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Abstract

Many  state-of-the-art  solutions for vehicle re-
identification (re-id) mostly focus on improving the
accuracy on existing re-id benchmarks using additional
annotated data. To balance the demands of accuracy,
availability of annotated data, and computational effi-
ciency, we propose a simple yet effective hybrid solution
empowered by self-supervised learning which is free of
intricate and computationally-demanding add-on atten-
tion modules often seen in state-of-the-art approaches.
Through extensive experimentation, we show our ap-
proach, termed Self-Supervised and Boosted VEhicle
Re-Identification (SSBVER), is on par with state-of-the-art
alternatives in terms of accuracy without introducing
any additional overhead during deployment. Addi-
tionally, we show that our approach, generalizes to
different backbone architectures which accommodates
various resource constraints and consistently results in
a significant accuracy boost. QOur code is available at
https://github.com/Pirazh/SSBVER.

1. Introduction

The problem of vehicle re-id is a retrieval task in which a
query vehicle image is presented and matches are retrieved
from a large gallery set. The gallery is composed of vehi-
cle images captured at different times of day, from traffic
cameras mounted at different locations and under varying
weather conditions. Vehicle re-id task becomes quite chal-
lenging as a given vehicle’s appearance can drastically vary
under different viewpoints, camera and lighting conditions.
On the other hand, many vehicles can appear similar due to
relatively small variations in vehicle manufacturers, mod-
els, trims, years and colors. To address this task and associ-
ated challenges, discriminative visual representation learn-
ing via Deep Neural Networks (DNNs) has become the de
facto approach. Note that vehicle re-id is objectively differ-
ent than vehicle classification task where the goal is to iden-
tify a vehicle’s model rather than its instance. Therefore,
Vehicle re-id requires more fine-grained features, particu-

larly within local regions, to highlight differences in similar
looking vehicles. As a result, several research works have
been undertaken to integrate attention mechanisms into the
DNNs’ pipeline in both implicit [17, 41, 44] and explicit
ways [11, 18]. While these approaches are successful in
improving the state-of-the-art, they often require rich data
annotations and demand heavy computation that raise scal-
ability issues. The burden of deploying such models in real-
time applications such as city-scale multi-camera tracking
quickly becomes evident as hundreds of traffic cameras
should be processed simultaneously under limited computa-
tional resources. Consequently, it is paramount to design a
vehicle re-id module that effectively learns discriminative
representations without relying on the existence of addi-
tional annotations beyond ID labels, e.g. vehicle’s manu-
facturer, model, color, key-points or parts’ location.

Recently, there have been great strides in the area of Self-
Supervised Learning (SSL) particularly for the task of im-
age classification to learn robust embeddings without us-
ing human-generated labels. As a result, the performance
gap between self-supervised and fully-supervised learning
has become smaller. In addition, SSL methods outper-
form mainstream supervised pretraining when transferred
to down-stream tasks such as object detection and demon-
strate better data efficiency [3, 5,9, 12]. This has motivated
us to explore the viability of recent self-supervised learning
techniques in the context of vehicle re-id. A great number
of recent works in SSL classify [8] or discriminate [5, 12]
each image as a separate class known as Instance Classi-
fication and Instance Discrimination respectively via con-
trastive learning. While these approaches yield robust rep-
resentations for the image classification, they cannot be ex-
tended to object re-id where there are multiple images corre-
sponding to the same ID which should not be discriminated
against one another. To address this issue, supervised con-
trastive learning [2 1], a generalization of Triplet loss [43],
has been proposed so that similar images are considered as
positives during training. This is identical to the current
practice in object re-id which employs triplet loss as stan-
dard. In contrast, the recent SSL method [4] casts the SSL
as self-distillation and establishes the connection between
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Knowledge Distillation and SSL in the absence of labels
without performing any discriminatory task among images.
As we discuss in section 3, this creates the opportunity to
re-formulate a novel training framework to enrich the learn-
ing of a re-id model with the self-supervisory signal and
encourages a simple baseline to build local to global corre-
spondences, without any explicit attention mechanism. Our
contributions can be summarized as the following:

1- Introduction of a novel training framework for vehicle
re-identification that is a hybrid of supervised and self-
supervised objective functions.

2- Presenting a simple, efficient and accurate design with
no intricate attention modules that requires no extra la-
bels for training and no extra overhead for inference.

4- Achieving state-of-the-art results for VeRiWild dataset
in terms of Cumulative Match Curve metrics.

3- Advocating for the joint optimization of accuracy and
efficiency when designing vehicle re-id systems to ac-
count for deployment constraints.

The rest of the paper is organized as follows. Section 2
reviews recent works in vehicle re-id. Proposed method and
its detailed architecture is discussed in section 3. Through
extensive experimentation in section 4, we show the effec-
tiveness of our approach with different backbone architec-
tures on multiple challenging vehicle re-id benchmarks, and
obtain state-of-the-art in terms of accuracy-efficiency trade-
off. We also highlight the benefits of our model in a multi-
camera vehicle tracking scenario. In section 5 we further
analyze our method and validate our design choices. Sec-
tion 6 concludes the paper.

2. Related Work

Vehicle re-id has recently attracted a significant amount
of attention thanks to its critical role in the development of
smart transportation technologies. Here we review a num-
ber of selected works that has been published recently.

