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Abstract

This paper presents a solution for Track 1 of the Al
City Challenge 2023, which involves Multi-Camera Peo-
ple Tracking in indoor scenarios. The proposed framework
comprises four modules: Vehicle detection, RelD feature
extraction, single-camera multi-target tracking (SCMT),
single-camera matching, and multi-camera matching. A
significant contribution of our approach is the introduc-
tion of ID switch detection and ID switch splitting using
the Gaussian mixture model, which efficiently addresses
the problem of tracklets with ID switches. Furthermore,
our system performs well in matching both synthetic and
real data. The proposed R-matching algorithm performs
exceptionally well in real scenarios despite being trained
on synthetic data. Experimental results on the public test
set of 2023 Al City Challenge Track 1 demonstrate the
efficacy of the proposed approach, achieving an IDFI of
94.17% and securing 2nd position on the leaderboard.
Codes will be available at https://github.com/
nguyenquivinhquang/Multi-camera—People-
Tracking-With-Mixture—-of—-Realistic—and-
Synthetic—-Knowledge

1. Introduction

Multi-Target Multi-Camera (MTMC) tracking ap-
proaches pose significant challenges as they require solv-
ing multiple computer vision problems, including person
detection, single-camera multi-target tracking, and person
re-identification. These challenges involve addressing vari-
ations in camera resolution, distance, view angle, non-
overlapping camera views, crowded areas, and changes in
illumination. Furthermore, due to the limited availability
of labeled datasets, multi people multi-camera tracking re-
mains a challenge.

*Corresponding author. Email: hvusynh@hcmiu.edu.vn

The 7th Al City Challenge workshop’s AIC23 [34] Track
1 dataset aims to address these challenges by combining real
and synthetic data to track people across multiple cameras.
However, the dataset’s indoor setting poses additional chal-
lenges as people can occur multiple times under each cam-
era, which is not typically the case in urban environments.
Additionally, the dataset’s training data is entirely synthetic,
making it challenging to train models with discriminative
features for real data. A desired solution ought to carefully
address not only the domain gap between synthetic test data
and training data but also generalize on the real-life test data
with suitable constraints.

In this paper, we present a new MCMT tracking system
designed to track multiple people across different cameras
in an indoor scenario. Existing multi-object multi-camera
tracking systems [15], [17], [6], and [43] only track objects
until they exit the camera’s field of view, making it diffi-
cult to track them if they re-enter later. In contrast, our
framework can track people even if they exit and re-enter
the camera’s field of view. Additionally, our framework de-
tects when a tracklet has two different user IDs and adjusts
the tracklet to improve the results. Most importantly, our
proposed solution can be applied on both real and synthetic
test settings, despite having been trained on only synthetic

data.
In order to accomplish the above, our proposed system

presents several technical contributions, most notably in-
cluding: (a) Our detector and single-camera tracking mod-
ule can detect and track people effectively in both synthetic
and real data. Additionally, we have incorporated a Gaus-
sian Mixture Model (GMM) to alleviate the problems of
ID switches. (b) Our single-camera matching and multi-
camera matching modules perform well on both synthetic
and real data. For real data, we introduced an R-matching
algorithm to tackle the domain gap from the synthetic train-
ing set, significantly improving the IDF1 scores by 8.46%.
(c) Our system’s performance has been evaluated in the
Multi-camera people tracking track of the 2023 Al City
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Challenge, where we achieved second place.

2. Related Works

Various designs for an MTMC tracking system have
been proposed over the recent years, as summarised by
Naphade et.al. [33] [32]. Authors have typically followed
the aforementioned processes: (1) Object Detection, (2)
Multi-target Single-camera Tracking, (3) Appearance Fea-
ture Extraction, and (4) Cross-Camera Tracklet Matching.
The performance of a particular design apparently corre-
lates with how well authors can develop contrastive mod-
els for extracting appearance features and constrain the data
domain’s search space [29] [55] [47].

