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Abstract

Multi-camera person tracking has gained significant at-
tention in recent times, owing to its widespread application
in surveillance scenarios. However, this task is challeng-
ing due to the variance viewpoints, heavy occlusion, and
illumination changes. In order to tackle these challenges,
we propose a novel Hierarchical Clustering and Refinement
framework for Generalized Multi-Camera Person Tracking.
Specifically, our framework comprises two main compo-
nents: hierarchical clustering and hierarchical refinement.
Compared with directly clustering tracklets among multi-
ple cameras, our hierarchical clustering strategy can pro-
gressively assign tracklets to correct targets. Nevertheless,
the clustering and tracking process would inevitably pro-
duce incorrect matchings. Therefore, a hierarchical refine-
ment strategy is proposed to reduce these incorrect matches
which includes: intra-camera tracklet level refinement, ap-
pearance refinement, spatial-temporal refinement, and face
refinement. Extensive experiments show the effectiveness of
our method, which achieves 92% IDF1 in 2023 AI CITY
CHALLENGE track1, ranking 5th on the leaderboard.

1. Introduction
Recently, many researchers have been continuously ex-

ploring elaborated approaches for person retrieval among
multiple cameras under various video surveillance sce-
narios to create more practical applications for per-
son search. Compared with vanilla image-based per-
son re-identification, Multi-Target, Multi-Camera Tracking
(MTMCT) is a more practical yet challenging computer
vision task. Apart from recognizing persons across cam-
eras, it requires tracking multiple targets within every sin-
gle camera, as well as cross-camera tracklets association.
With the trajectories of multiple targets from multiple cam-
eras, MTMCT provides a multi-view and more informa-
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Figure 1. Clustering tracklets within a single camera. Tracklets
of the same identity with different resolutions and different view-
points can be aggregated by the clustering results.

tive analysis of different targets and boosts the develop-
ment and practicality of the public security system. Typi-
cally, the pipeline of MTMCT can be attributed to the fol-
lowing steps: 1) Detection of Pedestrians, 2) Single Cam-
era Tracking, 3) Person ReID Feature Extraction, and 4)
Cross-camera Association. Concretely, the first step local-
izes the positions of persons in each frame of the surveil-
lance video. The second step conducts short-term track-
ing of persons detected from the first step using state-of-
the-art Multiple Object Tracking (MOT) methods to obtain
the short-term tracklets. The third step extracts the person
re-identification (ReID) feature for each tracklet with deep
person re-identification models. The final step utilizes the
ReID features of tracklets obtained from the third step, and
associates tracklets across cameras according to the similar-
ities of extracted tracklet features.

However, there are several issues with the MTMCT task:
Firstly, MTMCT should be applied to diverse surveil-

lance scenarios. Notably, with the development of the meta-
verse, tracking persons in virtual surveillance scenarios is
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worth exploring. In the first track of AICity 2023, the
MTMCT task under the diverse indoor surveillance sce-
narios, including the real surveillance scenarios and virtual
surveillance scenarios, is considered.

Secondly, MOT within a single camera can only capture
short-term tracklets, and associating targets with individual
tracklets is not robust enough since it is susceptible to the
variance of viewpoints, illumination, and resolution of in-
put images. In real public places, such as offices and su-
permarkets, the same identity often appears and disappears
repeatedly within the same camera. This indicates that one
identity has multiple tracklets under the same camera. As
shown in Fig. 1, the shown tracklets are of different res-
olutions and viewpoints. Intuitively, if we first aggregate
the tracklets of the same target via intra-camera clustering,
the aggregated features are more robust for the cross-camera
association. Therefore, we propose hierarchical clustering
as our clustering strategy. Since intra-camera tracklets clus-
tering is easier than inter-camera tracklets, our method first
conducts intra-camera clustering for intra-camera tracklets
with extracted person ReID features to obtain more robust
representations for all intra-camera targets. Subsequently,
we take the intra-camera clustered features as the robust
person ReID representations for corresponding targets and
furtherly utilize the clustered features to associate cross-
camera targets.

