
Action Probability Calibration for
Efficient Naturalistic Driving Action Localization

Rongchang Li1, Cong Wu1,5, Linze Li1, Zhongwei Shen2, Tianyang Xu1,
Xiao-jun Wu1, Xi Li3, Jiwen Lu4, Josef Kittler5

1Jiangnan University. 2Suzhou University of Science and Technology.
3Zhejiang University. 4Tsinghua University. 5University of Surrey.

{li rongchang, congwu, linze.li}@stu.jiangnan.edu.cn, shenzw@usts.edu.cn
{tianyang.xu, wu xiaojun}@jiangnan.edu.cn

xilizju@zju.edu.cn, lujiwen@tsinghua.edu.cn, j.kittler@surrey.ac.uk

Abstract

The task of naturalistic driving action localization car-
ries significant safety implications, as it involves detecting
and identifying possible distracting driving behaviors in
untrimmed videos. Previous studies have demonstrated
that action localization using a local snippet followed by
probability-based post-processing, without any training
cost or redundant structure, can outperform existing
learning-based paradigms. However, the action probability
is computed at the snippet-level, the input information
near the boundaries is attenuated, and the snippet size is
limited, which does not support the generation of more
precise action boundaries. To tackle these challenges, we
introduce an action probability calibration module that
expands snippet-level action probability to the frame-level,
based on a preset snippet position reliability, without
incurring additional costs for probability prediction.
The frame-level action probability and reliability enable
the use of various snippet sizes and equal treatment for
information of different temporal points. Additionally,
based on the calibrated probability, we further design
a category-customized filtering mechanism to eliminate
the redundant action candidates. Our method ranks 2nd
on the public leaderboard, and the code is available at
https://github.com/RongchangLi/AICity2023 DrivingAction.

1. Introduction
Abnormal driving conditions pose serious safety haz-

ards, involving facial movements such as yawning, or full-
body movements such as texting. The naturalistic driving
action localization requires the detection of distracted driv-
ing actions of the driver, which has the potential to make

driving safer by alerting drivers or autonomous vehicles
to potential hazards and reducing the number of accidents
caused by human error. The AI City Challenge dataset
[24, 25] collects driving data using three cameras from dif-
ferent perspectives inside the vehicle, with the objective of
accurately identifying distracted actions and localizing their
start and end times. This task has significant applications in
enhancing traffic safety and developing smart cities.

The previous top-performing solutions [15, 28] for nat-
uralistic driving action localization involved a multi-stage
process. First, the video was segmented into smaller snip-
pets, and then an action recognition model was used to
predict the action class probability. Finally, a training-
free post-processing strategy was employed to convert the
snippet-level class probability sequence into the localiza-
tion results. However, the method of generating localization
results based on snippet-level class probabilities has the fol-
lowing issues: (1) The finest temporal resolution is limited
by the snippet size, which may decrease the reliability of the
predicted class probabilities; (2) Assigning the same class
probability score to every temporal position within a snippet
is not reasonable for positions near the snippet boundaries.

To address these issues, we propose an action probabil-
ity calibration method. Our calibration method generates
frame-level action probability scores from various snippet-
level results with preset reliability, without introducing ad-
ditional computations. Furthermore, we utilize prior knowl-
edge from the multiple camera views to calibrate the ac-
tion scores. With the proposed action probability calibra-
tion, overlapping snippets of different sizes can be used to
parse videos without losing information at each temporal
point. Based on calibrated action probabilities, we then pro-
pose the class-customized filter mechanism that gradually
extends and filters local action recognition results to long-
term action regions.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5270



ST
Mode

l
…

Snippet 
Probability 

𝐶

Frame 
Probability 
𝑇 𝐶

…
Mapping 𝑇

ST
Mode

l
…

Snippet 
Probability 

𝐶

Frame 
Probability 
𝑇 𝐶

…
Mapping 𝑇

Drinking Yawning

Gaussian Weighted 
Average

Multiple View 
Ensemble

AR
Model

…

Snippet Probability Frame Probability 

…

Mapping 𝑇

Different Sampling and Training Strategies
…

Refinement

…

Frame Class 𝑇 1

Action Probability Calibration

Probability Filter

Merge

Figure 1. Overall pipeline. The input video is divided into overlapping snippets of various sizes, which are then processed by action
recognition (AR) models to predict snippet-level action probabilities. These probabilities are then mapped to frame-level and calibrated
using the proposed calibration method. The calibrated probabilities are then fed into the action localization component to generate action
regions.