2.1. Object Detection

An object detection model is essential in determining ve-
hicle positions throughout a camera image. Many state-of-
the-art models have been proposed that include single-shot
detectors such as YOLOv4 [1], YOLOvS [10], YOLOv6
[24], YOLOV7 [44] CenterNet [9], and EfficientDet [42] to
directly output object positions alongside their classes, and
two-shot detectors Mask-RCNN [11] and Cascade-RCNN
[3] that rely on the generation of bounding box priors before
classifying them. In the MTMC vehicle tracking literature,
authors [29] [47] have leveraged pre-trained models’ gen-
eralization capabilities without training on the test set with
good results.

2.2. Multi-Target Single-Camera Tracking

The aim of tracking is to identify the trajectory, i.e. a set
of bounding boxes, of each ID using the detection result.
Most recent works on MOT are categorized into two meth-
ods: online and offline, which differ in the way of observa-
tion processing. Online approaches [20] [58] [59] [48] [56]
[39] [46] utilize the bounding boxes on the current frame
to extend the existing trajectories, which results in a short
processing time, but lower accuracy. On the other hand, of-
fline approaches [40] [36] [52] [23] [16] [+1] [5] [50] [2]
[51] gain higher accuracy due to optimizing the solution for
linking all of the bounding boxes in the video with differ-
ent trajectories. In order to improve the performance on
switching ID and missing tracking occluded objects cases,
DeepSORT [46], an online tracking framework, uses a CNN
model that is trained on a large-scale person RelD dataset
to learn a deep association metric which combines motion
and appearance information. the Yang et al. [53] modified
DeepSORT to deal with occlusion and applied forward and
backward tracking in time. MedianFlow [22], an offline
tracking framework, also performed forward and backward
tracking in time and then compared the two trajectories to
detect the tracking failures based on the assumption that the
tracklet is independent of the direction of time flow. Li et
al. [25] implemented the modified version of MedianFlow

to tackle the cases that the object moves too fast or moves
with a rapidly direction-changing trajectory. As this version
is combined with Efficient convolution operators to evaluate
the correlation or similarity of two signals, the ID switches
could be reduced.

2.3. Image-based Re-Identification

Vision-based re-identification refers to recognizing the
same object across different images or videos captured from
different cameras, which take a critical role in MTMC track-
ing problems. The challenging problem is that depending
on each camera and point in time, lighting conditions, oc-
clusions, pose variations, and camera viewpoint could not
be invariant, which results in the visual difference of a tar-
get vehicle. The state-of-the-art techniques in image-based
relD can be categorized into two main types: feature-based
and deep learning-based methods. Feature-based meth-
ods [35] [28] [7] extract handcrafted features, i.e the fea-
tures containing the information from images such as color,
texture, and shape information, and use them for match-
ing. Regarding deep learning-based methods, many ap-
proaches [12] [19] [49] gain great performance by imple-
menting CNN-based models to learn robust feature repre-
sentations. However, CNN-based methods still have limita-
tions as they focus on a local neighborhood and lose infor-
mation due to downsampling operations. Thus, recent ap-
proaches [13] [8] deployed Transformers to improve the re-
sult by the ability to capture global relations. For example,
TransRelD [13] encodes an image as a series of patches and
establishes a transformer-based strong baseline with a few
essential enhancements. Besides, to tackle the low-diverse
and limited dataset, many GAN-based ReID works [4] [62]
[30] [61] [27] have been proposed.

2.4. Cross-Camera Tracklet Matching

For MTMC tracking, an appropriate method to asso-
ciate tracklets across cameras is indispensable. Many ap-
proaches [57] [37] [26] [21] [18] [38] principally utilize the
embedding feature vectors of IDs to compute the appear-
ance similarity, then evaluate the result to match the track-
lets. However, relying solely on appearance features may be
prone to ID switches. To enhance the performance, the ma-
jority of works [14] [6] [25] [53] [54] [60] combine different
constraints such as camera topology, temporal information,
motion rules, etc.

In this work, we improve performance by first perform-
ing single-camera matching and then using the results to en-
hance multi-camera matching rather than matching multiple
cameras directly.

3. Methodology

This section introduces our proposed frameworks, which
consist of five components, namely, person detection,
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single-camera tracking, single-camera matching, and multi-
camera matching. An overview of our framework is pre-
sented in Figure 1.