Finally, we observe the quality of frames in a tracklet
cannot be assured, since the individual images suffer from
occlusion and the variance of illumination. Moreover, there
are many mis-clustered tracklets. Therefore, we propose hi-
erarchical refinement, including the tracklet-level refine-
ment and cluster-level refinement. For tracklet-level refine-
ment, we filter out the low-quality frames which are dis-
similar to the video-level tracklet features. For cluster-level
refinement, we introduce face representations as another ef-
fective biometric clue for refining the clustering results. An
example is shown in Fig. 2, the mis-clustered tracklet is
clustered to c1, since it has a similar ReID feature with c1.
As for the face representation, it differs greatly from c1 and
is similar to c2. Specifically, we first pick up the tracklets
which are possible to be mis-clustered by choosing the ones
which are dissimilar from the corresponding clusters. Then,
we associate the selected tracklets with face representations.

Our contributions can be attributed as following:

• We propose hierarchical clustering, which separately
conducts intra-camera clustering and inter-camera
clustering to associate identities across cameras.

• We propose hierarchical refinement, including
tracklet-level refinement and cluster-level refinement.
The two refinements respectively refine the tracklet
features by filtering out low-quality frames, and boost
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Figure 2. Cluster-level refinement with face representations. (a)
shows a tracklet that is correctly clustered to cluster c1. (b) shows
a tracklet which is mis-clustered to c1 (the ground truth cluster of
the tracklet is c2), since it has similar appearance feature with c1.
However, the faces of the mis-clustered tracklet differ extremely
from the faces detected from c1.

the clustering results by taking advantage of face
representations as another type of effective biometric
clue.

• Our method achieves advanced performance and fifth
place in the first track of AICity 2023.

2. Related Work

2.1. Person Detection

Person detection is a critical task in computer vision that
involves identifying and localizing individuals in images or
videos. It has a wide range of applications, including video
surveillance, autonomous driving, human-computer inter-
action, and more.

Generally, person detection algorithms can be divided
into two main categories including one-stage detectors [33,
41] and two-stage detectors [2, 19, 42]. One-stage detec-
tors, such as YOLO [41] and SSD [33], are known for their
real-time performance and speed but may sacrifice some ac-
curacy for speed. In contrast, two-stage detectors, such as
Faster R-CNN [42], Mask R-CNN [19], and Cascade R-
CNN [42], provide greater precision and flexibility but re-
quire more computational resources.

Owing to the success of transformer structures in natu-
ral language processing, transformer-based detectors such
as DETR [4] and Swin Transformer [35] are booming re-
cently. By utilizing vision transformers that treat an image
as a sequence of patches, these detectors employ the self-
attention mechanism to capture long-range dependencies.
Consequently, they have demonstrated competitive perfor-
mance on object detection benchmarks.
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Figure 3. The pipeline of our hierarchical refinement for the MTMCT system. We first detect all persons using the YOLOv5 model and
extract the person ReID feature using the ReID model. Then all bounding boxes and ReID features are sent to the ByteTracker to associate
the pedestrian bounding boxes in the video. Hierarchical clustering is performed on intra and inter tracklets to merge single tracklets. And
tracklet-level refinement and inter-camera tracklets refinement are performed to improve the clustering results.

2.2. Person Re-identification

Person re-identification (ReID) [21, 30, 34, 36, 55] is an
important task in computer vision, particularly in surveil-
lance systems, which aims to match pedestrians across
different cameras. Over the past few years, remark-
able progress has been made in Person ReID through ad-
vanced techniques such as self-supervised learning and
transformer-based ReID.

Self-supervised learning techniques, such as contrastive
learning, have emerged as successful approaches for per-
son ReID representations learning without large amounts
of labeled data [24]. These techniques have simplified the
training of ReID models on large-scale datasets. Exist-
ing self-supervised learning methods can be classified into
three categories. Firstly, generative self-supervised learn-
ing [8,11,25,40] aims to generate synthetic samples, which
are further involved to enlarge the training data and enhance
the generalization performance of the ReID model. Sec-
ondly, contrastive self-supervised learning [5,7,9,17,18,48]
aims to train an encoder by drawing the embeddings of the
same sample with distinct data augmentation closer while
pushing embeddings of other samples away. Finally, adver-
sarial self-supervised learning [12, 16, 27, 28] aims to gen-
erate fake samples by training a generator and distinguish
them from genuine samples by a discriminator. Currently,
contrastive self-supervised learning has established its dom-
inance in computer vision.

