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Abstract

We present a video analytic system for enforcing motor-
cycle helmet regulation as a participation to the AI City
Challenge 2023 [18] Track 5 contest. The advert of pow-
erful object detectors enables real-time localization of the
road users and even the ability to determine if a motorcy-
clist or a rider is wearing a helmet. Ensuring road safety is
important, as the helmets can effectively provide protection
against severe injuries and fatalities. However, monitor-
ing and enforcing helmet compliance is challenging, given
the large number of motorcyclists and limited visual input
such as occlusions. To address these challenges, we pro-
pose a novel two-step approach. First, we introduce the
PRB-FPN+, a state-of-the-art detector that excels in ob-
ject localization. We also explore the benefits of deep su-
pervision by incorporating auxiliary heads within the net-
work, leading to enhanced performance of our deep learn-
ing architectures. Second, we utilize an advanced tracker
named SMILEtrack to associate and refine the target track-
lets. Comprehensive experimental results demonstrate that
the PRB-FPN+ outperforms the state-of-the-art detectors
on MS-COCO. Our system achieved a remarkable rank of 8
on the AI City Challenge 2023 [18] Track 5 Public Leader-
board. Code implementation is available at: https://

github.com/NYCU-AICVLab/AICITY_2023_Track5.

1. Introduction

Road safety is a critical priority for governments, traf-
fic authorities, and citizens across the globe. In several

Figure 1. The overview diagram of the proposed method for the
robust helmet detection and tracking for motorcyclists and riders.

countries, particularly in Asia, where motorcycles are the
primary mode of transportation, the enforcement of helmet
usage for motorcyclists and riders is a critical regulation.
Helmets play a crucial role in reducing the risk of severe
injuries or fatalities in the event of accidents. However,
the enforcement of helmet policies can be challenging due
to the large number of motorcyclists and limited resources
available to enforcement personnel.

With the advance of object detection in AI and computer
vision, it is now possible to effectively monitor and iden-
tify motorcyclists and their helmet usage in real-time. The
state-of-the-art detectors [3, 5, 8, 25] are capable of locating
targets within a scene and recognizing whether or not the
helmets are worn by the motorcyclists or riders. This video
analytic technology offers a smart and non-intrusive solu-
tion to address the challenges faced in the monitoring and
enforcing of helmet rules. The developed system can be de-
ployed to run on energy-efficient edge devices, where traffic
authorities and enforcement personnel can better monitor
the compliance of helmet regulations. Such technology can
ultimately contribute to road safety improvement and smart
transportation.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Comparisons of object detection between YOLOv7-E6E [25] and our PRB-FPN+. (a) shows the detection results obtained using
YOLOv7-E6E [25], which were unable to accurately detect a motor in a foggy scene. (b) shows the detection results obtained using our
proposed PRB-FPN+, which successfully recognized the objects in the foggy scene. These results demonstrate the superior performance
and robustness of our approach compared to YOLOv7-E6E [25] in challenging environments such as fog.

Despite the advantages of video analytic systems, how
best to visually recognize whether a person is wearing a hel-
met or not from the real-time video streams is challenging in
the complex street environment. Typical challenges includ-
ing occlusions, motion blur, diverse appearances, complex
background, and environmental factors can greatly degrade
the image-based helmet detection performance. Further-
more, discerning the subtle differences between a helmeted
and non-helmeted motorcyclist, or identifying the specific
positions of passengers on a moving motorcycle, requires
a high level of precision and robustness from the detec-
tion model. Robust estimation can be achieved by associ-
ating information across frames through association of de-
tection into tracklets, and perform Multiple Object Tracking
(MOT) and information fusion. However, a robust tracker
is required for such spatial-temporal analysis.

