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Abstract

The use of helmets is essential for motorcyclists’ safety,
but non-compliance with helmet rules remains a common is-
sue. In this study, we extend the frontier of AI video analytic
technologies for detecting violations of helmet rules among
motorcyclists. Our method can handle highly challenging
conditions for traditional methods, including occlusions,
fast vehicle movement, shadows, large viewing angles, poor
illumination and weather conditions. We adopt the widely
used YOLOv7 object detector and develop a first baseline
using YOLOv7-E6E. We further develop two improved ver-
sions, namely YOLOv7-CBAM and YOLOv7-SimAM that
better address the challenges. Experiments are performed
on the 2023 AI City Challenge Track 5 contest benchmark.
Evaluation on the 100 test videos of the contest demon-
strates the effectiveness of our approach. The baseline
YOLOv7-E6E model trained with image size 1920 achieves
0.6112 mAP. The YOLOv7-CBAM achieves 0.6389 mAP,
and YOLOv7-SimAM achieves 0.6422 mAP, where both are
trained with image size 1280. These models rank sixth, fifth,
and fourth on the public leaderboard, respectively, which
outperforms over 36 global participating teams. The code
for our models is available at: https://github.com/

cmtsai2023/AICITY2023_Track5_DVHRM .

1. Introduction

The AI City Challenge (AIC) have spurred research into
vision problems in recent years, particularly in the realm
of Intelligent Transportation Systems (ITS). These chal-
lenges have addressed a range of issues, including vehicle
re-identification, vehicle tracking, vehicle anomaly detec-
tion, tracked vehicle retrieval using natural language, natur-
istic driver data analytics, and traffic safety [1].

AI and computer vision are increasingly being applied in

Figure 1. The flow diagram of the proposed method.

the field of ITS. One critical issue that can be addressed us-
ing this technology is the accurate and automatic detection
of motorcyclists without helmets, which is essential for en-
forcing strict regulatory traffic safety measures. This is the
focus of AIC Track 5 Contest, which aims to detect viola-
tions of the helmet rule for motorcyclists [1].

Motorcycles are widely used in many countries, espe-
cially in Asia and other tropical regions [17]. In develop-
ing countries like India, they are one of the most popular
modes of transportation. However, due to their small size
and lack of protection, motorcycle riders are at a greater
risk of accidents compared to drivers of standard vehicles.
Therefore, wearing helmets is mandatory as per traffic rules.
However, accurately detecting motorcyclists without hel-
mets can be challenging in real-world scenarios due to fac-
tors such as occlusion, movement, illumination, shadows,
different viewing angles, and weather conditions. Addi-
tionally, motorcycles, drivers, and passengers vary widely
in size, and the training and testing videos used in the AIC
2023 Track 5 Contest come from diverse traffic cameras in
India.

For the AIC Track 5 task, we need to identify motorcy-
cles and their riders, with or without helmets. Specifically,
we need to determine whether each rider (i.e., the driver,
passenger 1, and passenger 2) in the 100 test videos is wear-
ing a helmet. Participating teams will need to identify seven
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classes: (1) Motorbike: the bounding box of the motorcycle.
(2) DHelmet: the bounding box of the motorcycle driver
wearing a helmet. (3) DNoHelmet: the bounding box of the
motorcycle driver not wearing a helmet. (4) P1Helmet: the
bounding box of passenger 1 on the motorcycle, wearing a
helmet. (5) P1NoHelmet: the bounding box of passenger 1
on the motorcycle, not wearing a helmet. (6) P2Helmet: the
bounding box of passenger 2 on the motorcycle, wearing a
helmet. (7) P2NoHelmet: the bounding box of passenger 2
on the motorcycle, not wearing a helmet.

The automatic detection of motorcyclists without hel-
mets is not only an image classification task but also in-
volves locating where and when the seven classes appear in
the testing videos. Therefore, it is essential to train a seven-
class detection model using 100 training videos from Track
5 to accurately detect these classes.