Learning discriminative features for vehicles demands
curated datasets of vehicles’ images of diverse makes, mod-
els, colors with high number of identities. Several datasets
have been introduced over the past several years which con-
tributed to the current landscape of vehicle re-id. Among
these are VeRi [25], VehicleID [24], VeRiWild [30], Vehi-
clelM [10] and CityFlow Re-id [40]. Each of these has
different attributes and variations in terms of scale and reso-
lution; however, only VeRi, VeRiWild, and CityFlow Re-id
capture vehicles from diverse views that is more represen-
tative of unconstrained vehicle re-id. Since vehicle re-id is
concerned with subtle cues and small-scale details on ve-
hicle images, [42] annotated images in VeRi dataset with
view point and key-point information such as the location

of logo, and head and tail lights. This helps to devise su-
pervised attention models to adaptively extract local fea-
tures based on vehicle’s orientation [18]. Similarly, [11]
annotated images in VehicleID dataset with parts’ bounding
box information to detect and extract fine-grained features.
While having extra annotations help to learn where to look
for discriminative information, it is not scalable due to the
increasing number of new vehicle models year in year out.
To address this issue, a variational auto-encoder model was
developed in [19, 20, 36] to generate coarse vehicle images
and obtain self-supervised saliency maps which highlight
identity-dependant information to either adjust images di-
rectly or excite intermediate feature maps of an underly-
ing DNN, inspired by the idea of Curriculum learning [2].
Similarly, [23] proposed a self-supervised model based on
the pretext task of image rotation to learn geometric fea-
tures. A jigsaw patch module for vision transformers was
introduced in [15] which forces local features to be glob-
ally distinguishable. As orientation is one of the factors to
negatively bias the learned embeddings, [32] and [1] pro-
pose to learn view-aware aligned features and to disentan-
gle orientation from visual features respectively. To extract
region-specific features, [46] introduced a heterogeneous
relational graph-based model to encode the relation of the
different local regions into a unified representation. These
methods are mainly designed to enhance the re-id accuracy;
consequently, efficiency and large-scale deployment has not
been considered as discussed in 4.6 section. Therefore, we
present SSBVER, a hybrid learning approach that employs
the power of self-supervision to boost vehicle re-id perfor-
mance while preserving the computational complexity and
inference time of a baseline model.

3. Method

In this section we discuss the details of the proposed
Self-Supervised Boosted Vehicle Re-identification pipeline
shown in Fig. 1.
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Figure 1. Self-supervised and Boosted Vehicle Re-identification.
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3.1. Backbone Feature Extractors

Inspired by recent SSL methods, our approach benefits
from a student and teacher pairing, where both have iden-
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Figure 2. Re-Id Head: Extracted visual features x from the stu-
dent model f, are passed through a bottleneck layer implemented
by 1-dimensional batch normalization to obtain feature x. Subse-
quently, classification logits z are obtained from a linear classifier.
Soft-margin Triplet and Cross Entropy loss functions constrain x
and z respectively.

tical architectures. The choice of architecture is arbitrary
and can be selected based on the application and resource
constraints. In this work, we adopt multiple candidate ar-
chitectures including ResNet [13], ResNet IBN [35], Vi-
sion Transformer (ViT) [7], SWIN Transformer [26], and
ConvNext [27] to study the generalization capability of SS-
BVER. The teacher model is considered a momentum en-
coder as it is a low-pass version of the student via taking
the exponential moving average over the course of train-
ing iterations with the momentum parameter \, i.e. 6;' =
AT+ (1 - A)Osi where 0;, 0, and ¢ are teacher and
student model parameters and the current training iteration
respectively. Note that both models are initialized from the
same set of ImageNet pre-trained weights, i.e. 69 = 9.

3.2. Re-Identification Head

SSBVER uses the re-id head to constrain the extracted
features x by the student model so that those corresponding
to the same identity are embedded close together while the
ones belonging to different identities kept apart. This goal
is realized by employing Triplet loss in conjunction with
Cross Entropy loss and results in a strong baseline model as
demonstrated in prior works [14,19,31,36]. Fig. 2 outlines
the inner workings of the re-id head. The soft-margin triplet
loss with batch-hard sampling method is computed via the
following formulation:

L= Z log(1 + exp(prengé) l[%a — %p][,
a€b; (1)
- nmh(la) |[xa = Xall5))

In Eq. 1, b; denotes the i‘" training batch. In addition, a,
P(a) and N (a) are an anchor sample and its correspond-
ing positive and negative sets defined within b;. Once the
representation vector z € R? is computed, it is passed to
a batch normalization layer to obtain X. Authors in [31]
showed that employing this bottleneck layer helps the con-
sistency of Triplet and Cross Entropy loss functions in the
context of re-id. Afterwards, the linear classifier computes
the class logit vector z € R¥ (k is the number of training
IDs) through linear operation z = Wx + B. W € RFx¢
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Figure 3. Self-Supervised Learning Head: Image I is randomly
augmented using T and T transformations and passed to student
and teacher networks followed by multi-layer perceptrons to ob-
tain g and g prediction vectors. After applying sharpening and
centering to the teacher’s output to avoid collapse, the cross en-
tropy of student and teacher predictions is minimized.

Cross Entropy Loss

and B € RF are the weight matrix and bias of the classi-
fier correspondingly. The classification loss is computed as
follows:

7
ei

k
Lo==) yilogii, @ = )

k i
Jj=1 (Z'rrLZI € m)

g]; is the prediction probability that i** sample belongs to
the class j. In addition, we employ label-smoothing as a
regularization method following the work of [39]. There-
fore, rather than considering the ground-truth vector as a
one-hot encoding vector, it is computed as:

k—1 C (s

T otherwise

where ¢ € [0,1] and k(i) are a hyper-parameter and the
class label of the i*" sample. While optimizing Triplet and
Cross Entropy classification loss functions on the extracted
representations results in a strong and efficient baseline re-
id model, incorporation of an attention mechanism to fo-
cus on local regions of vehicle images and extract subtle
cues can further improve the performance. However this is
achieved at the expense of increased complexity and com-
putation time that can be prohibitive when applied to large-
scale and real-time scenarios. To overcome this shortcom-
ing with the goal of minimizing inference complexity while
enjoying enhanced accuracy, we incorporate an SSL objec-
tive in the training phase to encourage local to global cor-
respondence and to mimic an attention mechanism. This is
discussed in the following section.