3.1. Person Detection-based Continuous Tracking

Our first major component is designed to track people
in a single camera robustly. Motivated by the problems of
occlusion (e.g. two people overlapping each other) and in-
termittent tracking (e.g. temporarily missing detections),
we aim to robustly tackle ID switches and maintain consis-
tent track trajectories with a detection-based tracking frame-
work. Hence, we propose a 2-stage approach via (1) scene-
conditioned person detection and (2) continuous tracking
with a mixture model.

3.1.1 Scene-conditioned Person Detection

Person detection plays a crucial role in initiating Multi-
camera people tracking. Our approach utilizes YOLOVS,
a state-of-the-art network, specifically the pre-trained
YOLOvV5x6 model on the COCO dataset for object detec-
tion. Our approach seeks to address a major challenge:
the domain gap between the synthetic dataset and the pre-
trained COCO dataset used to train the model. To address
this, we propose to develop meta-data for denoting scenes
of real and synthetic scenes and apply an appropriate detec-
tion model:

On real-life scenes: We rely solely on the pre-trained
model to achieve optimal performance. This is because the
pre-trained model has already been trained on the COCO
dataset to capture the features of a real person and the lim-
ited domain gap between real-life scenes in certain settings.

On synthetic scenes: We fine-tuned our model using the
synthetic animated people dataset using the NVIDIA Om-
niverse Platform, particularly adapting Yolov5x6 to a sim-
ilar test domain. By leveraging pre-trained patterns in the
model, the model is tuned for person detection on the syn-
thetic domain’s properties.

Regardless of the scene, if an input frame I; captured at
a specific time step ¢, we can extract a set of m detections
denoted as D; := {d;,ds,ds,...,d,,}. Each detection d;
can be represented by a tuple d; := (x;, y;, w;, hy, ¢, 1),
which represents the i-th bounding box coordinates with the
centre at x and y, and size of width w, height h; finally ¢;
represents the confidence score of the bounding box, which
we used to ensure that ¢; > c¢.. In our case, c. = 0.5.

3.1.2 Continuous Person Tracking on Mixture Model

Our Single-Camera Multi-Target Tracking system utilizes
mostly reliable detection results, and we use features
extracted by models in subsection 3.2 to associate tar-
gets across video frames using the tracking-by-detection

paradigm. For our case, we adapted the DeepSORT
tracker as our baseline method and implemented advanced
techniques as mentioned in [53], such as occlusion han-
dling, interpolating missing detections with Kalman-Filter-
predicted boxes, and forward-backwards tracking. How-
ever, since it is common for individuals to walk in un-
predictable patterns such as straight lines, stopping, turn-
ing around, and continuing on, or for one person to stop
and another to pass closely by. We propose a Gaussian
Mixture Model-based approach for splitting ID-switching
tracklets. In particular, suppose a tracklet t is denoted by
t := {(dy,f1), (do, £5), ..., (dg, fx) }, where there are k de-
tections for this tracklet and f; = f(d;) denotes the ex-
tracted feature vector of the i-th detection.

Since each tracklet should belong to only one identity,
the distribution of the features should follow a Gaussian
distribution, with a single mean p and variance X that cap-
tures the overall characteristics of the tracklet. Therefore,
we propose an ID switch detection approach to identify the
tracklet where ID switching occurs. Then, we utilize ID
Switch splitting to split this tracklet into two separate track-
lets by modelling each tracklet’s feature set in a Gaussian
Mixture Model. In particular, given a feature set, we model
it as a Gaussian Mixture Model through Expectation Maxi-
mization, i.e. minimizing the likelihood:

n k
L(O) = [[ D miN(fils, =5) 1)
i=1j=1
where & = (m,p,X) are the mixture model parame-

ters, with NV/(f;|pe;, 32;) as the Gaussian probability density
function with mean g; and covariance matrix ;. 7; is the
mixture coefficient for the j-th Gaussian component.

ID switch detection: With n = 2, we constructed two
Gaussian distributions on t. Next, we compute the cosine
distance between the mean points of these two distributions.
If the distance is found to be less than a pre-defined thresh-
old (which we set to 0.4), we can infer that an identity
switch has occurred.