YOLOv7 [17] surpasses all known object detectors in
terms of speed and accuracy in the range from 5 FPS to 160
FPS, achieving the highest accuracy of 56.8% AP among
all known real-time object detectors with 30 FPS or higher
on GPU V100. When applying the YOLOv7-E6E [17]
pre-trained model to the test images from AI City CHAL-
LENGE Track5, specifically video 008 frame 84 and video
014 frame 118, the detection results are shown in Figures 2
(a) and 2(b). Figure 2(a) shows a clear weather day where
eight motorcycles and nine persons are detected correctly
using the YOLOv7-E6E [17] pre-trained model. How-
ever, there are many non-motorcycle drivers that should
be removed, and the detected person cannot be classi-
fied into DHelmet, DNoHelmet, P1Helmet, P1NoHelmet,
P2Helmet, and P2NoHelmet. Therefore, we will use the
YOLOv7-E6E [17] model to train the object detector to
identify these seven classes.

In Figure 2(b), the foggy night and very bright headlights
make it challenging to see the motorcycle and driver clearly.
Although the YOLOv7-E6E [17] pre-trained model detects
a false positive person in the advertisement on the right side
of the image, it fails to detect the motorcycle and driver. To
address these challenges, we propose training the YOLOv7-
E6E [17] model on the Track5 training dataset.

Despite the high performance of YOLOv7-E6E [17] in
terms of speed and accuracy, accurately detecting the seven
objects in Track5 testing images and videos still presents
challenges. Therefore, further research is needed to develop
more robust and accurate object detection models for the
seven classes of motorcycle and rider detector in the Track5
challenge.

Figure 1 shows the proposed method, which includes the
following steps: first, extracting each frame image from the
100 training videos. Second, converting the ground truth
labels to the YOLO format. Third, training the proposed
model that combines YOLOv7-E6E [17] with CBAM [20]
and SimAM [21] to detect the seven classes of motorcycle

(a)

(b)

Figure 2. Examples of person and motorcycle detection using the
YOLOv7-E6E model. (a) Frame 84 of video 008 with satisfactory
detection results. (b) Frame 118 of video 014 with a false and
many miss detections.

and rider. Fourth, using the seven classes’ motorcycle and
rider detector to detect the 100 testing videos. Finally, we
obtain the detection results for the seven classes.

The remainder of this paper is structured as follows.
Section 2 describes the related works that have been done
in the field of motorcycle and rider detection. Section 3
presents the proposed method, which combines YOLOv7-
E6E [17] and CBAM [20] and combines YOLOv7-E6E [17]
and SimAM [21] to improve the accuracy of the seven-class
motorcycle and rider detector. In Section 4, we present
the experimental results and discuss the findings. Finally,
Section 5 summarizes our findings and presents our conclu-
sions.

2. Related Works
This section provides the current related research in ob-

ject detection and without helmet detection.

2.1. Object Detection

Object detection is one of the most popular tasks in im-
age processing and computer vision. It involves identify-
ing the position of objects in an image by predicting their
bounding boxes and classes. The task of detecting seven
specific classes is a specialized branch of object detection
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that focuses on these specific classes in images or videos.
This can be achieved through various backbones, including
CNN-based object detectors [2,5,8,12,14] and transformer-
based detectors [3, 13, 23].

Thanks to the success of convolutional networks, CNN-
based detectors have made significant progress, includ-
ing Faster-RCNN [14], SSD [12], Cascade-RCNN [2],
Yolox [8], PRB-Net [5], and YOLOv7 [17]. SSD, Yolox,
PRB-Net, and YOLOv7 are one-stage detectors that prior-
itize speed and accuracy to run in real-time, while Faster-
RCNN and Cascade-RCNN are two-stage detectors that are
usually more accurate and flexible but time-consuming. An-
other branch of object detection is transformer-based detec-
tors, which draw inspiration from the success of natural lan-
guage processing.