3.3. Self-Supervised Learning Head

To improve the performance of re-id without the incor-
poration of any additional annotation on vehicles’ parts and
attributes, we propose to apply self-supervised optimization
objective based on self-training and knowledge distillation.
[4] presents a self-supervised learning paradigm with multi-
crop strategy [12] in which semantically rich representa-
tions can be learned and demonstrates competitive perfor-
mance when transferred to down-stream tasks. Compared to
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contrastive learning-based methods, knowledge distillation-
based approach does not solve the instance discrimination
task and therefore does not rely on any negative sampling;
this is a fitting choice for re-id as each identity is represented
by multiple images that should not be discriminated against
each other.

After sampling an image I, we create two sets of views
on the fly, namely V,(I) and Vi(I), where V,(I) =
{I,,,1,,} contains two different global views and V;(I) =
{Ii;,...,1;, } has L local views of image I. Images in
Vy(I) are generated by T; with randomly cropping a re-
gion with random area ratio a4, padding zeros on the edges,
flipping horizontally, jittering colors and erasing a random
patch to simulate occlusion [16]. To generate images in
Vi(I), Ts crops a random portion of image I with random
area ratio of a;, randomly flips in horizontal direction and
jitters color. The teacher only processes images in V(1)
while the student model is fed by images in both sets i.e.
Vy(I) UVi(I). As shown in Fig. 3, when x, = f4(Ts(1))
and x; = f¢(Ty(I)) are obtained, they are mapped to an-
other space using multi-layer perceptrons (MLP) with four
hidden layers, and Gaussian Error Linear Units (GELU) to
yield E-dimensional vectors gs and g;. A common prob-
lem that is associated with SSL-based approaches with a
pair of networks, is the issue known as collapse where both
encoders learn to output trivial embeddings irrespective of
the input images to minimize the respective loss function.
There has been a number of techniques to prevent collapse
including contrastive learning with negative pairs [5], stop-
gradient [6], clustering [3], momentum encoder [9], and
redundancy reduction of the learnt representation’s dimen-
sions [45]. Knowledge distillation objective is optimized
by minimizing the cross entropy loss between student and
teacher networks’ output so that student can match teacher’s
prediction. While it uses momentum encoder and stop gra-
dient techniques to battle collapse, collapse can still occur
in the form of either outputting uniform predictions or hav-
ing a single dimension dominating others. To counteract,
centering and sharpening of the teacher’s outputs are pro-
posed [4]. In centering, an exponential moving average c
of teacher’s predictions is recorded and subtracted from its
predictions to prevent the domination of a single dimension.
On the other hand, a relatively small temperature is applied
to the teacher network to battle the uniformity of the out-
puts. Sharpening and centering operations attempt to estab-
lish a balance in which collapse does not occur. This cross
entropy loss is calculated with the following formulation:

> pi(D)log(pi(I) ()

i=1

L DY

revil) p oy v, 1 A1

exp(g! (f(I))/7s)
S, exp(g? (f-(1)/72)

Where pi(I') = and pi(I) =

exp((!]:(_ft(f))—ci)/ﬂ)
325 exp((gi (fe(1)—c?) /)
teacher’s temperatures. ¢’ is the i element of the vector ¢
that is the exponential moving average of g;. Note that the
cross entropy is only calculated when student and teacher
process different augmentations of an image, i.e. [ l #1.

Also 74, 7; are student and

3.4. End-to-End Training

We first establish a baseline model setup in which only
L. and L; are used to train the student. The teacher which
is the exponential moving average of the student model over
the training iterations is used for evaluation. Afterwards, the
setup of the SSBVER outlined in Fig. 1 is used for model
training and the total loss function is calculated as follows:

Etotal = )\c‘cc + )\t‘ct + )\s‘cs (5)

Coefficients ., \¢, and A, are the weights corresponding to
each of the loss terms and are empirically set. We empha-
size that gradients of the loss functions in Egs. 4, 2, 1 are
computed with respect to only student’s parameters 0.

4. Experimental Results

To evaluate SSBVER method and understand how much
it can benefit the re-identification without introducing any
additional annotations and overhead during test time, we
use the three widely used VeRi, VehicleID and VeRiWild
datasets. Additionally, we use ResNet, ResNet IBN, ViT,
SWIN and Convnext backbone models to study the extent to
which SSBVER generalizes to different architectures. Here
we discuss vehicle re-id datasets, evaluation metrics, imple-
mentation details, and present our experimental results.

4.1. Datasets

VeRi is the first multi-view vehicle re-id dataset. It is
regarded as a large-scale dataset; however, compared to the
size of more recent datasets it is relatively small. The train-
ing and testing sets contain 37,778 and 13,257 images of
576 and 200 vehicle identities respectively.

VehicleID is a comparatively larger benchmark as it
contains 113,346 (108,417) images of 13,164 (13,103)
unique vehicles in the training (testing) set. In contrast to
VeRi, images in Vehicle ID are mainly captured from ei-
ther front or rear of vehicles which impacts the dataset’s
representativeness of the real-world scenarios. For evalua-
tion, multiple splits of different sizes are created from the
original test set and referred to as small, medium and large
containing 800, 1600, and 2400 unique identities.

VeRiWild with 416, 314 images of 40, 671 individual iden-
tities is the largest multi-view vehicle re-id dataset in the
wild that is captured via 174 traffic cameras and have varia-
tions in lighting and weather conditions. The train set con-
tains 277,797 images of 30,671 identities and test set is
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split into three small, medium and large sets of 3000, 5000,
and 10, 000 unique identities.