CNN-based techniques have dominated the ReID com-
munity for several years. However, the popularity of pure-
transformer models is on the rise. The TransReID model
[21], for instance, was the first to effectively employ Vi-
sion Transformers for Person and Vehicle ReID, which
achieves state-of-the-art results. Many other works try to
utilize Transformers to aggregate features or information
from CNN backbones. For example, [29, 44, 54] integrate
Transformer layers into the CNN backbone to aggregate hi-
erarchical features and align local features. Additionally,
for video ReID, [34,55] leverage Transformers to aggregate
appearance features, spatial features, and temporal features
in order to learn a discriminative representation for a person
tracklet.

Combining the two methods above, TransReID-SSL [36]
further investigates that DINO [6] algorithm with Trans-
former architecture obtains the best ReID performance
among the existing self-supervised learning (SSL) methods
and network architectures.

2.3. Single-camera Tracking

Single-camera tracking (SCT) is a subfield of computer
vision that aims to track the movement of objects in a video
sequence captured from a single camera [10]. There are cur-
rently two types of SCT algorithms. The first type follows
the tracking-by-detection paradigm [1, 3, 13, 38, 51, 53, 56],
while the second type called joint-detection-tracking com-
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bines object detection with ReID in a single network [31,
45, 49, 57, 59].

Tracking-by-detection methods, such as SORT [1] and
DeepSORT [51], first detect objects using deep detection
models, and then obtain the trajectories of targets by data
association between adjacent frames. Due to the improve-
ment of object detection techniques [15,19,35,41,42], these
methods have been dominant in the SCT task for years.
Joint-detection-tracking methods, such as those incorporat-
ing appearance embedding or motion prediction into detec-
tion frameworks, achieve comparable performance with low
computational costs. However, these methods face a chal-
lenge in optimizing the competition between different com-
ponents, which ultimately constrains their tracking perfor-
mance.

2.4. Multi-Camera People Tracking

Based on the results of the aforementioned tasks, the pri-
mary goal of multi-camera people tracking is to establish
a series of tracking chains across different cameras. To
enhance their pipeline, some works [22, 23, 26, 39] have
incorporated external information about the camera setup.
To prevent infeasible cross-camera transitions, [23, 32, 46]
utilize scene topology, while camera adjacency is consid-
ered in [22, 32, 46]. In [22], the movement directions were
used to determine the feasibility of camera transitions, and
camera-specific regions are defined to identify the possibil-
ity of tracks appearing in multiple cameras. Furthermore,
clustering approaches have been identified as effective for
addressing this task in related literature [23, 26, 43, 47].

3. Method
3.1. Overview

Our proposed framework for Multi-Target Multi-Camera
Tracking (MTMCT) is illustrated in Figure 3. The frame-
work consists of four main components: Person Detec-
tion, Person Re-identification, Single-camera tracking, and
Multiple-camera tracking. The overall process can be sum-
marized as follows: (1). Using the person detector to ob-
tain person bounding boxes from every camera view. (2).
Extracting person ReID features from each bounding box
by employing a pre-trained ReID model. (3) Utilizing the
Single-camera tracking model to generate single-camera
tracklets for each camera. (4) Clustering tracklet features
to associate intra-camera tracklets. (5) Applying cluster-
ing methods for associating inter-camera tracklets. (6) Re-
fining the inter-camera tracklets using appearance, spatial-
temporal and face constraints.

3.2. Person Detection

Person detection is the initial and critical step in cross-
camera tracking; therefore, utilizing a reliable detector is
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Figure 4. The pipeline of our ReID model. We initialize Tran-
sReID model by the TransReID-SSL pre-trained weights and fine-
tune the ReID model on a combined dataset.

paramount. The person detection phase requires precise and
non-missing pedestrian detection boxes. To effectively de-
tect more pedestrians, we employ YOLOv5 as our detector.
Overall, YOLOv5 is a highly accurate and efficient object
detection algorithm that has been widely adopted in various
applications.

In the competition scenario, both real and virtual pedes-
trian images are present. As the pre-trained YOLOv5
model has already achieved excellent person detection per-
formance on the COCO dataset, we use it to detect persons
in real-world scenes. For virtual scenarios, we train the
YOLOv5 detector from the scratch using the virtual dataset
provided by AICity2023. We ignore other categories and
only detect pedestrians in the scene by applying NMS to
remove duplicate detection boxes. With the YOLOv5 de-
tector, we obtain the detection boxes and confidence scores
of pedestrians in the corresponding videos.

