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Abstract

This paper introduces our solution for Track 2 in AI City
Challenge 2023. The task is tracked-vehicle retrieval by
natural language descriptions with a real-world dataset of
various scenarios and cameras. Our solution mainly fo-
cuses on four points: (1) To address the linguistic am-
biguity in the language query, we leverage our proposed
standardized version for text descriptions for the domain-
adaptive training and post-processing stage. (2) Our base-
line vehicle retrieval model utilizes CLIP to extract robust
visual and textual feature representations to learn the uni-
fied cross-modal representations between textual and visual
features. (3) Our proposed semi-supervised domain adap-
tive (SSDA) training method is leveraged to address the do-
main gap between the train and test set. (4) Finally, we
propose a multi-contextual post-processing technique that
prunes out the wrong results based on multi-contextual at-
tributes information that effectively boosts the final retrieval
results. Our proposed framework has yielded a competi-
tive performance of 82.63% MRR accuracy on the test set,
achieving 1st place in the competition. Codes will be avail-
able at https://github.com/zef1611/AIC23_
NLRetrieval_HCMIU_CVIP

1. Introduction
In the era of data-driven technology, the concept of a

smart city has garnered significant attention as a means to
improve the quality of life for citizens. One crucial el-
ement of a smart city is vehicle retrieval systems, which
utilize data from surveillance cameras to address various
transportation-related issues such as reducing traffic con-
gestion, improving traffic flow, and creating a sustainable
and efficient transportation system. While vision-based ve-
hicle re-identification has been a significant advancement
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in this field, text-based systems are also gaining popular-
ity due to their ability to provide semantically concise and
clear information such as speed, direction, location, branch,
color, size, etc. Text-image retrieval is a cross-modal re-
trieval task that involves learning modality representations
and their shared embedding space to obtain latent features.
Therefore, most studies in the language-vision retrieval task
focus on improving the learning of embedding feature vec-
tors to achieve higher accuracy in representation match-
ing. However, recent advancements in deep learning frame-
works have shifted the focus towards discovering semantic
concepts in the language and vision input, rather than solely
relying on matching and ranking algorithms.

In order to advance research of text-to-image retrieval
systems, the 7th AI City Challenge [16] has established a
challenging research track to promote active participation.
Despite promising results in the past, major challenges re-
main. Firstly, natural textual data is highly diverse and
presents significant challenges to machines. While text data
is intuitive for humans, it is difficult for machines to dis-
tinguish different descriptions of the same vehicle, such as
”A vehicle is moving straight” and ”The vehicle is head-
ing forward”. The limited amount of training data further
exacerbates this issue in learned models. Secondly, there
is a significant scarcity of high-quality training data for
text-to-image vehicle retrieval, as it is a relatively new do-
main. Unlike established datasets such as ImageNet [20]
and COCO [13], which contain millions of samples for fea-
ture training, manual annotations for this domain are lim-
ited. Effective models must therefore leverage pre-trained
parameters as much as possible and use the few available la-
bels for fine-tuning. Finally, while existing state-of-the-art
methods are useful, their performances are largely proba-
bilistic in the high-dimensional text-to-image domain. Con-
sequently, prediction outputs may lack proper constraints to
accurately match a query with its true video. Addressing
these technical challenges will require continued innovation
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and collaboration in the field.
Therefore, the main contributions of our paper are stated

as follows:

• Our study introduces an enhanced version of our base-
line vehicle retrieval model using CLIP [19], which
incorporates both symmetric InfoNCE Loss [22] and
Circle Loss [21] to interconnect the text and image
modalities. By projecting both modalities into a shared
representation space, our proposed approach ensures
that they are aligned and linked together.

• Building upon our previous research [12], we present
an enhanced version of the Semi-Supervised Domain
Adaptive (SSDA) training strategy. Our approach aims
to mitigate the domain gap that arises between the
training and testing sets, and additionally addresses the
distribution shift problem that had previously occurred
in prior research.

• We have developed a unique approach called multi-
contextual pruning that enhances retrieval results by
utilizing multiple contextual pieces of information as
stringent constraints. This approach refines the final
results to differentiate between vehicle tracks that ap-
pear highly visually identical.