2. Related Work
2.1. Action Recognition

Action recognition is the fundamental research of video
analysis, which involves the classification of short-trimmed
videos using end-to-end deep learning methods. There
are two typical architectures of deep learning based action
recognition models: CNN-based and Transformer-based.

The CNN-based model adopts convolution blocks as the
basic network units. 2D-based methods first extract spatial
features and then fuse the spatial features through tempo-
ral modeling [13, 16, 30, 31]. Independent temporal mod-
eling augments temporal features with flexible motion in-
formation. Video inherent motion information, e.g. spatial
difference [14, 20], short-term difference [29] and learn-
able adaptive motion information [12, 22], have an impact
on the 2D-based methods. 3D-based methods process the
spatial-temporal information of videos as 3D objects di-
rectly [3,27,34]. SlowFast [10] and X3D [9] explore the in-
fluence on performance of different model dimensions, and
propose high-performance network structures according to
different task scales. Recently proposed transformer-based
methods split videos into 3D tokens and utilize transformer
layer to extract the spatial-temporal features [1, 2, 8, 21].

2.2. Temporal Action Localization

Video temporal action localization aims to recognize
the class of an action and accurately localize its temporal
boundaries. There are two main categories of methods for
this task: two-stage and one-stage methods.

Two-stage methods typically generate temporal candi-
date proposals and then classify and refine the temporal
boundaries of these proposals. Previous works have em-
ployed methods such as sliding windows aggregation [7] or
boundary detection refinement [4, 18]. Recent researchers
have proposed approaches that model action contexts using
attention mechanisms [26,32] and graph structures [35,36].

DCAN [5] improved the quality of the generated action pro-
posals by aggregating contextual semantics at the boundary
level and proposal level to improve the localization perfor-
mance. Despite the more complex nature of the two-stage
approach, it has higher localization accuracy.

One-stage action localization does not generate propos-
als and intends to localize the action directly without gen-
erating a proposal in a single shot [17, 19, 33, 37, 38]. Ac-
tionformer [37] utilizes the FPN of the Transformer to per-
form one-stage action localization. However, previous ap-
proach [28] proved that the above method is not applica-
ble to the AI City Challenge Track3 dataset [24, 25] due
to the limited number of training samples. The previous
methods adopt post-processing techniques to obtain action
localization results, without requiring additional training.
But in their solutions, the temporal resolution is related to
the size of the snippet, and the classification results at the
snippet level are directly assigned to all frames, neglecting
the difference between the boundary frames and the central
frames in the snippet. Our proposed method also adopts
the training-free post-processing solution. But we design a
novel probability calibration method to overcome the men-
tioned problems without introducing extra inference costs.

3. Method

3.1. Overall pipeline

As shown in Fig. 1, the main components of our pro-
posed process are as follows:

• Snippet-level Action Recognition: The input video
is divided into snippets of varying sizes, then recogni-
tion models are used to predict the action probability
of each snippet.

• Action Probability Calibration: We propose the re-
liability score for each frame to guide aggregating
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Figure 2. Snippet-level action recognition. We design different
sampling strategies to partition the snippets and obtain the corre-
sponding action probability predictions.

the action probabilities of different snippets. This al-
lows us to calibrate snippet-level action probabilities
to frame-level probabilities while maintaining infer-
ence cost. Subsequently, the frame-level probabilities
are integrated and calibrated from multiple viewpoints
using prior knowledge to obtain the final probability
score.

• Action Localization: Based on the frame-level action
probabilities, we gradually expand the action bound-
aries to obtain the final localization results. Addition-
ally, we propose a category-customized filtering mech-
anism to filter the redundant candidates.

3.2. Snippet-level Action Recognition

Given a video, as shown in Fig. 2, we divide it into n
overlapped snippets {S1, S2, . . . , Sn}. Then F frames are
sampled from each snippet with an interval of R. These
sampled frames are then fed into an action recognition (AR)
model to obtain the action probability scores P ∈ RC for
each snippet. We split the training videos into meaning-
ful segments according to the annotations and use these
segments to train the action recognition network. Though
we can choose arbitrary action recognition models to pre-
dict action probabilities, we chose the lightweight X3D
model [9] due to the characteristics and scale of the natu-
ralistic driving action dataset.