In this paper, we develop a video analytic approach to
aid the enforcement of the helmet policy for motorcyclists
and riders. Figure 1 overviews our helmet and motorcy-
cle rider detection and tracking pipeline. We propose a
new object detector, the PRB-FPN+ that is an extension
of our prior work of PRB-FPN [5], to accurately detect and
recognize both the helmet and the motorcyclists and rid-
ers on a per-frame basis. Compared to the original PRB-
FPN, the improved version of PRB-FPN+ can effectively
fuse both the auxiliary and lead heads in parallel for fast
and accurate one-shot object detection. Figure 2 shows a
visual example comparing the popular YOLOv7-E6E de-
tector and the PRN-FPN+, which can better localizing ob-
jects, especially for tiny and heavily occluded targets. We
next incorporate an effective strategy is to fuse information
across frames using a SiMIlarity LEarning based tracker
(SMILEtrack) [27], to estimate the trajectory of each in-
dividual and determine their position on the vehicle. This
two-step fusion approach can better deal with challenges
associated with complex real-world scenes and occlusions,
in capturing the subtle difference between the individuals

with and without wearing helmets.
In summary, contributions of this work include:

• We propose a new PRB-FPN+ object detector that can
recognize tiny objects such as small helmets in challeng-
ing environments such as foggy scenes or targets under
heavy occlusions or clutters. Results also show great
generalization ability on various object sizes and types.
The comprehensive experiments on multiple tasks have
demonstrated that our method outperforms state-of-the-
art detectors on MS COCO dataset [16].

• We incorporate the SMILEtrack tracker to perform trajec-
tory association and multiple target tracking. The com-
bination of target detection and tracking enables spatial-
temporal analysis for the motorcyclist helmet detection.

• Our system achieves the rank of 8 on the AI City Chal-
lenge 2023 [18] Track 5 Public Leaderboard [1].

2. Related Works
2.1. Motorcyclist helmet detection

Real-time helmet detection systems. Real-time hel-
met detection is important for ensuring the safety of mo-
torcyclists on the road. Dahiya et al. [7] introduced a real-
time method for detecting helmetless motorcycle drivers in
surveillance videos. They employed background subtrac-
tion and object segmentation to identify drivers, and an
SVM binary classifier using visual features to determine
helmet usage. Jia et al. [14] proposed a deep learning-based
automatic helmet detection method for motorcyclists using
an improved YOLOv5 detector with triplet attention and
soft-NMS for both motorcycle and helmet detection.

Accurate helmet detection systems. Although real-
time detection is important, accurately recognizing the pres-
ence of a helmet, as well as the position of the passenger,
are also crucial factors for ensuring the safety of motor-
cyclists on the road. Chairat et al. [4] developed an au-
tomated helmet violation detection system using YOLO,
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Kristan’s tracking method, and GoogleNet for classifica-
tion. They processed multiple cameras and utilized 960 vio-
lation and 931 non-violation class images. Singh et al. [22]
presented a framework for detecting helmetless motorcy-
clists using a detector, person localization, and head/helmet
classifier. Goyal et al. [13] developed a method to detect,
track, and count motorcycle riding violations in dashcam
videos. They employed a curriculum learning-based de-
tector for challenging situations like occlusions and used
a trapezium-shaped boundary representation for robustness
and rider-motorcycle associations. Additionally, they inte-
grated an amodal regressor to create bounding boxes for oc-
cluded riders. Wang et al. [26] proposed a safety helmet
detection method using YOLOv5-CBAM-DCN, incorpo-
rating attention mechanisms and deformable convolutions.
This method tackles the accuracy issues in traditional tar-
get algorithms caused by complex site environments, un-
even lighting, and irregular target shapes. Chen et al. [6]
utilized YOLOv5 object detector, an attention module, a
super-resolution reconstruction network, and a classifier to
address the problem of helmet detection for riders.

However, the above-mentioned methods are unable to si-
multaneously recognize the presence of a helmet and detect
the position of the passenger.

2.2. Object Detection

Object detection [17,19,21] is a key computer vision task
that localizes and classifies objects in images. Detection
methods are mainly one-stage [19], such as YOLO [19] and
SSD [17], or two-stage detectors [21], like R-CNN [12] and
Faster R-CNN [21]. One-stage methods prioritize speed
while maintaining reasonable accuracy, making them suit-
able for real-time applications with resource or latency con-
straints. In contrast, two-stage methods focus on high accu-
racy through separate region proposal and object classifica-
tion stages, catering to applications that prioritize precision
over computational complexity and inference speed.

The recent advancements in one-stage object detec-
tors [3, 5, 8, 20, 25] have paved the way for real-time object
detection, offering a promising solution for monitoring hel-
met usage by accurately identifying motorcyclists and their
adherence to helmet rules.