• Experiments show that our system achieves 1st place
on the testing set of the challenge.

2. Related Works
2.1. Video Retrieval by Natural Language

The text-to-video retrieval task involves mapping text
and video representations into common embedding spaces
and measuring cross-modal similarity. Text can be encoded
using conventional text encoders or transformer-based ar-
chitectures, such as BERT [4], which have demonstrated
superior performance. Visual features are extracted from
video frames using pre-trained CNN models and combined
into video-level features. The ViLBERT [15] and UNITER
[3] models use a shared transformer for image-text joint rep-
resentations, while a multi-modal transformer is proposed
by Gabeur et al. [9] compute three matching text-video sim-
ilarities using Object, Activity, and Place experts. Current
research mainly focuses on learning cross-modal similarity
between text and video encodings.

2.2. Contrastive Representation Learning

Contrastive representation learning has been a popular
research topic in the field of machine learning and com-
puter vision in recent years. A number of works have been
proposed that explore different approaches to improving the
performance of contrastive learning methods. One notable
approach is SimCLR [2], which introduced a simple yet
effective framework for contrastive learning. It leverages

data augmentation techniques and a large batch size to im-
prove the quality of learned representations. Another ap-
proach is MoCo [11], which uses a momentum-based up-
date rule to improve the stability and performance of con-
trastive learning. It also introduces a dynamic dictionary
to improve the quality of negative samples used during
training. BYOL [10] is a recent method that focuses on
learning representations in a self-supervised manner with-
out negative samples. It uses a target network to gener-
ate predictions for augmented views of the input, and op-
timizes the model to match the target network’s predictions.
Contrastive Language-Image Pre-training (CLIP) [19] is a
multi-modal approach that learns representations for both
images and text. It uses a contrastive loss such as InfoNCE
[22] to encourage the model to learn representations that are
predictive of both modalities. Regarding metric optimiza-
tion criteria, Circle Loss [21] is popularly seen as a general
unification of the pairwise similarity optimization.

Overall, these works highlight the importance of con-
trastive representation learning in improving the quality
of learned representations and enabling effective transfer
learning. In our works, we propose to adopt Circle Loss
onto the CLIP multi-modal framework.

2.3. Tracked Vehicle Retrieval by Natural Language

In the 6th AI City Challenge [17], various approaches
based on ReID approaches were introduced by teams to
learn representative motion and visual appearance features.
In particular, all teams involved in the text-to-image re-
trieval task utilized InfoNCE losses during training. They
also used pre-trained sentence embedding models, such as
BERT [4], CLIP [19], to represent NL descriptions. A team
proposed a multi-granularity loss function [7] that formu-
lated the ReID problem by using a pair-wise InfoNCE loss
between NL streams and visual streams.

Meanwhile, post-processing of retrieval results were
based on the keywords of relations and motions in the NL
descriptions by participating teams to further improve the
retrieval results. One team [24] utilized an NL parser to
extract information about the color, type, and motion of
tracked-vehicles. Meanwhile, other teams (namely, [7],
[26], [24]) used the global motion image originally pre-
sented by Bai et al. [1] to create a vehicle motion stream.
Additionally, the Megvii team [24] developed a refined mo-
tion image that was based on the inter-frame intersection
over union (IoU) of the tracked targets.

In our approach, we focused not only on representa-
tion learning of multimodality, but also on how to post-
process and prune based on the keyword extractions effec-
tively, which were the main difficulty for matching the vehi-
cle gallery with the NL queries. Furthermore, we adopt the
post-processing and pruning processes into the multimodal
learnig process.
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Figure 1. Overview of our proposed system

3. Methodology

3.1. Overview

In this section, we present our proposed multi-contextual
adaptive knowledge-based retrieval system shown in Fig. 1
It is composed of four main modules, each addressing the
task’s challenges at varying levels of detail, and achieving
remarkable performance on the benchmark dataset. The
four modules are (1) Pre-processing, (2) Baseline vehi-
cle retrieval model, (3) Semi-Supervised Domain-Adaptive
(SSDA) training strategy, and (4) Multi-contextual post-
processing.