3.3. Action Probability Calibration

The above-mentioned procedure yields action probabil-
ities for each video snippet. [15, 28] determine the proba-
bility of each frame position as the average score of vari-
ous snippets containing the frame, thus making the action
recognition results owe a snippet-level temporal resolution.
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Figure 3. Reliability-based action probability calibration. S1 and
S2 are snippets containing the target frame. The proposed cali-
bration method relies on the reliability score to fuse the results of
multiple snippets.

Accordingly, using the larger snippet size will cause coarser
recognition results, which will further deteriorate the subse-
quent localization performance. Moreover, it seems unrea-
sonable to assign the snippet-level action category probabil-
ity to all frames within the snippet.

To address these problems, we propose a training-free
probability calibration method to generate frame-level ac-
tion probability scores from snippet-level results, as shown
in Fig. 3. The method includes allocating the snippet-level
action probability scores to each frame within the snippet
and pre-defining the reliability of the probability allocation
for different frames, which determines whether to trust the
allocated action category score. Specifically, we assume
that the reliability of the allocated probability follows a
Gaussian distribution at different positions within the snip-
pet. The distribution makes sure that the frames closer to
the middle have higher reliability than the frames closer to
the edges, which is in line with common sense. The relia-
bility weight for frame f that is lf distance away from the
center of snippet s is formulated as:

wf,s =
1√
2πσ2

e−
l2f

2σ2 (1)

where σ is the standard deviation. According to this for-
mula, the reliability weights at the edges decrease as the
size of the video snippet increases. Based on the reliabil-
ity weight of probability, we define the probability score for
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Figure 4. Temporal action localization. We propose an efficient
post-processing strategy to merge local candidates and discard po-
tentially incorrect candidates.

frame s as:

P̂ (f) =

∑
s∈Ω

wf,sPs∑
s∈Ω

wf,s
(2)

where Ω is the snippet set containing frame f , Ps is the
snippet-level action probability. In this way, we refine the
temporal resolution to the frame-level without increasing
the inference cost compared to [15]. Moreover, we can fully
utilize the results of snippets of any size and any overlap ra-
tio in a flexible manner.

Finally, we incorporate prior knowledge of viewpoints
to calibrate the probability scores during the multi-view en-
semble step. Intuitively, the reliability of recognition results
from different viewpoints may vary for certain action cate-
gories. For instance, neither the Dashboard nor the Rear
View can fully capture the entire range action of ’Adjust-
ing control panel’, while the Right Side may not be able to
provide sufficient visibility of the driver’s left-hand move-
ments. Here we leverage this prior knowledge to adjust
the score ratios of corresponding action categories from the
three viewpoints. The final calibrated probability score of
class c is formulated as:

P (c) =

∑
v∈V

wv,cP̂v,c∑
v∈V

wv,c
(3)

Here V is the set of views, wv,c means the preset class
weight for view v and P̂v,c means the frame-level proba-
bility score of class c from view v.

3.4. Temporal Action Localization

After calibrating the action probability, we choose the
class with the highest score as the classification result, and
its corresponding probability score is assigned as the con-
fidence score. As shown in Fig. 4, for each category, we

determine a threshold to filter out frames with low confi-
dence scores. After the filtering process, we obtained some
rough candidate regions of interest for the foreground, i.e.
distracted driving actions. As these candidate regions rep-
resent local results, we next merge regions belonging to the
same action category and with intervals not exceeding λ1

to obtain candidate regions of longer duration. Then, we
again filter the candidates that are too short (i.e. duration is
smaller than λ2). We further define the confidence of can-
didate regions as the average confidence score of the frames
within the region. Then, for each category, we filter out can-
didate regions with low confidence scores to obtain the final
localization results. As candidate regions can be redundant,
we set the filter threshold for class c as Max(P(c)) ∗ ratio.

4. Experiment and Results
In this section, we present the experiments results of our

proposed method on the AI City Challenge 2023 Track3
Dataset. Additionally, we provide a detailed description of
the dataset, evaluation metric, implementation details, and
extensive ablation experiments.