The transformer architecture can learn sequences using a
self-attention mechanism [3]. DETR [23] and Swin Trans-
former [13] are examples of such object detectors that in-
troduced vision transformers to achieve competitive perfor-
mance on object detection benchmarks by treating an image
as a series of patches. Typically, a CNN-based detector can
capture spatial information within each patch, allowing it
to handle spatially local patches well, while a transformer-
based detector is better suited for capturing long-distance
pixel relationships.

2.2. Detecting Motorcyclists Not Wearing Helmets

Dahiya et al. [7] proposed an approach for the auto-
matic detection of motorcycle drivers without helmets us-
ing surveillance videos in real-time. In their approach, they
first detect motorcycle drivers from surveillance videos us-
ing background subtraction and object segmentation. Then,
they determine whether the motorcycle drivers are using
helmets or not using visual features and an SVM binary
classifier. From their experimental results, it shows that the
detection accuracy is 93.80% on the real-world surveillance
data. However, this method cannot detect the motorcycle
passengers, including passenger 1 and passenger 2.

Soni and Singh [16] have developed a system in the field
of computer vision based on Tensorflow and Keras. Their
system can detect in real-time whether motorcyclists are
wearing a helmet or not. If a motorcyclist is detected with-
out a helmet, the system will accurately identify the situa-
tion and flag the rule violation. However, the size of their
testing dataset is limited to only 50 samples.

Chairat et al. [4] proposed an automated system for
detecting helmet violations to identify riders and passen-
gers not wearing helmets. Their system employed YOLO
for motorcycle detection, Kristan’s method for tracking,
GoogleNet for classification, and a specific system archi-
tecture for processing multiple cameras to detect helmet vi-
olations. The violation class and non-violation class contain
960 and 931 images, respectively. They trained and tested

the top half of the motorcycle bounding box. In real-world
testing, their system detected 97% of helmet violations with
a false alarm rate of 15%. However, their approach only
considered motorcycles with two riders.

Singh et al. [15] proposed a framework for automatic de-
tection of motorcyclists without helmets. Their method in-
cludes a motorcyclist detector, person localization, and head
and helmet classifier. The first dataset contains sparse traf-
fic, which is a two-hour surveillance video data collected at
30 frames per second. The first hour of the video is used
for training, which contains 42 motorcycles, 13 cars, and
40 humans. The second hour is used for testing, which con-
tains 63 motorcycles, 25 cars, and 66 humans. Their sec-
ond dataset contains dense traffic, which is a 1.5-hour video
collected at 25 frames per second. The first half-hour of
the video is used for training the model, which contains
1261 motorcyclists and 4960 non-motorcyclists. The re-
maining video is used for testing, which contains 2312 mo-
torcycles and 9112 non-motorcyclists. Their experimental
results demonstrate the efficacy of their proposed approach.
However, this method cannot detect motorcycle passengers,
including passengers 1 and 2.

Giron et al. [9] developed an approach to classify motor-
cycle riders as either wearing a helmet or not using deep ma-
chine learning, specifically convolutional neural network,
and by utilizing different pre-trained models on a gathered
dataset. However, their study was limited by the small size
of the dataset, which consisted of only 400 images, with
320 images for training and 80 images for testing. These
400 images were divided equally into two classes: 200 im-
ages of riders wearing helmets and 200 images of riders not
wearing helmets.

Jia et al. [11] proposed an automatic method to de-
tect helmet-wearing motorcyclists based on deep learn-
ing. Their method involves two stages: (1) using an im-
proved YOLOv5 detector that incorporates triplet attention
and soft-NMS instead of NMS to detect motorcycles (in-
cluding motorcyclists) in video surveillance, and (2) using
the same detector to detect whether the motorcyclists wear
helmets. They also introduced a new motorcycle helmet
dataset (HFUT-MH) that is larger and more comprehensive
than existing datasets derived from multiple traffic monitor-
ing in Chinese cities. The proposed method was validated
through experiments and compared to other state-of-the-art
methods. Their method achieved a mAP of 97.7%, a F1-
score of 92.7%, and 63 FPS, outperforming other detection
methods. However, this method cannot detect motorcycle
passengers, including passenger 1 and passenger 2.

