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Abstract

Through the development of multi-modal and contrastive
learning, image and video retrieval have made immense
progress over the last years. Organically fused text, im-
age, and video knowledge brings huge potential opportu-
nities for multi-dimension, and multi-view retrieval, espe-
cially in traffic senses. This paper proposes a novel Multi-
modal Language Vehicle Retrieval (MLVR) system, for re-
trieving the trajectory of tracked vehicles based on natu-
ral language descriptions. The MLVR system is mainly
combined with an end-to-end text-video contrastive learn-
ing model, a CLIP few-shot domain adaption method, and
a semi-centralized control optimization system. Through a
comprehensive understanding the knowledge from the ve-
hicle type, color, maneuver, and surrounding environment,
the MLVR forms a robust method to recognize an effec-
tive trajectory with provided natural language descriptions.
Under this structure, our approach has achieved 81.79%
Mean Reciprocal Rank (MRR) accuracy on the test dataset,
in the 7th Al City Challenge Track 2, Tracked-Vehicle Re-
trieval by Natural Language Descriptions, rendering the
2nd rank on the public leaderboard. Our code is available
at https://github.com/eadst/MLVR.

1. Introduction

Traffic is a critical aspect of urban infrastructure, inti-
mately connected with urban planning and management.
In recent decades, accelerating urbanization and popula-
tion growth have exerted immense pressure on urban traffic
systems. To address these challenges, an increasing num-
ber of cities have adopted intelligent transportation and ur-
ban monitoring systems. Intelligent transportation systems
are traffic management solutions based on advanced infor-

mation technology and data analysis. Incorporating com-
puter vision and natural language processing techniques
into intelligent transportation and urban monitoring systems
promises significant advancements in urban traffic manage-
ment and smart city operations.

Prompted by the demands of improving smart city op-
erations, the Al City Challenge introduces several tracks
of traffic-related tasks [12]. The task of Tracked-Vehicle
Retrieval by Natural Language Descriptions made signifi-
cant progress last year, with various teams participating in
the challenge and achieving notable results [3, 13]. For in-
stance, the authors of [19] developed a multi-granularity re-
trieval system and ranked first with an MRR of 56.52%);
the authors of [6] proposed a semi-supervised domain adap-
tation training process and employed a context-sensitive
post-processing method to analyze motion and prune re-
trieval results; the authors of [21] designed a symmetric net-
work model to learn representations between language de-
scriptions and vehicles, and a spatial relationship modeling
method to identify relationships between vehicles and their
surrounding environment, among other remarkable contri-
butions. However, there remains room for improvement in
the performance of these methods, as well as in the develop-
ment of post-processing and pruning algorithms to achieve
better retrieval results [13].

Building upon the successes of prior research, we have
developed an innovative deep learning system called Multi-
modal Language Vehicle Retrieval (MLVR) for text-vehicle
retrieval. The MLVR system primarily comprises three core
components: an end-to-end text-video contrastive learning
module, a CLIP-based train-free domain adaptation tech-
nique, and a semi-centralized control optimization mech-
anism. The text-video contrastive learning module serves
a crucial function in extracting video features by employ-
ing a combination of video and text information. The do-
main adaptation method is integrated to establish vehicle
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color and type modules, which facilitate enhanced vehicle
attribute matching. The control system is responsible for
aggregating vehicle motion data and the surrounding envi-
ronment, subsequently formulating a robust methodology
for improving overall system performance. By synergisti-
cally harnessing the capabilities of these core components,
the MLVR strategy significantly enhances the accuracy in
identifying vehicle trajectories, paving the way for advance-
ments in the field of multi-modal retrieval.

2. Related Work
2.1. Multi-modal and Contrastive Learning

The domains of multi-modal and contrastive learning are
indispensable for devising advanced methodologies for the
conjoint interpretation of visual and textual features. The
Contrastive Language-Image Pre-training (CLIP) model
represents an important advancement in this field, employ-
ing text-image pairs and a contrastive learning approach to
spearhead novel research trajectories in multi-modal and
computer vision areas [14]. CLIP is trained on an extensive
dataset comprising images and their corresponding textual
descriptions, utilizing a contrastive loss function to opti-
mize the similarity between matched image-text pairs while
minimizing it for non-matching pairs.

Following the success of CLIP, an array of models has
emerged that build on its foundational principles. The
Grounded Language-Image Pre-training (GLIP) model [9],
as an extension of CLIP, integrates spatial grounding infor-
mation during pre-training, thereby augmenting the model’s
capacity to localize objects and decipher spatial relation-
ships within images. Moreover, a variety of CLIP-modified
algorithms, such as CoOp, CLIP-Adapter, and Tip-Adapter,
enrich the CLIP model with fine-tuning and supplementary
extensions by adapting it to diverse contexts and scenar-
ios [4, 20, 22]. Additionally, algorithms including ViLT,
VLMO, and ALBEF employ the concept of contrastive
learning to train models, facilitating their functionality in
a broad range of tasks and environments [2, 5, 8]. Coca,
Flamingo, and BeiT have demonstrated remarkable accu-
racy surpassing the state-of-the-art in an extensive array
of vision and vision-language tasks, exhibiting competitive
performance across numerous benchmarks [ 1, 16, 18].