3.2. Pre-processing

Due to the presence of different forms of words in a text,
such as plurals, and tenses, different texts can have the same
semantic meaning but provide a different wealth of infor-
mation. However, the diversity in the queries can lead to
degradation in the performance of the retrieval model due
to a lack of consistency. To solve the aforementioned prob-
lems, we propose a text cleaning step to utilize Stemming
and Lemmatization, common techniques in Natural Lan-
guage Processing (NLP), to derive related word forms to
a common base form to alleviate the generalization of the
model’s knowledge during the learning stage.

Text Cleaning. With each text description, we utilize
stemming and lemmatization, common techniques in Nat-
ural Language Processing (NLP) where stemming involves
cutting off the end of a word to obtain its root form, while
lemmatization involves reducing a word to its base form
using knowledge of the language and its grammar. Using

those two techniques, we performed stop word cleaning,
misspelt word correcting and converting all of them to their
base forms to ensure identical text format structure.

Text Standardization. To tackle the linguistic ambigu-
ity in the language query and reduce the variance in tex-
tual embeddings for the learning process, a consistent for-
mat is needed for every text description. Based on our
observations, the text descriptions often have three con-
textual attributes about the vehicle, which are color, type
and movement. Thus, we use English PropBank Seman-
tic Role Labeling (SRL) [5] to extract all of the aforemen-
tioned information and propose a new standardized format
tstandardized = ac + at + am for the natural language
queries where ac, at, am denotes the attribute vehicle’s
color, type, motion, respectively. Through data analysis, we
discovered that many words have different synonyms but
express the same semantic meaning. Thus, to minimize the
diversity between different text descriptions, several clus-
ters are created based on semantic similarity and replaced
with their cluster name. i.e. synonyms for brown: brownish,
bay, or beige; or synonyms for coupe: mini cooper, couple,
or coup. The same goes for vehicle movements, which we
categorize into four movements based on their trajectory:
go straight, turn left, turn right and stop.

3.3. CLIP-based vehicle retrieval baseline model

Problem Formulation. Given a collection of n traffic
video event clips V = {v1, v2, . . . , vn} and a corre-
sponding text descriptions database Q = {q1, q2, . . . , qn},
we aim to discover a function s(vi, qj) such that qj ={
q1j , q

2
j , . . . , q

m
j

}
is the set of m corresponding text de-
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Original A white truck drives straight
through the intersection in the
left lane.

Clean white truck drive straight
through the intersection in the
left lane.

Standardized white pickup-truck go straight.

Table 1. The example of the text standardization

scriptions, and each clip vi is annotated with the bound-
ing box coordinates of the tracked-vehicle as B(vi) ={
b1, b2, . . . , b|vi|

}
over the video length |vi|. In particular,

each tracked-vehicle vi has a set comprising 3 NL-text de-
scriptions. The primary goal of this problem is to retrieve
video vi from V based on qj =

{
q1j , q

2
j , q

3
j

}
from Q. Con-

sequently, the main objective is to focus on maximizing the
similarity s(vi, qj) between vi and it is corresponding qj
while simultaneously minimizing the similarity of s(vi, qk)
with vi against all other queries in Q, qk ̸= qj .

3.3.1 Model Architecture
Backbone. Choosing a proper backbone as the feature ex-
tractor is vital for obtaining robust embeddings because they
contain abstract features disentangled from varying degrees
of inessential variations, thereby making them more gener-
alizable for text-image retrieval tasks. As a result, CLIP is
used as our primary backbone to leverage its potent knowl-
edge in constructing robust representations for feature ex-
traction tasks with the pre-trained models Vision Trans-
former [6] as the Image Encoder fi(·), and a Text Trans-
former [23] as the Text Encoder ft(·).

Visual Embeddings. The visual input for each vehicle
track vi is represented by a randomly extracted jth frame
also known as global image and its corresponding set of
bounding box coordinates B(vi). To enable dual-stream in-
puts, each track is constructed by incorporating a global im-
age and a local image where we denote jth global image in
vi as Ijg , which is the original frame, and the local image
Ijl , which capture the visual global and local features, re-
spectively. The original frame of the vehicle track serves
as the global image. In contrast, the local image is ob-
tained by cropping the corresponding global image using
the ground truth bounding box of the primary vehicle. A
shared-weights image encoder fi(·) encodes both streams
of images to obtain are global and local visual feature em-
beddings, respectively.