ID switch splitting: Let 8; = (71, u,,%1) and 02 =
(72, by, Xo) be the two Gaussian distributions obtained
from GMM, to split the tracklet, we use the longest sub-
sequence of consecutive bounding boxes in the higher-
weighted Gaussian distribution, starting from the first box.
We assign these boxes to the first person and the remain-
ing to the other. Specifically, if w1 > 79, let s and e be the
start and end indices of the longest subsequence of consecu-
tive bounding boxes that are clustered to 81, then we assign
the bounding boxes in {(ds, fs), (ds+1, fs41), -y (de, £)}
to the first person and the remaining boxes to the other per-
son, and the same otherwise when 71 < 7ro. This splitting
strategy alleviates ID switches and improves tracking per-
formance.
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Figure 1. An overview of our system. Our proposed framework consists of five main components: person detection, single-camera tracking,
single-camera matching, multi-camera matching, and RelD feature extraction.

3.2. Person Re-identification

3.2.1 Feature Extractor

Re-identification is a critical component of Multi-Camera
Multi-Target (MCMT) tracking, as it relies on obtain-
ing each individual’s reliable and discriminative appear-
ance features. To achieve this, we explore two types of
deep feature extraction methods: (1) transformer-based
and (2) CNN-based for our feature extraction model. For
transformer-based methods, we use TransRelD, while for
CNN-based methods, we employ a range of models such as
ResNet [12], ResNeXt [49], and HRNet [45]. After that, we
apply bags of tricks from [3 1], which achieves state-of-the-
art results in the re-identification field, to train our ReID
model. The input image was resized to 256 x 128 in the
training and feature extraction stages. We apply some data
augmentation for the preprocessed input data, such as ran-
dom horizontal flip, random erasing and random padding.
For the feature extraction stage, we generate a global fea-
ture with the dim of 2048 before batch normalization neck
as the final output of the input image. We simply concate-
nate the feature extract from each model above for the en-
semble RelD feature. As mentioned previously, we refer
to our feature extractor as f(-), which represents either our
use of TransRelD, ResNet50, NesNeXt101, HRNet or an

ensemble of them.

3.2.2 Objective Losses

We jointly used (1) an ID loss function using cross-entropy
loss with label smoothing, and (2) a contrastive loss func-
tion using triplet loss for the optimization.

Regarding ID loss, the probability that person image x
corresponds to person ¢ is denoted as p(i|x). Let the true
person ID being represented by ¥, the cross-entropy loss
with label smoothing is defined as:

N
> —qlily) log [p(i[x)] ©)

i=1

LID = IEx,y

such that g(i|y) is the smoothed label distribution:

. 1— N=le
q(ily) = {g/N N

ifi = y 3)
otherwise
where N denotes the number of persons in the training set.
At the same time, ¢ is a small positive constant that regulates
the smoothing level applied to the label distribution. This
smoothing technique prevents the model from overfitting to
person IDs of the training set.

Regarding Triplet loss, the goal is to minimize the dis-
tance between an anchor sample z® and a positive sample
2P while maximizing the distance between the anchor and a
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Figure 2. Examples of ID switching scenarios that can occur in tracklets from simplified GMM viewpoints.

negative sample ™. This is achieved by setting a margin m
and optimizing the following loss function for /N samples:

N
Ltri :Zmax(m—’—d(fzaaff) _d<fia’fip)’0) (4)
i=1

Here, f¢, fP f™ denote the feature embeddings of the an-
chor, positive, and negative samples, respectively, and d(-)
calculates the distance between two feature embeddings.
Hence, t he combined loss function that we used is:

Lyeia == Lip + Ly &)
3.3. Single-camera Tracklet Matching

In dealing with inconsistent tracking trajectories within
a camera, e.g. a person moving out of the view and back
again, we propose a single-camera matching approach to
cluster-generated tracklets in terms of appearance feature.
The purpose of single-camera tracklet matching is to gener-
ate groups of tracklets originating from the same person id,
within the same camera.