Datasets. The AI City Challenge 2023 Track3 dataset
consists of 210 videos performed by 35 drivers, totaling ap-
proximately 34 hours. The dataset is divided into three sub-
sets: training set A1, validation set A2, and testing set B,
which contains videos performed by 25, 5, and 5 drivers, re-
spectively. The dataset was collected by having each of the
35 drivers complete two data collection tasks under differ-
ent appearance blocks. Each task consisted of 16 different
activities, such as talking on the phone, eating, and reach-
ing back. The activities were completed in approximately
eight minutes each. Videos were recorded synchronously
at 30 fps from three perspectives: Dashboard, Rear View,
and Right Side. Hence, A1, A2 and B contain 150, 30, 30
videos respectively.

Evaluation metric. Evaluation for AI City Challenge
2023 track 3 is based on activity identification performance,
measured by the average activity overlap score, which is
defined as follows.

os(p, g) =
max(min(ge, pe)−max(gs, ps), 0)

max(ge, pe)−min(gs, ps)
, (4)

where gs and ge are the start time and end time of ground-
truth activity g, respectively. p is the best predicted activity
match of the same category to g, os means highest overlap.
With the additional condition that the start time ps and end
time pe of the predicted activity must fall within a tempo-
ral range of [gs - 10s, gs + 10s] and [ge - 10s, ge + 10s],
respectively. The overlap between g and p is defined as the
ratio between the time intersection and the time union of the
two activities. After matching each ground truth activity in
order of their start times, any unmatched ground truth activ-
ities or unmatched predicted activities will receive an over-
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lap score of 0. The final score is calculated as the average
overlap score among all matched and unmatched activities.

4.1. Implementation Details.

Training action recognition models. We utilize the
Kinetics-400 [3] pre-trained X3D-L [9] to predict action
probabilities. To train the action recognition model, we trim
the long videos in the training set (A1) to meaningful action
segments according to the annotations. To better utilize the
information from the background class, we also trim the un-
labeled video (belonging to the background class) regions to
form the enlarged training set. We call the enlarged training
set A1 expand. For each input video, two options are avail-
able for frames sampling: F = 8 or F = 16 frames, with
sample rate R setting as 4, 8, 12 or 2, 4, 6. So, the snip-
pet lengths are 32, 64, or 96. For each fixed-length snippet,
we then vary the overlap ratio to 0%, 25%, 50%, and 75%,
respectively. The initial learning rate is 5e-4. We utilize
the Adam [11] optimizer with cosine annealing [23] as the
learning rate schedule. The batch size is set as 48 and the
number of total train epochs is 35. The input is first resized
to 512×512 and then cropped to 448×448. We adopt scale
jitter, rand augment [6] and mixup [39] for data augmen-
tation. All the models are trained on 2 NVIDIA GeForce
RTX 3090 GPUs.

Action probability inference. For Action probability
inference, we maintain the same video pre-processing set-
tings. Specifically, we resize each frame of the input video
to 512×512, and use a snippet of size 32, 64, and 96 (cor-
responding to sampled frames×sample rate). The standard
deviation σ in Eq. (1) used for calibrating the action proba-
bility is set to 30, which we find can give reasonable relia-
bility weights to frames near the snippet boundary. Finally,
we ensemble the results on A1 and A1 expand by differ-
ent sampling methods, different snippet overlap rates, and
different views.

Temporal action localization. When filtering out
frames of low confidence, the specific threshold of class c
is first defined as the average confidence scores of frames
recognized as class c minus a margin (0.1). Then, we com-
press the thresholds greater than 0.5 to 0.5, and raise the
thresholds less than 0.1 to 0.1, in order to adjust the thresh-
olds and make them more reasonable. For firstly filtering
candidate regions, λ1 is set as = 8s, and λ2 is set as 1s. For
second filtering candidate regions, the ratio is set as 0.95
for filtering as many redundant regions as possible.

4.2. Main results

Tab. 1 displays the Top-10 methods on the Track3 public
leaderboard, where our proposed method achieved the 2nd
place with an average overlap score of 0.7041.