3.3. Person Re-identification

Our person re-identification model is based on the
TransReID-SSL [36], which has been pre-trained on the
LUperson dataset [14], and is known for its ability to ex-
tract robust and domain-invariant ReID features. As shown
in Fig. 4, to further improve its performance, we train the
TransReID [21] model on a combined dataset comprising
Market-1501 [58], MSMT17 [50], CUHK-SYSU [52], and
the AiCity2023 dataset. We initialize the model’s weights
using TransReID-SSL pre-trained model and fine-tune it
with an input image of 256 × 128 size, with the Cross-
Entropy loss and triplet loss. The Cross-Entropy loss func-
tion can be formulated as follows:

Lce = − 1

N

N∑
i=1

yi log (ŷi) , (1)

where y is the ID label for i-th image, and N is the number
of images in the combined dataset. And the triplet loss can
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be formulated as follows:

Ltri =

N∑
i=1

max (m+ d (fa
i , f

n
i )− d (fa

i , f
p
i ) , 0) , (2)

where d is the l2 distance, fp
i , fn

i is the positive and negative
samples and m is the margin of triplet loss.

3.4. Single-camera person tracking

For single-camera person tracking, we need to associate
the detected bounding boxes in the video to obtain the cor-
responding tracklets. We use ByteTrack as the tracking al-
gorithm, which can associate low-confidence detections by
associating every detection box with a unique identity.

As shown in Fig. 3, we first extract person features using
the ReID model, and then input the bounding box and ReID
features into the tracking model. The tracker considers mo-
tion information and visual similarity to assign a tracklet ID
to each detected box. With the tracking model, we can as-
sociate the pedestrian bounding boxes in the video to obtain
tracklets.

Single-camera Tracklet-level Refinement Due to some
crowded situations, people with different identities may be
assigned to the same tracklet, which causes the ID switch
problem. Therefore, we first calculate the intra-variance
of the tracklet by calculating the distance between the fea-
ture of individual frames and the mean feature of all frames
in a tracklet. If a tracklet contains different identities, its
intra-variance would be high due to the appearance vari-
ance. Therefore if the intra-variance is greater than a certain
threshold, we use the K-means algorithm to split the tracklet
into two tracklets to reduce errors caused by single-camera
trackers. Specifically, we set the threshold to 0.3.

Single-camera tracklet association Since AiCity2023
track1 is under the indoor setting, the same person may have
multiple trajectories in a single camera. Therefore, we first
roughly cluster these tracklets and merge these tracklets in
the same clusters, considering them as the same person. To
do this, we firstly obtain the tracklet feature by averaging
the features of all frames in the tracklet. So the tracklet can
be denoted as trac = {f, ti, to, c}, where f is the track-
let feature, ti and to is the time the person enters and exits
the camera, c is the camera ID. Then the appearance dis-
tance among the tracklets can be denoted as Dappearance.
Moreover, the Jaccard distance matrix is also calculated to
combine neighbor information, which can be denoted as
Djaccard. Moreover, considering that tracklets within the
same camera with overlapping time intervals cannot belong
to the same cluster, we set the distance of these tracklets to
1.

Di,j
spatial =

{
1, {tii, toi} ∩ {tij , toj}! = 0

0 else
. (3)

Therefore, the fusion distance matrix can be formulated as:

D = Dappearance + αDjaccard + βDspatial, (4)

where α and β are the weights parameters. After obtaining
the fusion distance matrix, we perform DBSCAN algorithm
to roughly cluster these tracklets and merge tracklets in one
cluster.

3.5. Cross-camera person association

In this module, we will describe our multi-camera track-
ing framework, which takes tracklets aggregated from
single-camera tracking as input. Single-camera person
tracking has employed clustering to group intra-camera
tracklets based on the fusion distance between them. Sim-
ilarly, we use the K-means clustering algorithm to group
these aggregated tracklets based on their aggregated fea-
tures. Since directly averaging tracklet features does not
take into account the length of each tracklet. Ideally,
tracklets with longer spans should be given greater weight.
Therefore, the merged intra-camera tracklets features are
weighted by different tracklets time spans, which can be
formulated as:

fk
sct =

1

|Ik|
∑
fi∈Ik

wifi, (5)

where wi = log(li)∑n
j=0 log(lj)

is the time weights for tracklets
i, li is the number of images in tracklets i. This weighted
method can pay more attention to longer tracklets. And the
weighted sum features fsct are used in the following inter-
camera clustering process. After performing the cluster-
ing algorithm on intra-camera aggregated tracklets, track-
lets belonging to the same cluster are assigned the same ID.