Goyal et al. [10] proposed an approach to detect, track,
and count violations of motorcycle riding in videos cap-
tured from a vehicle-mounted dashboard camera. To tackle
challenging scenarios such as occlusions, they employed a
curriculum learning-based object detector. They also intro-
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Figure 3. The YOLOv7-E6E architecture adopted from [17] for person and motorcycle detection.

duced a trapezium-shaped object boundary representation
to increase robustness and handle the rider-motorcycle as-
sociation. In addition, they introduced an amodal regres-
sor that generates bounding boxes for occluded riders. The
experimental results on a large-scale unconstrained driving
dataset demonstrate the superiority of their approach com-
pared to existing approaches and other ablative variants.
However, this method cannot detect motorcycle passengers,
including passenger 1 and passenger 2.

Wang et al. [18] proposed a safety helmet detection
method that utilizes YOLOv5-CBAM-DCN with an atten-
tion mechanism and deformable convolution. This method
addresses the issue of insufficient accuracy faced by tradi-
tional target algorithms due to complex site environments,
uneven lighting, and irregular target shapes. However, it is
unable to detect motorcycle passengers, such as passenger
1 and passenger 2.

Waris et al. [19] proposed a system for automatically de-
tecting helmet violations from surveillance videos captured
by roadside-mounted cameras. Their technique is based
on a faster region-based convolutional neural network (R-
CNN) deep learning model that takes videos as input and
detects helmet violations to take necessary actions against
traffic rule violators. Experimental analysis shows that their
system achieves an accuracy of 97.69% and outperforms
its competitors. Their dataset includes 13,631 images of
drivers wearing helmets and 10,169 images of drivers not
wearing helmets. However, this method cannot detect mo-
torcycle passengers, including passenger 1 and passenger 2.

Chen et al. [6] utilized YOLOv5 object detector, an at-
tention module, a super-resolution reconstruction network,
and a classifier to address the problem of helmet detection
for riders. Their dataset comprised 4555 target images with
helmets and 3164 target images without helmets. However,
this approach does not account for the detection of motor-
cycle passengers, such as passenger 1 and passenger 2.

3. Methods

Based on the information presented in [17] and above,
it is evident that the YOLOv7-E6E model, with a test size
of 1280, achieves an APtest of 56.8% and an AP50test
of 74.4%, surpassing all known real-time object detectors.
Therefore, we have chosen the YOLOv7-E6E model as the
baseline for our seven-class object detector. Furthermore,
previous research on without-helmet detection has shown
that attention mechanisms can significantly improve de-
tection accuracy. Hence, in this paper, we propose two
seven-class object detectors that combine the YOLOv7-E6E
model with CBAM and SimAM, respectively. We provide
a brief overview of these models below.

3.1. YOLOv7-E6E model

The architecture of the YOLOv7-E6E model is de-
picted in Figure 3. This model represents an improvement
over several previous models, including YOLOv4, Scaled
YOLOv4, and YOLO-R, and was developed through fur-
ther experimentation, resulting in enhancements and new
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Figure 4. The CBAM structure [18].

features. The YOLOv7 backbone contains a computational
block called E-ELAN (Extended Efficient Layer Aggrega-
tion Network), which employs expand, shuffle, and merge
cardinality to improve the network’s learning ability with-
out compromising the gradient path.

Different applications require specific models, with
some prioritizing accuracy and others prioritizing speed.
YOLOv7 addresses these requirements by allowing model
scaling to accommodate various computing devices. The
scaling process considers parameters such as resolution (in-
put image size), width (number of channels), depth (number
of layers), and stage (number of feature pyramids).