Rank TeamID Score

1 209 0.7416
2 60(Ours) 0.7041
3 49 0.6723
4 118 0.6245
5 8 0.5921
6 48 0.5907
7 83 0.5881
8 217 0.5426
9 152 0.5424
10 11 0.5409

Table 1. Comparison to other submissions methods on AI City
Challenge 2023 Track3 A2 validation dataset.

Frames Rate Score
F = 8 F = 16

8 4 0.5697
8 (4,8) 0.5791
8 (4,8,12) 0.5805

(8,16) (4,8,12) (2,4,6) 0.5955
(a) Study on different snippet size.

Snippet overlap ratio Score

0 0.5783
25% 0.5761
50% 0.5855
75% 0.5955

(b) Study on different overlap ratio.

Table 2. Study on different sample strategy.

4.3. Ablation studies

All ablation experiments are conducted using our self-
defined training and test sets. Specifically, we adopt 25%
samples of the given training set as the validation set (user
id: 85870, 86356, 86952, 96269, 99882), and the remain-
ing 75% samples for action recognition model training. The
ablation experiments are based on the same training and val-
idation sets as described in Sec. 4.1.

Study on different sample strategy. We experimented
with different sampling strategies to evaluate the effective-
ness of various snippet sizes in probability correction, as
provided in Tab. 2 (a). The baseline achieved a score of
0.5697 when the sampling frame was F = 8 and the sam-
pling rate was R = 4 (with a snippet size of 32). By in-
tegrating model with a sampling rate of R = 8 (with a
snippet size of 64), the score improved to 0.5791. The per-
formance was further improved by continuing to integrate
the model with R = 12. Finally, we integrated all the
models with snippet sizes of 32, 64, and 96 for sampling
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Dashboard Rear View Right Side Score

✓ 0.5784
✓ 0.5665

✓ 0.5465
✓ ✓ ✓ 0.5955

(a) Study on different views.

Views fusion type Category
Adjustment Scoremean gaussian

✓ 0.5774
✓ ✓ 0.5923

✓ 0.5821
✓ ✓ 0.5955

(b) Study on calibrations.

Table 3. Study on action probability calibration settings.

frames of 8 and 16, achieving the best result with a score
of 0.5955. Meanwhile, we conducted detailed experiments
on different snippet overlap ratios, as shown in Tab. 2 (b).
When the snippets are not overlapped, the final localization
score achieved is 0.5783. Adopting 25% overlap results in
a degradation of performance. However, when the overlap
rate is increased to 75%, the problem of weakened edge in-
formation is greatly alleviated by combining our sampling
and fusion strategies to further refine the temporal resolu-
tion, leading to the best performance.

Study on action probability calibration settings.
Tab. 3 (a) showcases our investigations of the probabilistic
fusion of different views. It shows that single view prob-
abilities are not sufficient for effective localization post-
processing, hence multi-view fusion is necessary. Tab. 3
(b) presents the view fusion settings and category adjust-
ment strategy. As mentioned in Sec. 3.3, it is not reason-
able to assign the probability of the snippet level directly to
all frames within the snippet, as the reliability of different
frames within a snippet can vary. Similarly, the reliability
of certain categories may differ across views. Experimental
results support these ideas, showing that using mean fusion
without adjusting view categories results in average perfor-
mance. However, using Gaussian fusion and category ad-
justment operations significantly improves performance.

Study on different Temporal Action Localization set-
tings. Similarly, we conducted detailed experiments on the
filtering parameters for post-processing of localization, as
shown in Tab. 4. We compare different thresholds for re-
gion merging and region filtering. The results indicate that
λ1 = 8 and λ2 = 1 are the most appropriate thresholds.

λ1(s) λ2(s) Score

8 1 0.5955
12 1 0.5883
16 1 0.5924
20 1 0.5868
8 2 0.5947
8 4 0.5501
8 6 0.4978

Table 4. Study on different Temporal Action Localization settings.

5. Conclusion
We propose an action localization method that utilizes a

calibration mechanism to improve action probability scores.
Our method employs prior knowledge to assess the reliabil-
ity of action results, obtaining reasonable action probability
scores for each frame without increasing inference costs.
Additionally, we propose the category-customized filtering
mechanism to extend the frame-level classification results
to action regions, achieving competitive results in Track 3
of the AI City Challenge 2023.
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