Textual Embeddings. In section 3.2, pre-processed text
descriptions are utilized as the textual input for the system.
To obtain textual feature vectors, one of the three text de-
scriptions qji associated with each vehicle track is randomly
selected and tokenized. A text encoder ft(·) then encodes
the NL description to obtain textual feature embeddings.

Projection Head. To map each modality representation
into the same space, each text and image representation
is then fed into each separated projection head gv(·) and
gt(·), to map each embedding from its domain space into
a shared latent space where contrastive learning is applied.
Visual feature vector zv and textual feature vector zt.

3.3.2 Loss Functions

Contrastive Loss. Given a batch B pairs of video vehi-
cle track vi and text query qi, we want to learn representa-
tions of vi that adapt to variations in qi and vice versa. In
particular, there are B × B possible sample pairs, so our
main objective is to maximize the similarity between vehi-
cle track vi and text query qj . We use cosine similarity as
the parameterized measurement:

sθ (vi, qj) =
z
(i)
v · z(j)t∥∥∥z(i)v

∥∥∥∥∥∥z(j)t

∥∥∥ (1)

where · denotes the dot product operation, and
∥∥∥z(i)v

∥∥∥,∥∥∥z(j)t

∥∥∥ denote the L2 norm of the feature vectors.

Latent Space Learning. As the visual feature vector zv
and textual feature vector zt are projected into a common
latent space, an appropriate similarity function shall pull
relevant video-sentence pairs close together and irrelevant
pairs far apart in the latent space. Thus, We adopt the in-
foNCE Loss and Circle Loss to connect the representations
of the two modalities of the text and the image, ensuring
that they are projected into a unified representation space.
The InfoNCE Loss is chosen due to its ability to alleviate
the model to learn multi-modal embedding space by jointly
training visual and text embedding to maximize the similar-
ity between B positive pairs and minimize B× (B−1) op-
posing pairs simultaneously. The loss consists of two parts:
Image-to-Text and Text-to-Image.

• Image-to-Text Loss:

Lv−→q = − 1

B

B∑
i

log
exp (sθ (vi, qi))∑B
j=1 exp (sθ (vi, qj))

(2)

• Text-to-Image Loss:

Lq−→v = − 1

B

B∑
i

log
exp (sθ (qi, vi))∑B
j=1 exp (sθ (qj , vi))

(3)

Finally, the InfoNCE Loss is formulated as follows:

LInfoNCE = Lv−→q + Lq−→v (4)

Different from the InfoNCE loss, Circle loss minimize the
similarity of all negative pairs. Denote the positive pair
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and negative pairs as sp and sn, respectively. Circle loss is
defined as follows:

Lcircle = log
[
1 +

∑L
j=1 exp

(
γαj

n

(
sjn −∆n

))∑K
i=1 exp

(
−γαi

p

(
sip −∆p

))]
(5)

where the K = 1 and L = 2(N − 1),∆p and ∆n are the
intra-class and inter-class margins, respectively. αp and αn

are calculated as: {
αi
p =

[
Op − sip

]
+

αj
n =

[
sjn −On

]
+

(6)

in which Op and On are optimums of sp and sn, respec-
tively. These parameters are set Op = 1+m,∆p = 1−m,
On = −m and ∆n = m, respectively. The final latent
space loss is formulated as follows:

Llatent = LInfoNCE + Lcircle (7)

Concept Space Learning. Aside from classifying each
pair based on similarity, leveraging concept features such
as vehicle id, where each id is unique, is crucial since learn-
ing at the instance level ensures local feature alignment.
Hence, concept space learning can be naturally expressed
as a multi-class classification task. Thus, we project visual
feature vector zv and textual feature vector zt into a shared-
weight classification head gc(·) to obtain:

x = gc (z) = W(2)σ
(
BN

(
W(1)z

))
(8)

where x is the final linear classifier and z represents both zv
and zt. The final linear classifier is then used to calculate
categorical cross-entropy loss [25] as follows:

Lconcept = −
1

C

C∑
i

log
exp (xi)∑C
j=1 exp (xj)