To match the people under the camera, we find the group
of tracklet belonging to one person by clustering the track-
lets together based on their similarities. Suppose the func-
tion f(-) when applied on a tracklet will extract the average
feature vector across all features, then the similarity of two
tracklets t; and tracklet t; is determined by the cosine dis-
tance formula:

f() - f(Ey)
1 ) LS ()

For all pairs of tracklets, we can then generate a single-
camera distance matrix of all tracklets,

Because the tracklets represent the short trajectory of a
person’s motion over time. The longer tracklet, the more
informative feature can have. Moreover, shorter tracklets

dist (ti,tj) =1 (6)

are more likely to be affected by occlusions, which occur
when another object partially or completely blocks the ob-
ject. In such cases, the tracklet may not capture the full
motion or appearance of the object, leading to incomplete
or inaccurate feature information. This can also contribute
to the noisy feature of short tracklets. Therefore, the feature
information of short tracklets will not be as obvious as those
of tracklets with a length greater than . We denote the
set of removed short tracklets as R Once the short tracklets
have been removed, the remaining cluster group contains
sufficient information to act as an anchor for matching an-
other tracklet. After temporarily removing tracklet noise,
the obvious tracklets matrix distance will be calculated:

diSt(tl,tl) dist(tl,t]v)
D:= : : (7
diSt(tN,tl) diSt(tN,tN)

Furthermore, if the sequence in terms of time steps between
two tracklets t;,t; intersects, then in D; ; < oo, tracklets
will then be clustered together based on the distance matrix
D.

In synthetic scenes, our approach has a high discrimi-
native ability to distinguish between the features of differ-
ent people, the accuracy of clustering using traditional algo-
rithms on this dataset is significantly high. Hence, the clus-
tering approach can perform robustly. For synthetic scenes,
the set R of short tracklets are simply discarded.

In real-life scenes, however, the feature model’s abil-
ity to discriminate between individuals with different fea-
tures for inter-class persons is unclear, as it is trained on
the synthetic person dataset. Figure 3b depicts the similar-
ity score between two individuals wearing white shirts is
0.85. Hence, during clustering, inter-class persons may be
incorrectly grouped together. To address this issue, we pro-
pose an algorithm that can overcome this issue. First, we
select the frames with the highest number of people. Then,
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we construct a graph for the individuals in each frame, with
vertices representing people and edges determined by their
cosine similarity. Then, we select the frame with the small-
est sum of edges as the initial cluster. Finally, we employ
the algorithm depicted in algorithm 1 to merge tracklets that
fit into the same cluster.

After determining the group of clusters, denoted by C,
as the v-th set of different tracklets, the feature of each clus-
ter will calculate based on the following:

1
(G =15 > f(t) ®)

t;€C,

We treat each cluster C,, as a gallery list and all the tem-
porarily removed tracklets (mentioned above) as a query list
R. Then we simply solve a ReID problem with the method
outlined in [31] to find the best matches for each sample in
R and each cluster C,,.. This enables us to group both long
and short tracklets in one cluster from the same person in a
single camera. We refer to this extension for real-life scenes
as R-matching.

Figure 3. High inter-class similarity. The red line indicates that
two individuals have different IDs in both figures, while the green
line represents a match. In Figure (a), there are different individu-
als who happen to be wearing similar clothing. If similarity scores
were used for matching, it would result in an incorrect match. The
same issue occurs in Figure (b).

3.4. Multi-camera Tracklet Matching

The idea of multi-camera tracklet matching is to match
the person’s ID across multiple cameras. Here, the person id
in each camera was represented by the cluster in that cam-
era. We propose using the aforementioned cluster feature
calculations to perform Agglomerative Clustering. There-
fore, the distance between two clusters was defined by:

1f (CIHS (Cu)ll

dist (C,,C,) =1 9

Figure 4. Single-camera matching. The resulting clusters, de-
picted as circles in the figure, serve as the gallery for the remaining
noisy tracklets to match against.