2.3. Multiple Object Tracking

The Tracking-By-Detection (TBD) approach comprises
two primary stages: detection and tracking. In the detection
stage, the system locates objects of interest within individ-
ual video frames. Following this, the tracking stage utilizes
data association techniques to connect detected objects to
existing tracks or to establish new tracks when required.

Detection Models. Adapted for multi-object track-
ing (MOT) applications, popular YOLO object detection
models [3, 20, 25] excel in real-time processing and accu-

rately detecting objects in cluttered scenes. However, the
anchor-based detector’s case-specific hyperparameter ad-
justment is challenging, and the Intersection Over Union
(IOU) calculation during training is time-consuming and
memory-intensive. To address these issues, anchor-free de-
tectors [8, 15, 33] offer an alternative. YOLOX [8] transi-
tions the YOLO series [3, 19, 20] from an anchor-based to
an anchor-free detector and employs decoupled heads to en-
hance detection accuracy. While existing methods struggle
to detect both large and small objects, our detection process
utilizes the PRB-FPN approach [5] to tackle this challenge.

Data Association Methods. Data association in multi-
object tracking (MOT) systems is often complicated by
numerous challenges, including object occlusion, crowded
scenes, and motion blur. Several methods have been pro-
posed to address these limitations, such as SORT [2], which
uses the Kalman filter for predicting object locations, and
Deep SORT [29], which employs a pre-trained CNN model
to extract appearance features. JDE [28] combines the De-
tector and Embedding models for real-time processing and
high accuracy. FairMOT [32] enhances performance by uti-
lizing an anchor-free method built on top of CenterNet [9].
Despite these improvements, JDE still struggles with fea-
ture conflicts.

We aim to use a state-of-the-art tracker [27] to post-
process the tracking of drivers and passengers, which can
improve the accuracy and reliability of monitoring and
enforcing helmet rules for motorcyclists in complex real-
world scenarios.

3. Methods

3.1. PRB-FPN+

The newly proposed Parallel Residual Bi-fusion Fea-
ture Pyramid Network Plus (PRB-FPN+) object detector
is an extension of the original PRB-FPN architecture [5],
with modifications made to the P5 model to incorporate the
P6 model. The design of the PRB-FPN+ architecture in-
cludes two main features: (1) model scaling to adapt to large
input images [23,24], and (2) the parallel use of both auxil-
iary and lead heads, which enables efficient feature capture
for identifying and localizing objects of varying sizes with-
out compromising efficiency.

Model Scaling. Inspired from the model scaling meth-
ods [23, 24] and the original PRB-FPN [5] from our pre-
vious work, we propose the PRB-FPN+ as a newly reno-
vated object detector. PRN-FPN+ outperforms the SoTA
object detection approaches, includint YOLOv7 [25] and
YOLOX [8].

Let Pi denote the features obtained from the backbone,
BFj denote the j-th BiFusion module [5], and COREj

k and
BFM j

k represent the Pyramidal Layer within the j-th BiFu-
sion module. The input configuration for bottom-up feature
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Figure 3. Coarse for auxiliary and fine for lead head fusion. (a) Model with auxiliary and lead head. (b) PRB-FPN+ with parallel auxiliary
and lead fusion head.

fusion can be written as:

COREj
k = {P7−k,P6−k,COREj

k−1}, (1)

where j = 1, 2, 3 and k = 1, 2, 3, 4, respectively. The input
configuration for top-down feature fusion can be written as:

BFMj
k = {COREj

k,BFMj
k+1}, (2)

where j = 1, 2, 3 and k = 1, 2, 3, 4, respectively. By em-
ploying this hierarchical approach, our method effectively
combines multi-scale features and leverages the advantages
of each BiFusion module, leading to improved performance
on object detection and recognition tasks.

Coarse for auxiliary and fine for lead loss. Deep learn-
ing networks have revolutionized many computer vision
tasks, but how best to effectively train them still remains
challenging. To address this issue, deep supervision has
emerged as a popular technique for guiding the training of
deep networks. We adopt the approach in YOLOv7 [25],
to incorporate the lead head and auxiliary head to the net-
work. Specifically, we leverage the lead head prediction
as guidance to generate coarse-to-fine hierarchical labels,
which are used for the training of the auxiliary head and
lead head.