4.2. Evaluation Metrics

Mean Average Precision (mAP) and Cumulative
Match Curve (CMC) are widely adopted in the re-id com-
munity to measure the success of re-id systems. Upon re-
ceiving a query image, visual representations are computed
for query and the entire gallery. Afterwards, a distance mea-
sure, e.g. Euclidean or Cosine, is used to compute the simi-
larity scores and rank the gallery. mAP shows how well the
gallery is ranked with respect to the query image. All the
corresponding true matches to the query identity participate
in the calculation of mAP. CMC @ £ yields the probabil-
ity that there exists at least one correct match to the query
image in the top k items in the ranked gallery.

4.3. Implementation Details

In the baseline experiments we record the exponential
moving average with momentum parameter A = 0.9995
of the feature extractor’ parameters to replicate the teacher
in SSBVER, which is used for evaluation. Total training
epochs is set to 120. Label smoothing parameter is set to
e = 0.2. To create global and local views a, € [0.8,1]
and a; € [0.1,0.4] are randomly selected. For ResNet
and ResNet_IBN architectures, we use the Adam [22] op-
timizer, learning rate of = 0.0005 with Gamma decay
factor v = 0.1 at 40*", 70'" 100" epochs and weight de-
cay of 0.001. For ViT, SWIN and Convnext we use the base
model variant, AdamW [29] optimizer and cosine learn-
ing rate decay scheduling [28] with 7,4, = 0.0001 and
Nmin = 1.6e — 5. In addition, weight decay is set to 0.0001.
Finally, linear learning rate warm-up (with rate 0.099) is
adopted for the first ten epochs. In the SSL head, the stu-
dent’s temperature is set to 7, = 0.1 while the teacher’s
temperature 7, is increased linearly from 0.0005 to 0.001 in
the first ten epochs and remains fixed for the rest of training.

4.4. Evaluation Results

4.4.1 VeRi Dataset

Table | reports experimental results on VeRi dataset. It is
seen SSBVER performs better than baseline in almost ev-
ery evaluation metric and architecture with the exception of
ViT for the CMC@1. We should note that CMC@1 is more
sensitive compared to other metrics as it only considers the
first item in the ranked gallery which is either a hit or miss.
This can be attributed to the fact that ViT has a high capac-
ity to learn in data-abundant regime as noted in [7] which is
not the case for VeRi. In addition, we highlight that the per-
formance of ResNet50 and ResNet50_IBN models are sig-
nificantly improved by adopting self-supervision compared
to architectures with larger number of parameters that can

Table 1. Comparison of SSBVER model against baseline on VeRi
dataset. Note that bold black figures denote the higher perfor-
mance for each architecture while bold red figures are the highest
among all models and architectures.

Architecture Model Evaluation Metric

mAP (%) | CMC@1 (%) | CMC@S5 (%)
AR
AR
vitbse | Sven | maa | e | ossr
sWiNBise | (e | mas | sene | orer
ConvNext_Base ;3;];%1}131; ;2(7)13 (9)2;2 ggg;

Table 2. Performance comparison between SSBVER and baseline
models on VehiclelD dataset.

Evaluation Metric
Architecture Model mAP (%) CMC@1 (%)

S M L S M L S L

Baseline | 88.77 | 86.05 | 82.91 || 82.75 | 80.26 | 76.79 || 97.00 | 94.06 | 90.92
SSBVER || 90.73 | 86.57 | 83.82 || 85.61 | 80.34 | 77.26 || 97.73 | 94.92 | 92.59
Baseline | 89.19 | 84.95 | 82.73 || 83.44 | 78.81 | 76.79 || 96.82 | 93.13 | 90.53
SSBVER || 90.88 | 87.36 | 84.83 || 85.61 | 81.62 | 78.91 || 97.72 | 94.92 | 92.60
Baseline | 88.70 | 84.88 | 82.65 || 82.50 | 78.53 | 76.33 || 97.22 | 93.61 | 90.75
SSBVER || 89.09 | 85.23 | 83.13 || 82.93 | 79.05 | 76.64 || 97.33 | 93.56 | 91.78

CMC@5 (%)
M

ResNet50

ResNet50_IBN

ViT Base

SWIN_Bas Baseline 89.77 | 86.74 | 84.35 || 83.84 | 80.86 | 77.90 || 97.61 | 94.91 | 92.17
P8¢ | SSBVER || 90.58 | 86.98 | 84.68 || 85.19 | 81.02 | 78.62 || 97.96 | 95.08 | 93.27
Basclin || 53.05 | 85.51 | 53.14 || 52.54 | 79.46 | 76.60 || 97.03 | 93.09 | 9L51

ConNext-Base | gopyER || 89.10 | 85.81 | 83.24 || 83.42 | 79.38 | 77.13 || 97.17 | 94.17 | 91.44

easily overfit the data and suffer from high variance. We
would like to highlight that the performance gained here is
cost-free for inference in that SSLBVER preserves the com-
plexity of the baseline model.

4.4.2 VehicleID Dataset

Test set of VehicleID has three splits: small, medium and
large which are enumerated by S, M, and L in Table 2. Im-
ages in VehicleID are only captured from either front or
rear and the extent to which a network can exploit small-
scale information in overlapping views is limited. Simi-
lar to VeRi, self-supervised objective contributes to perfor-
mance improvement across all evaluation metrics and ar-
chitectures. Due to relatively larger size compared to VeRi,
the performance of bigger models, namely ViT, SWIN and
ConvNext is more pronounced. The superior performance
of SWIN compared to ViT shows the benefit of hierarchical
design and multi-resolution feature maps in a transformer-
based model as it can extract information at various scales.

4.4.3 VeRiWild Dataset

The test set is split into three small, medium and large sets
consisting of 41861, 69389, and 138517 images respec-
tively. The performance metrics are reported in Table 3.
For this multi-view dataset the benefit of self-supervision is
quite evident as every evaluation metric across all test splits
and architectures is improved by a significant margin. This
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Table 3. Performance comparison between SSBVER and baseline
models on VeRiWild dataset.