Algorithm 1 R-Matching

1: function MATCHING(tracklet_list, cluster_init, )
2 uncertain < {}

3 for track in tracklet_list do

4 valid_clusters < {}

5: for cluster in clusters_init do

6 if ~time_intersect(cluster, track) then
7 append cluster to valid_cluster

8 if valid_cluster.empty() then

9: append track to uncertain

10: else

> using nearest cosine distance
11: nearest —
get_nearest(track, cluster_init)
12: 2nd_nearest —
get_2nd_nearest(track, cluster iinit)
13: if err(nearest, 2nd_nearest) < T then
14: append track to uncertain
15: else
16: merge track to cluster_init[nearest]
17: return clusters_init, uncertain

It follows that the distance matrix of N x N pairwise
cluster appearance distances is:
dist (Cl,Cl) dist (Cl,CN)
S = : (10)

diSt(CN,Cl) diSt(CN,CN)

Persons in the same camera cannot be in the same group
after clustering. Therefore, we redefine their distance for
pairs of people with the same camera. For each cluster C;
and C} that come from the same camera, we redefine its dis-
tance on matrix S; ; = co. This ensures that clusters from
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the same camera are not grouped together during clustering.
Finally, we use agglomerative clustering on the updated dis-
tance matrix .S to group these clusters.

4. Experiments
4.1. Dataset

The dataset used in this challenge comprises both real
and synthetic data, totaling 2.607.781 frames across 22 dif-
ferent scenarios. Specifically, ten scenes are dedicated to
training, with 4.375.736 bounding boxes and 71 unique per-
son IDs. Similarly, ten scenes are reserved for validation,
consisting of 1.950.917 bounding boxes and 35 unique per-
son IDs. In terms of testing, there are two types of data
to consider. The first one is Scene 001, which includes
388.671 frames of real data. The second type is synthetic
data, which accounts for 648.360 frames.

4.2. Evaluation Metrics

The F1 score of people identity (IDF1) is used to assess
how well multi-camera people tracking performs. IDF1 cal-
culates the proportion of correctly identified detection in re-
lation to the average number of ground-truth and computed
detection. The AI City Challenge evaluation system will
present IDF1, IDP, IDR, Precision (detection), and Recall
(detection).

4.3. Implementation Details

We use Pytorch for our main framework. The experi-
ments are performed on one Quadro RTX 6000 with 24GB.

Re-Identification In our RelD experiments, we tested
both Transformer-based and CNN-based models. Specif-
ically, we employed the TransReID base and TransRelD
with Jigsaw Patch Module (JPM) and Side Informa-
tion Embeddings (SIE) from [13]. For our CNN-based
models, we used ResNet50, HRNetW48, ResNetl0l,
and ResNeXt101_ibn_a. Our optimization strategy used
Stochastic Gradient Descent (SGD) with a base learning
rate of le-4 and the Cosine Annealing scheduler. During
training, we use a batch size of 96 and 4 IDs per batch.

Detection We fine-tune our model on the training data
for one epoch. In the inference stage, we use the fine-tuned
model for synthetic data. For the SO01, which is real data,
we only use the pre-trained model on the COCO dataset.

4.4. Parameter choosing

Our proposed system considered and optimized several
factors to achieve high performance in single-camera and
multi-camera matching. These included the selection of an
appropriate number of clusters and the identification of a re-
liable zone. Additionally, we carefully chose the appropri-
ate ReID model to extract features for accurate matching.

4.4.1 Reliable region selection

We pre-defined the regions that offer comprehensive in-
formation about the person’s appearance. These regions
should capture the complete body parts without any oc-
clusions from static objects, thereby preventing situations
where only a single body part is visible. Subsequently, we
consider a tracklet reliable if it occurs more than 6 times
within these predefined regions. During the feature calcu-
lation step of the reliable tracklet, bounding boxes outside
these regions are temporarily removed.

4.4.2 Number of Clusters Choosing

Silhouette Analysis each camera in Scene 03 for Optimal K

Silhouette Analysis in Scene 03 for Optimal K

Silhouette Analysis in Scene 14 for Optimal K

5 6 7 H 6
Values of K Values of K

(c) (CY)

Figure 5. Silhouette score

For choosing the number of clusters in single-camera
matching and multi-camera matching, we use the Silhouette
Analysis to determine it. Silhouette analysis involves com-
puting the silhouette coefficient for each data point in each
cluster, which measures how similar that point is to other
points in its cluster compared to points in neighboring clus-
ters. The brute force approach is used to cluster the data into
arange of cluster numbers to determine the optimal number
of clusters. Then, the silhouette coefficient is computed for
each clustering, and the number of clusters with the highest
average silhouette coefficient is chosen as the optimal num-
ber of clusters. The figures 5a, and 5b show the average
silhouette coefficient in each camera, and the figures 5c and
5d show silhouette coefficient score in multi-camera in one
scene.

