-
dles occlusions and maintains accurate tracking while mini-
mizing computational costs by incorporating deep-learning-
based trajectory prediction with spatial-temporal informa-
tion and social information, as well as graph-based tracklet
representation and spectral clustering.

Our proposed system has been evaluated on the 2023
Al City Challenge [25] Trackl test dataset and demon-
strated its superiority over baseline models and ReID-based
methods such as DeepSort and BotSort, achieving an IDF1
score of 0.6171 and real-time performance at 27.6 FPS.
The use of trajectory prediction techniques has proven ef-
fective in resolving ID-switching issues in overlapping sit-
uations, which have traditionally been addressed by em-
ploying RelD-based solutions. Furthermore, our real-time
MCMT tracking method, which utilizes trajectory predic-
tion, can play a crucial role in Al-based smart cities by
proactively predicting and making decisions for various sit-
uations that may arise in real-world scenarios.
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