In addition, we propose a novel approach that introduces
parallelization to these heads, enabling us to more effec-
tively capture the necessary features for object detection
tasks by better focusing on regions of interest. This par-
allelization design improves the feature representation, by
efficiently capturing features to identify and localize objects
of varying sizes without compromising efficiency. Figure 3

(a) illustrates the variant of the FPN object detector archi-
tecture, and Figure 3 (b) shows the version with the parallel
multi-scale features fusion incorporated.

Following the parallelization design, the output from
each BFM [5] module is concatenated to form a lead fusion
before lead head for each level k as:

Lead Fusionk = cat
(
BFM1

k,BFM2
k,BFM3

k

)
, (3)

where k = 1, 2, 3, 4. Moreover, the output from each
CORE [5] module is concatenated to form an auxiliary fu-
sion before auxiliary head for each level k as:

Aux Fusionk = cat
(
CORE1

k,CORE2
k,CORE3

k

)
, (4)

where k = 1, 2, 3, 4. Our newly introduced designs offer sig-
nificant improvements to the performance of our proposed
model, by enabling it to learn from more informative signals
during training. A key innovation in our design lies in the
incorporation of parallelization into both the lead and aux-
iliary heads. By implementing this parallel design, we can
more efficiently represent features and capture the essential
information required for identifying and localizing objects
of varying sizes, without sacrificing efficiency. These ad-
vancements have greatly enhanced the detection capabili-
ties of our model, providing it with a powerful tool for ac-
curately identifying and localizing objects in a variety of
contexts.

3.2. SMILEtrack

In this section, we utilize the SiMIlarity LEarning
based tracker (SMILEtrack) [27], a cutting-edge tracker
that fuses a detector with a Similarity Learning Module
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(SLM) to tackle the challenges in Multiple Object Track-
ing (MOT). This tracker presents three essential contribu-
tions to a new state-of-the-art (SoTA) MOT system: an ef-
ficient object detector, a lightweight self-attention mecha-
nism, and a robust tracker. The ”PRB-Net” [5] serves as our
object detector, adept at localizing both large and small ob-
jects. Moreover, drawing inspiration from the model scal-
ing method [23,24], we propose PRB-FPN+, which outper-
forms the aforementioned SoTA approaches [8, 25].

3.3. Overall System

This section presents our overall system and its rationale.
The system’s workflow is illustrated in Figure 1.

The first step of our system is a detection model (Sec-
tion 3.1), which forms the basis of the overall system by
obtaining bounding boxes and preliminary classification re-
sults from videos. To improve performance, we use the
pseudo-label technique to reduce model confusion. Given
the labeling rule, objects with pixels below 40 are not la-
beled, yet our model can detect smaller objects. This can
cause confusion, classifying similar features into different
categories. To address this, we create a pseudo-label by
combining the ground truth label and our model’s predic-
tions. Although pseudo-labels improve training set accu-
racy, test set scores do not follow suit. In our final submis-
sion, we discard this technique and use a model trained with
given labels.

The next step is a tracking model designed to stabilize
classification results from the detection model (Section 3.2).
We observed that the detection model correctly predicts
larger objects but may fail with occluded or small ob-
jects, causing inconsistent object classifications. To tackle
this, we use SMILEtrack [27] that matches objects across
frames. The tracking model references different frames and
corrects the current result, even for occluded or distant ob-
jects. However, problems may arise when objects are mis-
classified initially.

In this step, we aim to rectify such errors. For example,
when Passenger 1 is absent, there should be no bounding
box for Passenger 2. The tracking model can reference mul-
tiple frames to correct these inconsistencies and enhance the
overall performance of our system.

4. Experimental Results

Our evaluation consists of two parts. Firstly, we com-
pare the performance of PRB-FPN+ with state-of-the-art
object detectors on the MS COCO dataset [16]. Secondly,
we leverage the proposed PRB-FPN+ in combination with
SMILEtrack [27] to develop a video analytics system for
enforcing motorcycle helmet laws in the AI City Challenge
2023 [18] Track 5 [1] contest.

4.1. Dataset and Settings

This comprehensive dataset enables the development and
evaluation of object detection models focusing on the com-
plex task of helmet rule compliance detection.