The predicted outputs are in the head of YOLOv7, which
consists of multiple heads. The Lead Head is responsible
for the final output, while the Auxiliary Head is used to as-
sist in training in the middle layers.

Overall, the YOLOv7-E6E model is highly efficient and
effective for real-time object detection applications with
limited resources. More information about YOLOv7-E6E
can be found in reference [17].

3.2. CBAM

CBAM (Convolutional Block Attention Module) is an
attention module proposed by Woo et al. [18] that applies
attention mechanisms to enhance the representation power
of CNNs by emphasizing important features and suppress-
ing irrelevant ones. The CBAM structure is depicted in Fig-
ure 4, and it comprises two modules: channel attention and
spatial attention. The channel attention module focuses on
”what” is meaningful given an input image. It learns to
weight the importance of each feature map channel based
on its global distribution. On the other hand, the spatial
attention module focuses on ”where” the informative part
of the image is located. It employs average-pooling and
max-pooling operations along the channel axis to learn and
highlight informative features, which are then concatenated
to generate an efficient feature descriptor. CBAM can be
integrated into any CNN architecture with negligible over-
heads and is end-to-end trainable along with the base CNNs.
For more information about CBAM, please refer to refer-
ence [18].

3.3. SimAM

CBAM separately estimates 1-D channel attention and 2-
D spatial attention and combines them, rather than directly

generating true 3-D weights. Moreover, the two-step pro-
cess in CBAM is computationally expensive. To address
these limitations, Yang et al. [22] proposed SimAM (A Sim-
ple Attention Module), which is a simple and parameter-
free attention module that can efficiently produce true 3-
D weights. SimAM is based on well-known neuroscience
theories and optimizes an energy function to determine the
importance of each neuron. Yang et al. demonstrated that
SimAM is a lightweight module that can be used for various
vision tasks.

3.4. The proposed models

Based on the results presented in [17], the YOLOv7-
E6E model achieves the highest performance among real-
time object detectors, with an APtest of 56.8%, AP50test
of 74.4%, and AP75test of 62.1% for a test size of 1280.
Additionally, CBAM and SimAM attention modules have
demonstrated improvements in detection accuracy for vari-
ous vision tasks.

From above-mentioned, we know YOLOv7-E6E model
has the highest performance in test size is 1280, APtest
is 56.8%, AP50test is 74.4%, and AP75test is 62.1%.
We also found that the channel and spatial attentions in
CBAM which sequential arrangement gives a better re-
sult. Furthermore, the channel-first order is slightly bet-
ter than the spatial-first. Thus, we propose a new model is
called YOLOv7-CBAM model which combine YOLOv7-
E6E model and CBAM. That is, we insert three CBAM
module between three DownC and concat in the Head in
Figure 3, respectively.

We propose two models that combine the YOLOv7-E6E
model with attention mechanisms: YOLOv7-CBAM and
YOLOv7-SimAM. In the YOLOv7-CBAM model, we in-
sert three CBAM modules between three DownC layers and
concat layers, respectively, in the Head part, as shown in
Figure 3. The YOLOv7-SimAM model follows a similar
structure, but with three SimAM modules instead of CBAM
modules.

SimAM is a parameter-free attention module that
achieves competitive results against other attention mod-
ules while maintaining efficiency in terms of speed and pa-
rameters. Therefore, the proposed YOLOv7-SimAM model
provides a lightweight and effective solution for object de-
tection tasks. For details, refer to the original papers of
CBAM [18] and SimAM [22].

Overall, these two proposed models, YOLOv7-E6E +
CBAM and YOLOv7-E6E + SimAM, offer promising en-
hancements to the YOLOv7-E6E model, which already
achieves state-of-the-art performance in real-time object de-
tection. By incorporating attention mechanisms, these mod-
els aim to improve the ability of the network to identify
important features and suppress irrelevant ones, leading to
improved detection accuracy. The choice between CBAM
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and SimAM depends on the Track5 requirements of the
task at hand, with CBAM offering a more complex atten-
tion module with greater flexibility in weight computation,
while SimAM provides a simple and lightweight solution
with competitive performance. Further experimental eval-
uation will show in Experiments Section to determine the
effectiveness of these proposed models on Track 5 of seven
classes object detection datasets and scenarios.