(9)

with C denoting the number of vehicle tracks as each vehi-
cle track is a unique id. Then, the final loss is formulated
as:

Lfinal = Llatent + Lconcept (10)

3.4. Semi-Supervised Domain Adaptation (SSDA)

Owing to the scarcity of data with accurate labels, train-
ing a model solely on the samples available in the train-
ing set can lead to overfitting due to the inherent domain
gap between the training and testing sets. To overcome this
challenge and address the potential domain bias between the
two sets, which can result in unobserved scenarios during
testing, we propose a Semi-Supervised Domain-Adaptive
(SSDA) training strategy. The proposed approach com-
prises two primary components: the generation of pseudo-
labels and the corresponding training strategy. By utiliz-
ing this approach, we aim to improve the model’s ability

to generalize across different domains and effectively han-
dle the unseen scenarios encountered on the testing set with
the intuition that incorporating pseudo-labels for the testing
set can mitigate the knowledge bias that results from solely
learning on the training set.

Pseudo-labels Generation. For a given vehicle track vi,
we leverage the baseline model trained Image Encoder fi(·)
on training set and fine-tune it to develop classification
models for vehicle color πc, vehicle type πt based on the
training dataset and label extracted from section 3.2. Differ-
ent from our previous version, πd is generated using various
heuristics, which leads to many errors due to different views
in cameras. we leverage the training videos and correspond-
ing text queries to train an addition classifier to predict the
vehicle’s motion direction as πd and use our new improved
version of motion analysis in section 3.5 to refine the re-
sults, thus boost the accuracy of the vehicle’s direction pre-
diction. Finally, the pseudo-labelling q̂i, also known as the
textual query with the format tstandardized, can be defined
as the concatenation of:

q̂i = πc(vi) || πt(vi) || πd(vi) (11)

Our proposed approach is based on the intuition that task
specialized models generating pseudo-labels can provide
more accurate labels, closer to the ground truth, than pre-
trained classification models. By utilizing these specialized
models, we can achieve higher accuracy while simultane-
ously allowing for a certain degree of label errors.

Training Strategy. In contrast to our prior research, we
have found that training the model from scratch by combin-
ing the training set with standardized text and pseudo-labels
can significantly enhance its overall learning performance.
This is primarily due to the fact that the resulting mixed
set covers the entire distribution of the two sets, thereby
enabling the model to better distinguish between different
scenarios during the learning stage. By leveraging this ap-
proach, we can effectively augment the training data and
improve the model’s ability to generalize to unseen scenar-
ios encountered during testing. In comparison to fine-tuning
the model solely with pseudo-labels, our approach yields
superior performance by further enhancing the model’s abil-
ity to differentiate between relevant information within the
training data.

3.5. Post-processing

3.5.1 Motion Analysis

To tackle the problem that occurs due to different camera
types and angles, we propose several heuristic-driven al-
gorithms based on our previous work to analyze the right
vehicle movement.
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Turn Event Detector. To detect whether the vehicle is
turning left or right, it is necessary to know the relative po-
sition of motion vectors, this can be obtained by utilizing
the basic property of the cross-product, as demonstrated in
the formula below:

D = −−→p0p1 ×−−→p0pn (12)

where p0, p1, pn are the positions of the vehicle in the first,
second, and last frame, respectively. If the result of the
cross-product is negative, we can conclude that the vehicle
is turning left; otherwise, it is turning right.

This approach is based on the obvious assumption that
the vehicle turns gradually in one direction while moving
(i.e., there is no way the vehicle turns right and then turns
left). Furthermore, this method has been proven to be sim-
ple and efficient, as it only requires the positions of the ve-
hicle in the first, second, and last frames.

Stop Event Detector. Adopt from [18], to detect the stop
event of a vehicle, we follow a procedure that involves cal-
culating the L2 magnitude of the velocity vectors. First, we
obtain a list of velocity vectors v⃗i = −−−−→pipi+1, where pi and
pi+1 are the positions of the vehicle in frame i and i + 1,
respectively. Next, we calculate the L2 magnitude of each
velocity vector, which represents how far the vehicle moves
after one frame. If there exists an interval of time [L,R]
such that the L2 magnitude of the velocity vectors, ∥v⃗L..R∥,
is less than a constant threshold eps (which approximates
0), and the duration of the interval is long enough, then we
conclude that there exists a stop event.