Evaluation Metric
Architecture Model mAP (%) CMCe@I (%)

S M L S M L S L

Baseline | 78.20 | 72.43 | 64.43 || 93.14 | 90.62 | 86.93 || 97.82 | 96.89 | 94.71
SSBVER | 80.41 | 74.77 | 67.02 || 93.88 | 91.44 | 88.26 || 98.03 | 96.93 | 94.98
Baseline || 81.46 | 75.74 | 67.70 || 93.24 | 90.76 | 86.41 || 97.82 | 96.51 | 94.20
SSBVER || 82.64 | 77.49 | 70.09 || 95.11 | 93.37 | 90.14 || 98.53 | 97.45 | 95.67
Baseline || 81.76 | 76.13 | 67.71 || 93.44 | 91.56 | 86.77 || 98.59 | 97.57 | 95.55
SSBVER || 83.81 | 78.25 | 70.55 || 94.98 | 92.71 | 89.65 || 98.69 | 97.83 | 95.98
Baseline || 84.94 | 79.64 | 71.93 || 94.58 | 92.05 | 87.89 || 98.80 | 97.55 | 95.97
SSBVER || 86.05 | 81.28 | 74.07 || 95.62 | 93.75 | 90.27 || 99.10 | 98.23 | 96.76
Baseline | 83.44 | 78.12 | 69.93 || 93.74 | 91.32 | 86.69 || 98.33 | 97.61 | 95.59
SSBVER || 84.34 | 79.08 | 71.29 || 94.21 | 92.29 | 88.14 || 98.76 | 97.75 | 96.10

CMC@5 (%)
M

ResNet50

ResNet50_IBN

ViT_ Base

SWIN _Base

ConvNext_Base

(a) VeRi_Baseline

(e) VehicleID_.SSBVER () VeRiWild_SSBVER

(d) VeRi_SSBVER

Figure 4. Distribution of the distances in feature space. Embed-
dings are extracted from ResNet50_IBN architecture.

shows distillation-based SSL objective effectively regulates
model training to exploit more fine-grained features that are
favorable for the vehicle re-id task. Moreover, because of
the large number of training samples, ViT, SWIN, and Con-
vnext achieve substantially higher performance compared
to ResNet-based models. SSBVER model with SWIN
backbone achieves the highest performance on VeRi-
Wild among all published research works.

4.4.4 Intra-class Compactness « Inter-class Separation

We are interested to know how the incorporation of self-
supervision impacts the L, distance between extracted fea-
tures. To this end, we plot the distribution of Euclidean
distances of positive and negative image pairs in the fea-
ture space. Qualitatively, this measures the intra-class com-
pactness and inter-class separation. Fig. 4 shows this com-
parison between the baseline and self-supervised boosted
models across the test set of different re-id benchmarks. It
is seen that SSL objective reduces the mean p of positive
pair distance distribution by 6.6%, 12.9%, and 10.8% for
VeRi, VehicleID, and VeRiWild respectively. However, the
means of negative pair distance distributions are roughly
unchanged. This analysis shows that SSBVER helps the
intra-class compactness since the student model is con-
strained to match the predictions of the teacher model for

(a) Classification Loss (b) Triplet Loss (c) Self-supervised Loss

Figure 5. Progression of objective functions involved in the SSB-
VER pipeline over the course of training for VeRiWild.

different views of a same object. Interestingly, for the case
of VehiclelD, there are two prominent peaks in the distribu-
tion of positive pair distances. As images are either captured
from the rear or front of vehicles, for positive pairs, the dis-
tance is small when both images are from the same views
and is larger when they are from opposing views. There-
fore, two peaks stand out in the corresponding distribution.

4.4.5 Convergence Analysis

We examine the convergence of SSBVER model. We plot
the L., L, and L during the course of training on VeRi-
Wild in Fig. 5. Since we use label smoothing for classifica-
tion objective, its does not converge to zero. However, Con-
vnext, SWIN, and ViT achieve lower classification objec-
tive compared to ResNet-based models due to their higher
capacity to fit the data. Triplet loss converges to zero for
all models; although, for ViT over the initial training iter-
ations the maximum L, distance between the features of
positive pairs is significantly larger than the minimum dis-
tance between the features of negatives resulting in a higher
objective value. This can be attributed to the fact that unlike
ResNet, SWIN, and Convnext, ViT does not have a hierar-
chical design and instead has a global receptive field from
the first layer. Self-supervised objective evolves differently
for ViT, SWIN, and ConvNext compared to ResNet-based
architectures. While collapse is avoided and the £, con-
verges for both groups, it converges to a much lower value
for ResNet-based models. This difference can be potentially
justified based on the fact that ViT, SWIN, and ConvNext
all use patchification strategy in their initial layer compared
to the down-sampling in ResNet-based models. Down-
sampling can provide a better chance to match teacher’s
prediction and achieve a lower objective value.

4.4.6 SSL: An Implicit Attention Mechanism?

We visualize the regions in a query and gallery image pair
that are most sensitive to the similarity score obtained for
the pair. More precisely, we compute the input saliency
maps for query m, and gallery m, via computing the gra-
dient of similarity score for extracted feature vectors with
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(a) mq Baseline (b) my_Baseline (c) mq-SSBVER (d) my_SSBVER

Figure 6. Saliency maps of baseline and SSBVER models for a
pair of query-gallery images. Similarity scores generated from
baseline and SSBVER are 0.96 and 0.98. Adopted architecture
is ResNet50_IBN and images are chosen from VeRi dataset. More
results are provided in the supplementary material.

Table 4. Performance comparison between SSBVER and base-
line models with ResNet_IBN backbone architecture on CityFlow
multi-camera vehicle tracking task.