Moreover, clustering would inevitably lead to some in-
correct ID assignments. To refine clustering results in the
cross-camera person association process, we employ three
Refinement methods: Appearance Refinement, Spatio-
temporal information Refinement, and Face Refinement, to
refine the cross-camera tracking results.

Appearance Refinement Since the clustering algorithm
emphasizes overall similarity but neglects the length of each
tracklets, where longer tracklets should be assigned bigger
weights, we first calculate the center features for each clus-
ter fk

mtmct using the time-weighted sum by Eq 5. Next, we
re-calculate the distance between each tracklet and the cen-
ter of the cluster and reassign the identity of each tracklet
to its nearest cluster. With this refinement, we can effec-
tively improve the tracklets by taking their appearance and
duration time into account.

Spatio-temporal Refinement Similar to the intra-
camera person tracking method, we need to exclude abnor-
mal tracklets in clustering results to obtain the final accu-
rate MTMCT results since inter-camera clustering may also
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cluster the tracklets in the same camera with overlapping
time intervals. Specifically, after getting the inter-camera
clustering result, we traverse all the clusters and reassign the
tracklets with camera-time overlap to different clusters. For
conflict pairs in the same cluster, only the closest tracklet
to the cluster center will be remained, while other conflict
tracklets are assigned to different clusters according to the
similarity. which is shown in Fig. 3.

Face Refinement Since there are many low-resolution
images in the video without faces, we do not directly in-
corporate the face representations when calculating similar-
ity in clustering. Instead, we incorporate the face repre-
sentations to refine the inter-camera clustering results. The
face refinement involves two steps: First, we extract faces
from all images using the MTCNN model. And the Arc-
Face model is used to extract the corresponding face fea-
tures. Second, we calculate the average face features of
tracklets in a cluster as the face representation of the clus-
ter. Since face information is more informative, we directly
assign the mis-clustered tracklets according to the face rep-
resentations to a new cluster. Concretely, when face feature
of a tracklet differs largely from that of the assigned clus-
ter stemming from ReID features, we regard the tracklet as
a mis-clustered one. Subsequently, when the face similar-
ity between the tracklet and its nearest face cluster is larger
than 0.8, we reassign the ID of this tracklet to the nearest
face cluster.

With inter-camera clustering and hierarchical refinement
strategies, all tracklets can be assigned to an ID label.

4. Experiments
4.1. Dataset

In this track, the MTMCT dataset contains real data and
virtual synthetic data. This dataset has 1,491 minutes of
videos and a total of 130 cameras. The video data are all
in high resolution (1920x1080) at 30 FPS and are divided
into 22 subsets, including 10 subsets for training, 5 sub-
sets for validation, and 7 subsets for testing. Moreover, we
also utilize three public person ReID datasets:Market-1501,
MTMC17, CUHK-SYSU for ReID model training.

4.2. Evaluation Metric

We use IDF1, IDP and IDR as MTMCT evaluation met-
rics. The IDF1 score is a metric used to evaluate the perfor-
mance of object detection models. It measures the ratio of
correctly identified detections, taking into account both the
ground truth and the false negative, true negative, and true
positive counts. The IDF1 score is specifically derived from
the counts of IDFN, IDTN, and IDTP and can be formulated
as follows:

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
. (6)

4.3. Implementation Details

Our framework is implemented on RTX-3090 GPUs
with 24G memory. For the person detection module, we uti-
lize the YOLOv5-l model pre-trained on the COCO dataset
to perform person detection in real scenarios. In virtual sce-
narios, we train the YOLOv5 model on the AIcity track1
dataset from the scratch. The IOU threshold for detection
is set to 0.3, and the NMS threshold is set to 0.45. For
the person ReID module, we train the TransReID model on
the combined dataset which consists of Market, MSMT17,
CUHK-SYSU, with the pre-trained TransReID model as the
initialization weights. Additionally, we adopt ByteTrack for
single-camera person tracking.