3.6. Multi-contextual Pruning

Based on our observations, we have determined that im-
posing strict constraints on the contextual attributes of the
vehicle can significantly improve the accuracy of the final
results. Accordingly, we propose a novel multi-contextual
pruning approach that eliminates tracks with attributes that
differ from those specified in the description, such as color,
type, and direction, from the top of the rank. In contrast
to our prior approach, which relied solely on unidirectional
information, our proposed approach leverages a new mo-
tion analysis module to prune tracks based on bidirectional
information, which takes into account several directions of
the vehicle. By integrating this module, we can more ac-
curately identify and eliminate tracks that do not conform
to the specified contextual attributes, thereby improving the
overall accuracy of the model.

First Stage Pruning. In order to identify the correct ve-
hicle track, we consider the contextual attributes of each
vehicle in the current rank. The type πt and color πc at-
tributes are checked in sequence for each vehicle, starting
from the first and proceeding to the last in the rank. If these

attributes match the corresponding attributes in the descrip-
tion, the track is retained in the priority list; otherwise, it is
demoted to a lower priority. Once this step is completed,
the remaining tracks in the priority list are expected to have
the same type and color as the description. The priority list
is then used in the next step, where the tracks are rearranged
based on their primary direction.
Second Stage Pruning. The priority list is then used in
the next step, where the tracks are rearranged based on their
directions where determining the direction πd attribute is a
complex task as some descriptions may provide multiple di-
rections for the target track. To fully leverage this additional
information, we first predict all possible directions of the
track. We then use the priority list obtained from the pre-
vious step to rearrange the tracks based on their predicted
directions. In general, the pruning process is described in
the Algorithm 1.

Algorithm 1 Multi-Contextual Pruning

1: function PRUNING(text, current rank)
2: irrelevant list← {} ▷ initialize empty lists
3: priority list← {}
4: for u in current rank do ▷ filter type, color
5: if get type(u) = get type(text) and

get color(u) = get color(text) then
6: priority list.append(u)
7: else
8: irrelevant list.append(u)
9: end if

10: end for
11: highly relevant← {}
12: likely relevant← {}
13: directions← get directions(text)
14: for u in priority list do ▷ re-rank priority list
15: u directions← get directions(u)
16: if match all(u directions, directions) then
17: highly relevant.append(u)
18: else
19: likely relevant.append(u)
20: end if
21: end for
22: return highly relevant + likely relevant +

irrelevant
23: end function

4. Experiments
4.1. Dataset

This work uses the CityFlow-NL [8] Benchmark dataset,
consisting of 3.25 hours of footage from 40 cameras across
10 junctions in a mid-sized US metropolis. The dataset con-
tains 2155 tracks of vehicles with three natural language de-
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scriptions each, and 184 unique vehicle tracks were selected
for this challenge.

4.2. Evaluation Metrics

The Vehicle Retrieval by NL descriptions task is evalu-
ated using standard metrics for retrieval tasks. The Mean
Reciprocal Rank (MRR) is used and formulated as follows:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
, (13)

where ranki refers to the rank position of the right track for
the ith text description, and Q is the set of text queries. In
addition, Recall@5 and Recall@10 are also evaluated.

4.3. Implementation Details

All the training images are resized to 224× 224 and nor-
malized. In both training stages, we use AdamW [14] as the
optimizer with the initial learning rate set to 1e−2. We train
the model with 11 epochs with a batch size of 64. Each clas-
sification model settings are the same as the baseline model,
except the batch size is changed to 128 and training epochs
are 4. Each vehicle tracks’ attributes are generated by infer-
ence through all frames of each track and then choose the
class with the highest occurrence. All models are trained on
one GPU RTX 6000.