Model IDF1 IDP IDR
Baseline || 0.6903 0.6852 0.6956
SSBVER | 0.7288 0.7208 0.7369

respect to the input images:

mg = quft(lq)~ft([q), mg = Vlgft([q)~ft([q) (6)

where . is the dot product and I,, I, represent query and
gallery images respectively. Here we did not use the Grad-
CAM [38] method as it computes gradient maps in much
lower resolutions which results in blob-like salient regions
when up-sampled to the original image size which might
not be descriptive enough. In Fig. 6 input saliency maps
are depicted for baseline and SSBVER models for a pair of
test images selected from VeRi dataset. It is seen that base-
line model mainly focused on vehicle’s front bumper and
slightly attended its side as it is a shared portion between
the two images. However, SSBVER asserts more attention
on discriminative cues such as the white napkin box on the
dashboard and the car’s side skirt. Also similarity scores
obtained for the pair via baseline and SSBVER models are
0.96 and 0.98 respectively. This examples qualitatively ex-
plains the intra-class compactness shown in Fig. 4. While
the baseline is a strong re-id model, incorporation of self-
supervision helps to learn more discriminative and locally-
distinguishable information without employing any explicit
and computation-demanding attention mechanism.

4.5. A Use Case: Multi-Camera Vehicle Tracking

We study the impact of SSBVER on multi-camera vehi-
cle tracking task where re-id features and spatio-temporal
cues are used to associate vehicle identities across multi-
ple cameras. For this we used NVIDIA Al City CityFlow
[33,34,40] dataset which contains 3.5 hours of traffic videos
collected from 46 cameras spanning 16 intersections. The
evaluation metric for this benchmark is IDF'1 = (2xI D Px
IDR)/(IDP + IDR) [37] that is the harmonic mean of

identification precision (IDP) and recall (IDR). We adopted
a multi-camera tracking system and only replaced the base-
line feature extractor with SSBVER. Table 4 highlights that
SSBVER improves the overall performance without impos-
ing any additional costs.

4.6. Comparison with the state-of-the-art

We compare SSBVER with ResNet50_IBN architecture
against recent works on vehicle re-id in terms of evaluation
and efficiency metrics. The reason we chose ResNet50_IBN
for SSBVER compared to ResNet50, ViT, SWIN, and Con-
vNext is that it maintains a comparatively high level of ac-
curacy on all benchmarks while keeping the inference speed
and resource utilization low. From Table 5 HRCN appears
to be the superior model in terms of evaluation metrics;
however, it takes 10.84 ms to compute 3584-dimensional
embeddings which is more than twice the time required by
SSBVER to obtain embeddings of size 2048. In addition,
SSBVER performs better in terms of CMC for VeRiWild
which is the largest multi-view benchmark. Therefore, SS-
BVER is a simple and light weight approach that does not
rely on additional annotations, and has a performance that
is comparable to HRCN and higher than other computation-
ally expensive alternatives such as TransRelD and PVEN.
In Fig. 7 we plotted accuracy versus efficiency in terms
of inference time, number of model’s parameters, mem-
ory usage and embedding size. SSBVER achieves highest
accuracy-efficiency trade-off among state-of-the-art mod-
els. We would like to emphasize that computational effi-
ciency is one of the key contributions of our work which is
often overlooked in recent works as we had to measure them
by re-implementing or adopting the corresponding works.
Lastly, we point out that reported numbers for Time should
be considered for relative comparison. These can be further
reduced depending on the hardware and adopting inference
time optimizations libraries.

5. Ablation Studies

First we replace the cross entropy loss in Eq. 4 be-
tween the outputs of student and teacher branches with the
Lo norm of their difference which is often referred to as
Root Mean Squared Error (RMSE) loss. Therefore, the self-
supervised loss L; is calculated by:

Lo= 3 S e ) = glfuD)ll,
TeVa) p oy vy, 1 +1

(N
Table 6 presents the result of this comparison for VeRi
dataset and ResNet50_IBN architecture. It is seen that mini-
mizing the cross entropy between the predictions of student
and teacher models performs better compared to directly
minimizing their RMSE. This observation is consistent with
the findings of authors of [4] where they attempt to learn
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Table 5. Comparison with recent state-of-the-arts methods. Note that * denotes the number is not reported in the original paper and is
computed by implementing the corresponding work or adopting the official repository upon availability. NVIDIA RTX 2080 GPU card for

time measurements.

Evaluation Metrics Efficiency Metrics
Method VeRi VehicleID (L) VeRiWild (S)
MAP CMC mAP CMC MAP CMC Params | Dims Time Memory
@1 [ @5 @1 [ @5 @] [ @5 ™M) (ms/image) (MB)
TransRelID [15] || 81.4 | 96.8 | 98.4 | 849 | 787 | 93.2 | 81.2* | 92.3* | 98.0* 101* 3840* 5.51* 423*
GFDIA [23] 81.0 | 96.7 | 98.6 - 80.0 | 93.7 - - - 34.7* 4096* 5.74* 173*
SAVER [19] 79.6 | 96.4 | 98.6 | 829 | 753 | 883 | 809 | 945 | 98.1 31* 2048~ 5.06* 178*
EVER [36] 804 | 958 | 979 | 843 | 784 | 923 | 80.7 | 93.7 | 97.8 23.5* 2048* 4.55* 122*
PVEN [32] 79.5 | 95.6 | 98.4 - 77.8 | 920 | 79.8 | 94.0 | 98.0 59.2* | 10240* 11.79* 603*
HRCN [46] 83.1 | 97.3 | 98.9 | 859" | 79.5" | 94.8" | 852 | 94.0 | 98.3* 55.4* 3584* 10.84* 260"
SSBVER || 82.1 [97.1 [ 984 | 848 | 789 | 92.6 | 82.6 | 95.1 | 985 || 235 | 2048 | 455 | 122
= S = R = = of the SSBVER varies with respect to the number of local
g i -l .l .I .I crops L that student model observes for each sample dur-
e | j Tl B == 1 B ing training. Fig. 8 demonstrates the re-id performance in
/. N ER [ g BB 1] terms of mAP as a function of L for the case of VeRi dataset
HEER B BEE _.B . \ R datas
HHEERE B BEEEdIEE and ResNet50_IBN architecture. In Fig. 8 there is a signif-
/AR ENJuR icant jump from baseline (L = 0) to apply self-supervision