Datasets. The training dataset consists of 100 videos,
each 20 seconds long, recorded at 10 frames per second
with a resolution of 1920x1080. These videos feature mo-
torcycles and their riders, who may or may not be wearing
helmets. Ground truth bounding boxes are provided for mo-
torcycles and their riders, with up to three riders per motor-
cycle.

Each annotated frame includes bounding box annota-
tions, and the dataset comprises 7 different classes repre-
senting motorcycles, drivers, and passengers with or with-
out helmets. The challenge lies in the fact that the models
need to accurately recognize whether a person is wearing a
helmet or not.

The test dataset for this track comprises 100 videos, each
with a duration of 20 seconds and recorded at 10 fps. The
participating teams’ objective is to identify motorcycles and
motorcycle riders while discerning if they are wearing hel-
mets. Similar to the training dataset, it is crucial to distin-
guish each rider (i.e., driver, passenger 1, and passenger 2)
on a motorcycle and determine their respective helmet in-
formation.

Metrics. The evaluation metric used for the object detec-
tion tasks is the mean Average Precision (mAP), which was
defined in PASCAL VOC 2012 [10]. The mAP is calculated
by averaging the Average Precision (AP) values for each
class. AP for a specific class is derived from the Precision-
Recall curve, which is generated by varying the detection
confidence threshold. Let True Positive TP represent the
number of correctly detected objects of the class, False Pos-
itive FP denote the number of incorrect detections, and
False Negative FN indicate the number of objects of the
class that were not detected. The Precision (P ) and recall
(R) are defined as P = TP

TP+FP and R = TP
TP+FN . To com-

pute the AP, the area under the Precision-Recall curve is cal-
culated, typically using the 11-point interpolation method
or the integration of the interpolated curve. The final mAP
score represents the mean AP across all object classes, pro-
viding an overall assessment of the object detection model’s
performance.

mAP =
1

N

N∑
i=1

APi (5)

where N is the number of object classes, and APi is the
average precision for the i-th class.

Labeling criteria and bounding box constraints.
To ensure consistent labeling standards, two key require-

ments have been established. First, objects must have at
least 40% visibility to be considered. Second, the minimum
height and width of the bounding boxes are set at 40 pixels.
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Figure 4. The object counting of the separated dataset.

Objects smaller than 40 pixels will not be taken into ac-
count when determining test accuracy results. Objects that
overlap with redacted areas (blurred regions) will also be
disregarded, as these obscured regions can conceal vital ob-
ject features. Consequently, any objects overlapping with
redacted areas in the test dataset will not influence test ac-
curacy.

4.2. Implementation Details

Dataset distribution. Before the experiment, to make
sure the training and validation dataset have a similar dis-
tribution of object categories we analyzed the dataset of
100 videos. The dataset has 895 motorbikes, 644 DHel-
mets, 192 DNoHelmets, 3 P1Helemts, 137 P1NoHelmets,
0 P2Helmet, and 2 P2NoHelmets. We split the dataset into
1-70 videos for training and 71-100 for validation and this
way there is a similar ratio of classes in the training and val-
idation dataset respectively. The distribution of the splitting
is shown in Figure 4.

Detector training. The training process is split into two
parts. The first part trains the model with the given dataset.
The second part trains the model with the pseudo label. We
will discuss the pseudo label later.

Both parts of the model are trained with the same set-
ting but using different labels. We train our model on 4
NVIDIA 3090 GPUs with 16 batch sizes. To get better
performance from batch normalization, we adopt synchro-
nized batch normalization to avoid degradation by the small
number of batches on a single GPU. The image is resized
to 1280 × 1280 and adopts a powerful data transformation
technique Mosaic. The stochastic gradient descent (SGD) is
adopted as the optimizer with a learning rate starting from
0.01 and decreasing by one cycle with a cosine function.
The overall epoch is set to 300 with 3 warmup epochs.

Tracker training. The tracker’s adaptability and robust-
ness are essential for accurately detecting helmet violations.
Its performance depends on configurable parameters that
can be optimized for different scenarios.

The tracking confidence threshold (0.3) determines if
a detected object is reliable for tracking. A higher value
may reduce false positives but increase false negatives. The
lowest detection threshold (0.05) filters low-confidence de-
tections, balancing false positives and negatives. The new
track threshold (0.4) affects track initialization and can im-
prove tracking consistency.