4. Experimental Results

We conducted experiments to evaluate the performance
of our proposed YOLOv7-CBAM and YOLOv7-SimAM
models on the testing images of Track 5 in the 2023 AI
City CHALLENGE. Our proposed methods were imple-
mented on an Ubuntu 18.04.6 LTS operating system using
NVIDIA RTX A5000 24GB*2 GPUs and GeForce 3090
24GB*2 GPUs, with Nvidia driver version 470.74, CUDA
11.4 driver, and Python 3.8.16 for training. For testing and
detection, we used an Ubuntu 18.04.6 LTS operating system
with NVIDIA GeForce 2080 11GB*4 GPUs, Nvidia driver
version 510.54, CUDA 11.6 driver, and Python 3.8.13.

4.1. Datasets

The training dataset for AIC 2023 Track 5 Contest con-
sists of 100 videos with ground truth bounding boxes of mo-
torcycles and motorcycle riders, with or without helmets.
Each video is 20 seconds long and recorded at a frame rate
of 10 fps, with a video resolution of 1920x1080. The an-
notations provide bounding boxes for each motorcycle and
up to three riders, with helmet information for each rider.
The object classes in this dataset are labeled as follows: (1)
motorbike - bounding box of the motorcycle, (2) DHelmet
- bounding box of the motorcycle driver wearing a helmet,
(3) DNoHelmet - bounding box of the motorcycle driver
without a helmet, (4) P1Helmet - bounding box of passen-
ger 1 wearing a helmet, (5) P1NoHelmet - bounding box
of passenger 1 without a helmet, (6) P2Helmet - bounding
box of passenger 2 wearing a helmet, and (7) P2NoHelmet
- bounding box of passenger 2 without a helmet.

The test dataset for this track also consists of 100 videos,
each 20 seconds long and recorded at 10 fps. The objective
is for participating teams to identify motorcycles and motor-
cycle riders with or without helmets. Similar to the training
dataset, each rider (i.e. driver, passenger 1, and passenger 2)
in a motorcycle must be identified separately, with helmet
information for each rider.

4.2. Evaluation

The performance of each team will be ranked based on
the mean Average Precision (mAP) across all frames in the
test videos. The mAP metric measures the mean of average
precision (the area under the Precision-Recall curve) over

all object classes, as defined in the PASCAL VOC 2012
competition.

To meet the labeling standard, an object must have at
least 40% visibility. The minimum height and width of
the bounding boxes are 40 pixels. Objects smaller than 40
pixels will not be considered in the test accuracy results.
Objects that overlap with the redacted area (blurred region)
will also be ignored because the blurred region can obscure
important object features. Any objects that overlap with the
redacted areas in the test dataset will be ignored and will
not affect the test accuracy.

4.3. Implementation Details

In order to establish a baseline object detector for the
seven classes, we trained the YOLOv7-E6E model with an
image size of 1920, using the training parameters specified
in hyp.scratch.p6.yaml. The training dataset and valida-
tion dataset included 100 training videos from AIC Track 5
Contest. After completing the YOLOv7-E6E model train-
ing, we applied the seven-class object detector to detect the
seven classes in the test images for Track 5. The resulting
detections were uploaded to the evaluation system to de-
termine the mAP score. To improve the mAP score, we ad-
justed the confidence and IoU threshold values for detecting
the test images in Track 5.