TransRelD  GFDIA  SAVER  EVER  PVEN  HRCN _ SSBVER " RransRelD GFDIA  SAVER  EVER  PVEN  HRCN _ SSBVER

(a) Accuracy (%) / Inference Time (ms)

o) - map -—map
= cucel == cnc@l
) cmcas cMces

(b) Accuracy (%) / Parameters (M)

H 4 Pl I
dib ¥ L0 a4l
BER a0 | - i
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(d) Accuracy (%) / Embedding Size
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(¢) Accuracy (%) / Memory Usage (MB)
Figure 7. Accuracy versus efficiency comparison of SSBVER and

current state-of-the-art models for VeRi Dataset.

Table 6. Comparison of different objective choices for L. VeRi
dataset and ResNet50_IBN model are used.

I Evaluation Metrics

[ mAP(%) [ CMC@1(%) [ CMC@5(%)
RMSE || 8080 | 9654 | 9839

|

Objective Function

Cross Entropy 82.11 97.08 98.45
82.0 /'/’.--‘\\
_ n’ N
% 81.5 {// .\\\
2 / - .
£ 510 } . Figure 8. Impact
: ’," w-=| of the number of
g ’,' local crops L on
! mAP. ResNet50_IBN
1 architecture and VeRi
0

dataset are used.

2 4 6
Number of Local Crops (L)

purely self-supervised features from the scratch.  Addi-
tionally, we would like to understand how the performance

with only L = 1 local crop. The maximum mAP occurs for
L = 4 crops. The reduction in performance for higher L
can be attributed to observing more regions of a target im-
age by student network and putting less effort to match the
output of teacher. This leads to learning less discriminative
representations. Nevertheless, we should note that perfor-
mance is considerably higher than the baseline model.

6. Conclusions

This work presents a novel hybrid training frame-
work that engages self-supervision through self-training
and knowledge distillation. This yields performance im-
provements consistently on public benchmarks irrespective
to the choice of DNN architecture. In contrast to alterna-
tives, our approach only requires a forward pass of a sin-
gle DNN without extra computational overhead. As vehicle
re-id technology becomes more mature, its large-scale de-
ployment seems to be reachable more than ever. As a result,
more emphasis should be directed towards efficiency met-
rics such as throughput, and the memory footprint which
are often overlooked in the community. The importance of
such metrics becomes evident in real-time and at scale ap-
plications where the amount of data to be processed and
managed is overwhelming. SSBVER obtains performance
on par to state-of-the-art in spite of being computationally
far less demanding. Therefore, we advocate for efficiency
metrics and hope this work motivates further research to de-
velop efficient and lightweight frameworks suited for large-
scale applications.

7. Acknowledgment

This work is partially supported by the ONR MURI grant
N00014-20-1-2787.

5302



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

8]

(9]

(10]

[11]

(12]

Yan Bai, Yihang Lou, Yongxing Dai, Jun Liu, Zigian Chen,
Ling-Yu Duan, and ISTD Pillar. Disentangled feature learn-
ing network for vehicle re-identification. In IJCAI, pages
474-480, 2020. 2

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Ja-
son Weston. Curriculum learning. In Proceedings of the 26th
annual international conference on machine learning, pages
41-48,2009. 2

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments.
Advances in Neural Information Processing Systems, pages
9912-9924, 2020. 1, 4

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the International Conference on Computer Vi-
sion (ICCV),2021. 1,3,4,7

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597-1607. PMLR, 2020. 1, 4

Xinlei Chen and Kaiming He. Exploring simple siamese rep-
resentation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
15750-15758, 2021. 4

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 3, 5

Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Ried-
miller, and Thomas Brox. Discriminative unsupervised fea-
ture learning with convolutional neural networks. In Z.
Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Pro-
cessing Systems. Curran Associates, Inc., 2014. 1
Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach
to self-supervised learning. Advances in Neural Information
Processing Systems, pages 21271-21284, 2020. 1, 4
Haiyun Guo, Chaoyang Zhao, Zhiwei Liu, Jingiao Wang,
and Hanqging Lu. Learning coarse-to-fine structured feature
embedding for vehicle re-identification. In Proceedings of
the AAAI Conference on Artificial Intelligence, number 1,
2018. 2

Bing He, Jia Li, Yifan Zhao, and Yonghong Tian. Part-
regularized near-duplicate vehicle re-identification. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2019. 1, 2

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF con-

[13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

5303

ference on computer vision and pattern recognition, pages
9729-9738, 2020. 1,3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016. 3

Lingxiao He, Xingyu Liao, Wu Liu, Xinchen Liu, Peng
Cheng, and Tao Mei. Fastreid: A pytorch toolbox for general
instance re-identification. arXiv preprint arXiv:2006.02631,
2020. 3

Shuting He, Hao Luo, Pichao Wang, Fan Wang, Hao Li,
and Wei Jiang. Transreid: Transformer-based object re-
identification. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 15013-15022, 2021.
2,8

Alexander Hermans, Lucas Beyer, and Bastian Leibe. In de-
fense of the triplet loss for person re-identification. arXiv
preprint arXiv:1703.07737,2017. 4