The track buffer parameter (30) retains frames for lost
tracks, enhancing tracking performance when objects are
occluded or undetected. The matching threshold (0.7) gov-
erns detection and track association, improving tracking ac-
curacy and reducing identity switches.

The aspect ratio threshold (1.6) removes detections with
unrealistic aspect ratios, ensuring only plausible detections
are considered. The minimum box area parameter (10) fil-
ters out tiny boxes, reducing false positives. When enabled,
the score and IoU fusion feature (set to False) combines
detection score and IoU for association, further improving
tracking performance.

4.3. Evaluation Results

Quantitative results. As shown in Tables 1, we com-
pare our PRB-FPN+ against other SoTA object detection
methods with respect to accuracy and efficiency. To be-
gin with, we conducted a comparative analysis between our
PRB-FPN+ and other existing models [11,23–25,31] using
the MS COCO dataset [16]. Tables 1 shows that our pro-
posed PRB-FPN+ outperforms the other SoTA object detec-
tion methods in terms of accuracy. Furthermore, we lever-
aged PRB-FPN+ in combination with SMILEtrack [27] to
develop a video analytics system for enforcing motorcycle
helmet laws in the AI City CHALLENGE 2023 [18] Track
5. Our proposed system achieved a rank of 8 on the Leader-
board, as shown in Tables 2. These results demonstrate the
effectiveness and potential of our proposed approach for ob-
ject detection and video analytics applications.

Qualitative results. We compared the object detection
performance of YOLOv7-E6E [25] with our proposed PRB-
FPN+. Figure 2(a) shows the detection results obtained us-
ing YOLOv7-E6E [25], which were unable to accurately
detect a motor in a foggy scene. In contrast, Figure 2(b)
shows the detection results obtained using our proposed
PRB-FPN+, which successfully recognized the objects in
the foggy scene. These results demonstrate the superior
performance and robustness of our approach compared to
YOLOv7-E6E [25] in challenging environments such as
fog.

In addition to the superior performance of PRB-FPN+
compared to YOLOv7-E6E [25] in foggy scenes, our de-
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Method Size FPS AP AP50 AP75 APS APM APL

YOLOv4-P6 [24] 1280 32 54.5 72.6 59.8 36.8 58.3 65.9
EfficientDet-D7 [23] 1536 8 53.7 72.4 58.4 35.8 57.0 66.3
SM-NAS: E5 [31] 1333x800 9 45.9 64.6 49.6 27.1 49.0 58.0
NAS-FPN [11] 1024 13 44.2
YOLOv7-E6E [25] 1280 36 56.8 74.4 62.1 39.3 60.5 69.0

PRB-FPN+ [Ours] 1280 17 56.9 74.1 62.3 39.0 60.5 70.0

Table 1. Comparisons on the MS COCO test-dev set with SoTA models on Nvidia Volta V100.

Rank Team ID Team Name Score
1 58 CTC-AI 0.8340
2 33 SKKU Automation Lab 0.7754
3 37 SMARTVISION 0.6997
4 18 UT He 0.6422
5 16 UT NYCU SUNY-Albany 0.6389
6 45 UT Chang 0.6112
7 192 Legends 0.5861
8 55 NYCU - Road Beast 0.5569
9 145 WITAI-513 0.5474
10 11 AIMIZ 0.5377

Table 2. The AI City Challenge 2023 [18] Track 5 Public Leader-
board, where our method ranks the 8-th among all participant
teams.

sign includes the addition of parallelization to the lead and
auxiliary heads, which enables the detection of objects in
the bottom of the image (as shown in Figure 2(b)). In con-
trast, YOLOv7 [25] is unable to detect these objects in the
same image ( (as shown in Figure 2(a))). These results fur-
ther highlight the advantages of our proposed approach over
YOLOv7 for object detection tasks in challenging environ-
ments.

4.4. Ablation study

Data distribution. To evaluate whether the model will
decrease the performance by using the whole data to train,
we test on two different ratio splitting of the dataset and
evaluate by the submission system. The result of two ratio
splitting is shown in Table 4. The first separation is 70% of
the training set and 30% of the validation set. The number
of each class is shown in Figure 4 which is a fairness ratio.
The second splitting is 100% of the training and validation
set i.e. the training set is equal to the validation set. In our
experiment, using all the data to train the model will get
better performance. However, this will be different when
adopting the pseudo label as discussed in the next section.