We then trained the proposed YOLOv7-CBAM model
with an image size of 1280 to obtain the seven-class object
detector. During training, we used the 100 training videos
for the training dataset and 001 025 and 075 100 train-
ing videos for the validation dataset. The training parame-
ters were identical to those specified in hyp.scratch.p6.yaml.
After completing the YOLOv7-CBAM model training, we
utilized the seven-class object detector to detect the seven
classes in the test images for Track 5. The resulting detec-
tions were submitted to the evaluation system to determine
the mAP score. To improve the mAP score, we adjusted the
confidence and IoU threshold values when detecting the test
images of AIC Track 5 test set.

Finally, we trained the proposed YOLOv7-SimAM
model with an image size of 1280 to obtain the seven-
class object detector. During training, we used the 100
training videos for the training dataset and 001 025 and
075 100 training videos for the validation dataset. The
training parameters were the same as those specified
in hyp.scratch.p6.yaml. After completing the YOLOv7-
SimAM model training, we utilized the seven-class object
detector to detect the seven classes in the test images for
Track 5. The resulting detections were submitted to the
evaluation system to determine the mAP score. To improve
the mAP score, we adjusted the confidence and IoU thresh-
old values when detecting the test images in Track 5.
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Table 1. The AI City Challenge 2023 Track 5 Public Leaderboard.

Rank Team ID Team Name mAP
1 58 CTC-AI 0.8340
2 33 SKKU Automation Lab 0.7754
3 37 SMARTVISION 0.6997
4 18 UT He 0.6422
5 16 UT NYCU SUNY-Albany 0.6389
6 45 UT Chang 0.6112
7 192 Legends 0.5861
8 55 NYCU - Road Beast 0.5569
9 145 WITAI-513 0.5474
10 11 AIMIZ 0.5377

4.4. Evaluation Results

The detection results of our proposed models were sub-
mitted to Track 5 of the AI City CHALLENGE 2023 for
evaluation. As shown in the AIC 2023 Track 5 Public
Leaderboard in Table 1, we achieved mAP scores of 0.6112,
0.6389, and 0.6422 for the baseline YOLOv7-E6E model
training with an image size of 1920, YOLOv7-CBAM
model training with an image size of 1280, and YOLOv7-
SimAM model training with an image size of 1280, respec-
tively. These scores ranked us sixth, fifth, and fourth on the
public leaderboard among over 36 teams worldwide.

4.5. Qualitative Results

Figure 5(a) presents the detection results of the baseline
model, YOLOv7-E6E, which was trained with an image
size of 1920, on an image extracted from video 008, frame
84. The figure displays the detection of five moving mo-
torcycles as motorbikes, but it also shows a false positive
detection of a non-moving motorcycle in the bottom-right
corner. The drivers of the first and fourth moving motorcy-
cles have been correctly identified as DHelmet, whereas the
driver of the other moving motorcycle is identified as DNo-
Helmet. However, the drivers of the third and fifth moving
motorcycles have also been erroneously detected as DHel-
met. The image also includes a false positive detection of
DNoHelmet in the bottom-right. In contrast, Figure 5(b)
depicts the detection results of the same baseline model,
YOLOv7-E6E, trained with an image size of 1920, on an
image extracted from video 014, frame 118. In this case,
only one motorcycle has been detected as a motorbike, and
the driver has not been detected.

Figure 6(a) presents the detection results of the pro-
posed model, YOLOv7-CBAM, trained with an image size
of 1280, on an image extracted from video 008, frame 84.
The figure displays the detection of five moving motorcy-
cles as motorbikes, but it also shows a false positive detec-
tion of a non-moving motorcycle in the bottom-right cor-
ner. The drivers of the first and fourth moving motorcycles

(a)

(b)

Figure 5. Examples of the seven classes detected in Track 5 using
the baseline model: YOLOv7-E6E trained with an image size of
1920. (a) The image, taken from video 008, frame 84, shows five
detected motorbikes and one false positive, two DHelmets, two
false positive DHelmets, and three DNoHelmets. (b) The image,
taken from video 014, frame 118, shows only one detected motor-
bike.

have been correctly identified as DHelmet. The driver of the
second moving motorcycle has been correctly identified as
DNoHelmet. However, the driver of the third moving mo-
torcycle has been erroneously identified as DHelmet. The
driver of the fifth moving motorcycle is identified as both
DHelmet and DNoHelmet. Figure 6(b) depicts the detection
results of the same proposed model, YOLOv7-CBAM, with
an image size of 1280, on an image extracted from video
014, frame 118. In this case, one motorcycle has been de-
tected as a motorbike, and the driver has also been correctly
identified as DHelmet.