4.4. Quantitative Analysis

In this subsection, we report the ablative analysis of the
proposed hierarchical clustering strategy, the hierarchical
refinement, as well as different backbones for extracting
person ReID features for all tracklets. Concretely, the abla-
tive study of proposed clustering and refinement strategies
is conducted on the test set of AICity 2023 track 1 dataset,
while the ablative experiment of ReID backbones is con-
ducted on the validation dataset divided by our-self.

The ablative results of proposed clustering and refine-
ment strategies are shown in Tab. 1. It is impressive that the
hierarchical clustering (“intra-camera cluster” together with
“inter-camera” cluster in Tab. 1) promotes the performance
by a large margin. Moreover, different refinement strategies
are able to boost performance. Specifically, appearance,
spatial-temporal, and tracklet-level refinement promote the
performance by 2%, 1%, and 2%, respectively.

Ablative results with different ReID backbones are
shown in Tab.2. Apparently, TransReID performs better
than Resnet50-based models. Moreover, fine-tuning Tran-
sReID trained with a self-supervised scheme achieves the
best result. Therefore, we choose TransReID-SSL as our
backbone.

As shown in Fig. 3, our method achieves 0.921 IDF1 in
the Track1 of AIcity2023 challenge, which ranks fifth place
compared with other teams.

4.5. Visualization

The final MTMCT results are visualized in Fig5. Each
colum of this figure represents trajectories in the different
camera, while each row presents the trajectories in the same
camera but at different time. For instance, the ID 17 person
appear in different camera with various viewpoint and oc-
clusion, yet our methods also can effectively match the their
tracklets across these different cameras.

Furthermore, we present the results of inter-cluster anal-
ysis as illustrated in Fig. 6. The tracklets belonging to the
same cluster have been assigned with the same IDs. In addi-
tion, our approach is capable of managing cases where there
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Inter-camera Cluster Intra-camera Cluster Appearance Spatial-temporal Tracklet-level Performance
Refinement Refinement Refinement (ID-F1)

✓ 0.77
✓ ✓ 0.82
✓ ✓ ✓ 0.84
✓ ✓ ✓ ✓ 0.85
✓ ✓ ✓ ✓ ✓ 0.87

Table 1. Ablation study for proposed clustering and refinement strategies.

Camera1 Camera2 Camera3

Figure 5. Visualization of final tracking results on AIcity2023 test set. The same ID people are marked with the same color in different
cameras.

Backbones Rank-1 Rank-5 Rank-10 mAP
Resnet50 [20] 0.74 0.76 0.76 0.68

Resnet50-IBN [37] 0.77 0.82 0.85 0.73
TransReID [21] 0.87 0.88 0.89 0.83

TransReID-SSL [36] 0.91 0.96 0.97 0.88

Table 2. Ablation study for different backbones.

is body overlap between distinct person images, as can be
seen in cluster 2. With the assistance of the anti-occlusion
ability of the TransReID model, we are able to match partial
tracklets to the complete-body tracklets, as demonstrated in
cluster 3 of Fig. 6.

Rank TeamID IDF1
1 6 0.9536
2 9 0.9417
3 41 0.9331
4 51 0.9284
5 113 (ours) 0.9207
6 133 0.9109
7 34 0.9104
8 82 0.8981
9 151 0.8676

10 38 0.8676

Table 3. Comparison with other teams on track1, and our teams
take fifth place.
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Cluster1 Cluster2

Cluster3 Cluster4

Figure 6. Visualization of final inter-clustering results on AIc-
ity2023 test set. Different clusters represent different people.

5. Conclusions

In this paper, we propose an effective and novel MTMCT
framework, consisting of person detection, single-camera
multiple target tracking using MOT algorithms, ReID fea-
tures extraction, hierarchical clustering, and hierarchical
refinement. We demonstrate that hierarchical clustering,
where the intra-camera and inter-camera clustering algo-
rithms are conducted sequentially, is extremely beneficial
for the indoor video surveillance scenario, where persons
appear and disappear in a camera repeatedly. Moreover, we
propose a number of refinement strategies, which mainly in-
clude tracklet-level refinement and cluster-level refinement.
Notably, we use face representations as another type of clue
to correct the mis-clustered tracklet, and furtherly boost
the cross-camera association performance. We believe that
MTMCT with other biometric clues, such as face and gait
representations, is worth exploring in the future for the com-
puter vision community.
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