SMILEtrack [27] for post-processing. We performed
an ablation study of our method with and without tracking,
evaluating the results using the submission system at a con-
fidence threshold of 0.5. As shown in Table 3, our findings
suggest that incorporating tracking leads to improved per-

Detection Tracking Score
✓ 0.3685
✓ ✓ 0.3759

Table 3. The ablation of our method with and without tracking.
The comparison is under 0.5 confidence and evaluate by the sub-
mission system.

Training Validation Score
70% 30% 0.3548
100% 100% 0.3685

Table 4. The ratio of different sets. The percentage represents
the usage over the given dataset. The Score is evaluated on the
leaderboard using our detection model with 0.5 confidence.

formance. This implies that post-processing the tracking of
drivers and passengers can enhance the accuracy and relia-
bility of monitoring and enforcing helmet rules for motor-
cyclists in complex real-world situations.

4.5. Pseudo label analysis

According to the AIC Track 5 contest data labeling
guidelines, any object that measures less than 40 pixels
will not be labeled, nor will it impact the evaluation score.
Nonetheless, our experiments have shown qualitative find-
ings, illustrated in Figure 5, that our model can reliably de-
tect small objects less than 40 pixels. However, this sce-
nario may cause the model to confuse the object’s features
with those of the background. To overcome this issue, we
adopt pseudo labeling, by utilizing the model’s predictions
to retrieve objects that were not labeled but can be detected.
In other words, the pseudo labels are created by combin-
ing the ground truth label and the predictions made by our
model. For each bounding box, we calculate the Intersec-
tion of Union (IoU) between ground truth and predictions.
We exclude highly overlapping objects already present in
the ground truth, but include those with low overlap, partic-
ularly non-overlapping boxes. This approach ensures that
our model is trained on high-quality, representative data,
improving its accuracy and performance in real-world sce-
narios.
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(a) Ground Truth (b) Pseudo label

Figure 5. (a) The given dataset label. (b) The pseudo label composite ground truth label and the model prediction.

Pseudo label mAP@.5 mAP@.5.95 Score
0.954 0.785 0.3548

✓ 0.9796 0.8755 0.3041

Table 5. The comparison between with and without the pseudo
label. The result is evaluated on the detection model with 0.5 con-
fidence.

Table 5 shows the evaluation results after incorporating
pseudo labels. During the initial stages of model training,
utilizing the pseudo label yields improved performance in
terms of mAP@.5 and mAP@.5.95 metrics compared to the
model trained without them. However, we observed inferior
model performance of the test evaluation scores. We sus-
pect that this discrepancy may be attributed to overfitting of
the training model. Further investigation is needed to better
understand and address this issue.

5. Conclusions and Future Works
We present PRB-FPN+, an innovative method for ef-

ficient and accurate single-shot object detection, which
surpasses current state-of-the-art models. PRB-FPN+ has
achieved an unprecedented level of performance on the
challenging MS COCO dataset [16]. Our method employs
both auxiliary and lead heads in parallel, enabling us to
effectively extract features for recognizing and localizing
objects of varying sizes, without compromising on effi-
ciency. We utilize SmileTrack [27] to enhance the tracking
of drivers and passengers, marking a practical application
for enforcing motorcycle helmet laws. Our system achieves
rank 8 in the AI City Challenge 2023 [18] Track 5 con-
test [1]. This demonstrates the efficacy and potential of our
method in real-world smart city applications.

Limitations: Despite the significant advancements in
our approach, there remains a limitation in the object detec-
tor’s ability to accurately detect and differentiate between
individuals with and without helmets. This limitation can be
attributed to the inherent challenges in distinguishing subtle

visual differences between the two categories.
Future Works: As a potential avenue for future

work, we will propose incorporating attention mechanisms,
such as the Convolutional Block Attention Module [30]
(CBAM), to enhance the model’s focus on relevant features
and improve its discriminative power. This could poten-
tially lead to more accurate detection and recognition of in-
dividuals with and without helmets, further advancing the
state-of-the-art in multiple object tracking.
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