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132-7141, 2018. 1
Pirazh Khorramshahi, Amit Kumar, Neehar Peri, Sai Saketh
Rambhatla, Jun-Cheng Chen, and Rama Chellappa. A
dual-path model with adaptive attention for vehicle re-
identification. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6132-6141, 2019. 1,
2

Pirazh Khorramshahi, Neehar Peri, Jun-cheng Chen, and
Rama Chellappa. The devil is in the details: Self-supervised
attention for vehicle re-identification. In European Confer-
ence on Computer Vision, pages 369-386. Springer, 2020. 2,
3,8

Pirazh Khorramshahi, Sai Saketh Rambhatla, and Rama
Chellappa. Towards accurate visual and natural language-
based vehicle retrieval systems. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4183-4192, 2021. 2

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,
Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and
Dilip Krishnan. Supervised contrastive learning. Advances
in Neural Information Processing Systems, pages 18661—
18673, 2020. 1

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

Ming Li, Xinming Huang, and Ziming Zhang. Self-
supervised geometric features discovery via interpretable at-
tention for vehicle re-identification and beyond. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 194-204, 2021. 2, 8

Hongye Liu, Yonghong Tian, Yaowei Yang, Lu Pang, and
Tiejun Huang. Deep relative distance learning: Tell the
difference between similar vehicles. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 2167-2175, 2016. 2

Xinchen Liu, Wu Liu, Huadong Ma, and Huiyuan Fu. Large-
scale vehicle re-identification in urban surveillance videos.



[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

In 2016 IEEE international conference on multimedia and
expo (ICME), pages 1-6. IEEE, 2016. 2

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In-
ternational Conference on Computer Vision (ICCV), 2021.
3

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2022. 3

Ilya Loshchilov and Frank Hutter. Sgdr:  Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 5

Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101,2017. 5
Yihang Lou, Yan Bai, Jun Liu, Shigi Wang, and Ling-Yu
Duan. Veri-wild: A large dataset and a new method for
vehicle re-identification in the wild. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3235-3243, 2019. 2

Hao Luo, Youzhi Gu, Xingyu Liao, Shenqi Lai, and Wei
Jiang. Bag of tricks and a strong baseline for deep person
re-identification. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition workshops,
pages 0-0, 2019. 3

Dechao Meng, Liang Li, Xuejing Liu, Yadong Li, Shi-
jie Yang, Zheng-Jun Zha, Xingyu Gao, Shuhui Wang, and
Qingming Huang. Parsing-based view-aware embedding
network for vehicle re-identification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7103-7112, 2020. 2, 8

M. Naphade, S. Wang, D. C. Anastasiu, Z. Tang, M. Chang,
Y. Yao, L. Zheng, M. Shaiqur Rahman, A. Venkatachala-
pathy, A. Sharma, Q. Feng, V. Ablavsky, S. Sclaroff, P.
Chakraborty, A. Li, S. Li, and R. Chellappa. The 6th ai city
challenge. In 2022 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition Workshops (CVPRW), pages
3346-3355. IEEE Computer Society, June 2022. 7

Milind Naphade, Shuo Wang, David C. Anastasiu, Zheng
Tang, Ming-Ching Chang, Xiaodong Yang, Yue Yao, Liang
Zheng, Pranamesh Chakraborty, Christian E. Lopez, Anuj
Sharma, Qi Feng, Vitaly Ablavsky, and Stan Sclaroff. The
5th ai city challenge. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops,
June 2021. 7

Xingang Pan, Ping Luo, Jianping Shi, and Xiaoou Tang. Two
at once: Enhancing learning and generalization capacities
via ibn-net. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 464—479, 2018. 3

Neehar Peri, Pirazh Khorramshahi, Sai Saketh Rambhatla,
Vineet Shenoy, Saumya Rawat, Jun-Cheng Chen, and Rama
Chellappa.  Towards real-time systems for vehicle re-
identification, multi-camera tracking, and anomaly detec-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops,
June 2020. 2, 3, 8

(37]

(38]

(39]

(40]

[41]

(42]

[43]

[44]

[45]

[40]

5304

Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara,
and Carlo Tomasi. Performance measures and a data set for
multi-target, multi-camera tracking. In European conference
on computer vision, pages 17-35. Springer, 2016. 7
Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 618—626,
2017. 7

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2818-2826, 2016. 3

Zheng Tang, Milind Naphade, Ming-Yu Liu, Xiaodong
Yang, Stan Birchfield, Shuo Wang, Ratnesh Kumar, David
Anastasiu, and Jeng-Neng Hwang. Cityflow: A city-scale
benchmark for multi-target multi-camera vehicle tracking
and re-identification. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), page 8797-8806,
June 2019. 2,7

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 2017. 1

Zhongdao Wang, Luming Tang, Xihui Liu, Zhuliang Yao,
Shuai Yi, Jing Shao, Junjie Yan, Shengjin Wang, Hongsheng
Li, and Xiaogang Wang. Orientation invariant feature em-
bedding and spatial temporal regularization for vehicle re-
identification. In Proceedings of the IEEE international con-
ference on computer vision, pages 379-387, 2017. 2

Kilian Q Weinberger and Lawrence K Saul. Distance met-
ric learning for large margin nearest neighbor classification.
Journal of machine learning research, (2),2009. 1
Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So
Kweon. Cbam: Convolutional block attention module. In
Proceedings of the European conference on computer vision
(ECCV), pages 3-19, 2018. 1

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and
Stéphane Deny. Barlow twins: Self-supervised learning via
redundancy reduction. In International Conference on Ma-
chine Learning, pages 12310-12320. PMLR, 2021. 4
Jiajian Zhao, Yifan Zhao, Jia Li, Ke Yan, and Yonghong
Tian. Heterogeneous relational complement for vehicle re-
identification. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 205-214, 2021. 2, 8