4.4. Ablation Study

Ablation study between previous works and current
works. Based on the results presented in Tab. 2, it is evi-
dent that our proposed approach, which is an enhanced ver-
sion of our previous work, outperforms the prior work in
terms of mean reciprocal rank (MRR) score. Specifically,
we observe a significant increase in MRR score for both
the baseline model and the semi-supervised domain adap-
tive (SSDA) training strategy. These results demonstrate the
effectiveness of our proposed improvements in enhancing
the performance of the retrieval model for tracked-vehicle
retrieval by natural language descriptions, as compared to
the prior work.

Ablation study of the proposed sytem. According to
Tab. 3, our experimental results demonstrate that our base-
line vehicle retrieval model, which employs the standard-
ized version of text, achieves an impressive MRR score of
30.28% which shows the effectiveness of the CLIP architec-
ture as the backbone of our model is thereby confirmed. No-
tably, the robustness of our model is demonstrated despite
the use of the standardized text, which contains less infor-
mation compared to the original text version. Subsequently,
by employing the SSDA training strategy, we achieve a
remarkable improvement of 24.12% MRR, resulting in a
new MRR score of 54.40%. Our experimental findings

demonstrate the effectiveness of the proposed SSDA ap-
proach for NL-based vehicle retrieval tasks. In addition, we
conducted a multi-contextual post-processing strategy that
comprised a two-stage pruning approach. Notably, the first
stage of pruning led to a significant improvement in MRR,
with a boost of 18.73% achieved, which boost the MRR to
73.13%. Our experimental findings highlight the efficacy
of the proposed pseudo-label generation technique in pro-
ducing highly accurate predictions that are closely aligned
with the ground truth. This approach is further leveraged as
a contextual constraint in a multi-stage pruning strategy to
enhance the overall performance of the final results. Finally,
in order to fully exploit the benefits of the pruning strategy,
we propose a novel multi-contextual pruning approach that
leverages the bidirectional attribute. This attribute serves as
a strict constraint to effectively differentiate between vehi-
cle tracks that exhibit highly similar visual contexts, which
can potentially lead to confusion in the model’s predictions.
Our experimental results demonstrate the effectiveness of
this approach in further improving the accuracy and relia-
bility of our retrieval system, resulting in a notable improve-
ment of 9.5% MRR, leading to a new state-of-the-art MRR
score of 82.63%.

Methods MRR Recall@5 Recall@10
Baseline [12] 29.59% 40.22% 64.67%

+SSDA 47.73% 66.30% 80.43%
Baseline (ours) 30.28% 44.02% 67.39%

+SSDA 54.40% 69.57% 90.22%

Table 2. The ablation study between solely using InfoNCE (prior
work) versus InfoNCE and CircleLoss

Baseline SSDA 1st Prune 2nd Prune MRR Recall@5 Recall@ 10
✓ 30.28% 44.02% 67.39%
✓ ✓ 54.40% 69.57% 90.22%
✓ ✓ ✓ 73.13% 92.93% 100.00%
✓ ✓ ✓ ✓ 82.63% 99.46% 100.00%

Table 3. Ablation study on system components

4.5. Challenge Results

As shown in table 4, the final score of our team (Team
ID 9) final mean reciprocal rank for the test set is 0.8263.
We achieved rank #1 on Track 2 Natural Language-Based
Vehicle Retrieval of AI City Challenge 2023.

5. Conclusions
In conclusion, this paper presents a solution for Track

2 in the AI City Challenge 2023 for tracked-vehicle re-
trieval by natural language descriptions. The proposed so-
lution addresses linguistic ambiguity in the query, utilizes
CLIP for feature extraction, uses Semi-Supervised Domain
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Rank Team ID Team Name MRR
1 9 HCMIU-CVIP (ours) 82.63%
2 28 IOV 81.79%
3 85 AIO-NLRetrieve VGU 47.95%
4 151 AIO2022 VGU 46.59%
5 76 DUT ReID 43.92%

Table 4. The overall ranking on MRR score of AI City Challenge
2023 - Track 2: The Natural language based vehicle retrieval

Adaptive training to overcome domain gap, and employs a
post-processing technique to prune out wrong results based
on multi-contextual attributes information. The proposed
framework achieved a competitive performance of 82.63%
MRR accuracy on the test set and won 1st place in the
competition. The success of this solution demonstrates the
effectiveness of the proposed approach in addressing real-
world challenges in cross-modal retrieval tasks.
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