4.4.3 Choosing RelD model strategy

In order to choose the most effective ReID model strategy,
we face a challenge in determining whether a model that
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performs well on synthetic validation data will generalize
well to real data (Scene 001) in the test set. To address
this, we propose a heuristic rule for selecting the best model
based on performance on SO01. Specifically, we use each
RelD model to extract feature vectors and perform single-
camera matching to create clusters, which are then used for
multi-camera matching to obtain the final results. It is im-
portant to note that clusters from the same camera cannot be
in the same group in the final results. Violation of this indi-
cates that the model did not provide a sufficiently discrim-
inative feature for single-camera matching, leading to the
merging of different people’s tracklets into one group, and
consequently negatively impacting the feature in the multi-
camera matching step. Any RelD model that fails to satisfy
this rule will not be used during inference.

4.5. Experiments Results

4.5.1 Re-identification

To evaluate how well RelD features perform, we only use
the person id from Scene 017 and split it into a query set
and a gallery set. We then determined the mean Average
Precision (mAP) as the evaluation metric. The results in
the table 1 demonstrate that TransReID models have taken
the top two ranks for extracting features from the synthetic
dataset. HRNetW48 has demonstrated the lowest mAP
among all tested models. However, after applying the vali-
dation method outlined in section 4.4.2, we discovered that
only TransRelD models and HRNetW48 performed well on
real data (S001). Consequently, we only utilized TransReID
models and HRNetW48 for feature extraction and ensem-
bling in SO01. We determined that the TransReID base pro-
duced satisfactory accuracy for synthetic data and was ade-
quate to perform optimally on the data.

Model mAP
TransRelD + JPM + SIE | 95.92
TransRelD 95.76
ResNet101 94.43
ResNext101_ibn_a 94.34
ResNet50 94.00
HRNetW48 92.08

Table 1. The ablation study for RelD feature extraction

4.5.2 Ablation Study

The performance of individual components in our proposed
system was evaluated through an ablation study. Table 2
shows the results. Compared with the baseline, the ID
Switch helps us increase 0.5%. The proposed R-matching
method improved the IDF1 score by 8.46%. Finally, the en-
semble method, which combines features from TransRelD,

HRNetw48, and TransRelD with JPM and SIE, resulted in
the highest IDF1 score of 0.9417.

Method IDF1  IDP IDR
Baseline 0.8253 0.8568 0.7961
+1ID Switch | 0.8322 0.8633 0.8032
+ R-matching | 0.9168 0.9192 0.9145
+Ensemble | 0.9417 0.9393 0.9441

Table 2. The ablation study of combination of components

4.5.3 Comparison with other teams

Table 3 the evaluation of our proposed system in Track 1
of AI City Challenge 2023. Our system obtained an IDF1
score of 94.17%, which secured the second position among
more than 25 teams worldwide.

5. Conclusions

In this paper, a solution for Multi-Camera People Track-
ing in indoor scenarios is proposed for Track 1 of the Al
City Challenge 2023. The proposed framework has four
modules, and the introduction of ID switch detection and id
switch splitting efficiently addresses the problem of track-
lets with ID switches. The system performs well in match-
ing both synthetic and real data, with the r-matching algo-
rithm performing exceptionally well in real scenarios de-
spite being trained on synthetic data. Experimental results
on the public test set of 2023 Al City Challenge Track 1
demonstrate the efficacy of the proposed approach, achiev-
ing an IDF1 of 94.17% and securing 2nd position on the
leaderboard.

Rank | Team ID Team Name IDF1
1 6 UWIPL_ETRI 0.9536
2 9 HCMIU-CVIP (ours) | 0.9417
3 41 AlLab 0.9331
4 51 hust432 0.9207
5 113 FraunhoferlOSB 0.9284

Table 3. Final results on Track 1 test set.
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