Figure 7(a) presents the detection results of the proposed
model, YOLOv7-SimAM, trained with an image size of
1280, on an image extracted from video 008, frame 84.
The figure displays the detection of five moving motorcy-
cles as motorbikes, but it also shows a false positive detec-
tion of a non-moving motorcycle in the bottom-right cor-
ner. The drivers of the first and fourth moving motorcy-
cles have been correctly identified as DHelmet. The drivers
of the second and fifth moving motorcycles have also been
correctly identified as DNoHelmet. However, the driver of
the third moving motorcycle is identified as a false positive
DHelmet. Additionally, there is a false positive DNoHel-
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(a)

(b)

Figure 6. Illustrates examples of the seven detected classes in
Track 5 using the proposed model, YOLOv7-CBAM, trained with
an image size of 1280. In (a), the image extracted from video
008, frame 84 displays the detection of five motorbikes, one false
positive motorbike, two DHelmets, two false positive DHelmets,
and two DNoHelmets. In (b), the image extracted from video 014,
frame 118, shows the detection of one motorbike and one DHel-
met.

met detected in the bottom-right corner. Figure 7(b) depicts
the detection results of the same proposed model, YOLOv7-
SimAM, with an image size of 1280, on an image extracted
from video 014, frame 118. In this case, while one motorcy-
cle was not detected, the driver has been correctly identified
as DHelmet.

5. Conclusion
This paper presents two new deep learning models,

YOLOv7-CBAM and YOLOv7-SimAM, which incorpo-
rate YOLOv7-E6E, CBAM, and SimAM. The YOLOv7-
E6E model was trained on images of size 1920, while
the YOLOv7-CBAM and YOLOv7-SimAM models were
trained on images of size 1280. These models were em-
ployed to detect the test images in Track 5, and the re-
sults were submitted to the AI City CHALLENGE Track
5 evaluation system. The experimental results on the 100
test videos of the 2023 AI City CHALLENGE Track 5
demonstrate the effectiveness of our methods, with mAP
scores of 0.6112, 0.6389, and 0.6422 for YOLOv7-E6E,
YOLOv7-CBAM, and YOLOv7-SimAM, respectively. Our
proposed methods ranked sixth, fifth, and fourth on the pub-

(a)

(b)

Figure 7. Examples of the seven detected classes in Track 5 us-
ing the proposed model, YOLOv7-SimAM, trained with an image
size of 1280. (a) The image is taken from video 008, frame 84,
and displays the detection of five motorbikes and one false pos-
itive motorbike, two DHelmets and one false positive DHelmet,
and two DNoHelmets and one false positive DNoHelmet. (b) The
image is taken from video 014, frame 118, and shows the detection
of only one DHelmet. The motorbike was not detected.

lic leaderboard, out of over 36 participating teams. How-
ever, YOLOv7-CBAM produced one false positive motor-
bike and two false positive DHelmets in Figure 6(a), while
YOLOv7-SimAM generated one false positive motorbike,
one false positive DHelmet, and one false positive DNoHel-
met in Figure 7(a). Moreover, YOLOv7-SimAM failed to
detect one motorbike in Figure 7(b). In the future, these
issues regarding false positives and non-detected objects
should be addressed.

Overall, the proposed models demonstrate the potential
of deep learning techniques in improving traffic safety mea-
sures, and they highlight the importance of continued re-
search in this area. The code for these models is publicly
available, enabling others to build upon these advancements
and further improve the state-of-the-art.
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