Motivated by these advancements, our MLVR system
fuses video and language information, leveraging con-
trastive learning to extract vehicle image, frame, and text
attributes for the development of a robust and effective ve-
hicle video retrieval approach.

2.2. Video Retrieval through Natural Language De-
scriptions

In the realm of video retrieval, numerous algorithms
have been devised, building upon the foundations of multi-

modal and contrastive learning principles. CLIP4CLIP, for
instance, adapts the CLIP model for video retrieval tasks by
extending the contrastive learning methodology with vari-
ous frame characteristics combination techniques for video-
text pairs [10]. This modification allows the model to ac-
quire rich semantic representations from both video and tex-
tual data, subsequently enhancing its retrieval capabilities.
X-CLIP is a cross-modal learning algorithm that harnesses
the power of the CLIP model and combines it with the ver-
satility of the transformer architecture [11]. By effectively
integrating visual, temporal sequence, and textual informa-
tion, X-CLIP achieves superior performance across a vari-
ety of video retrieval tasks. Furthermore, algorithms such as
ActionCLIP, CLIPBERT, and InternVideo have made sig-
nificant advancements in video retrieval tasks [7,15,17]. In-
spired by the strengths of these algorithms, our MLVR sys-
tem aspires to develop a robust and efficient vehicle video
retrieval approach by merging video and language informa-
tion and employing contrastive learning to extract meaning-
ful features from vehicle frames and attributes.

3. Methodology
3.1. Method Overview

The core methods and key points of the Multi-modal
Language Vehicle Retrieval (MLVR) system are discussed
in this section. MLVR is an innovative approach that com-
bines various techniques and strategies to enhance the re-
trieval process of vehicles by leveraging multi-modal infor-
mation, including text, images, and videos. The primary
focus of MLVR is to seamlessly fuse different types of data
to gain a more comprehensive understanding of the vehi-
cles and their trajectories. This is achieved by incorporat-
ing state-of-the-art deep learning models, domain adapta-
tion methods, and optimization algorithms to extract valu-
able features and insights from the available data.

The main structure of MLVR is depicted in Figure 1.
Our MLVR system is composed of several key compo-
nents, including skilled text and image extractors that effi-
ciently extract crucial information from textual and visual
data sources. Furthermore, the video recognition model
processes video frames and natural language descriptions
to generate a sequence of insightful video vectors. Notably,
the MLVR system leverages the combined power of images
and keywords by employing a series of expertly designed
control modules, encompassing vehicle color, vehicle type,
vehicle motion, and vehicle surroundings. The furnished
modules generate corresponding vector representations that
capture the essential characteristics of the vehicle features
and sequences. By integrating and weighting generated
vectors through an algorithmic match control system, our
MLVR system yields a final score matrix that effectively
quantifies the relationships between textual and visual ele-
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[ "A red midsize car drives down a road towards two other cars.",
"Small red coupe goes straight down the road behind two cars.",
"A dark red sedan drives straight down the road and abruptly turns
right at the next side street." ],

"nl_other_views":

["Asmall red coupe runs straight on the street.”,

"Ared car goes forward.",

"Red sedan makes a left turn at intersection.",

"A maroon sedan runs down the street with all other cars parked.",
"Red sedan turns left." ]
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Figure 1. The structure of our MLVR system. The text extractor and image extractor extract the text and image effective information,
respectively. Then, the video frames and NL description are fed into the video recognition module to generate the video vector sequence.
The bundle information of images and keywords is delivered to the vehicle color module, vehicle type module, vehicle motion module, and
vehicle surrounding module to create the corresponding vectors. The fused and weighted vectors are finalized in the match control system

to produce the final score matrix.

ments.

3.2. Data Cleaning and Processing

3.2.1 Natural Language Analysis

In the context of text-based vehicle retrieval, textual infor-
mation serves as a crucial component, offering abundant
language details. By employing statistical analysis and nat-
ural language processing techniques on descriptive text, key
attributes such as vehicle color, type, and motion can be ac-
curately identified and extracted. Furthermore, a keyword
parser is produced to categorize vehicle information based
on a predefined set of keywords. Notably, color classifi-
cations include black, white, red, blue, and green, among
others. Vehicle types contain sedan, SUV, pickup, van, bus,
and truck, and motion directions consist of straight, stop,
left, and right. A comprehensive summary of the keywords
pertaining to each category is presented in Table 1.
Moreover, an analysis of Natural Language (NL) de-
scriptions and corresponding descriptions from alternative
perspectives (NL other view descriptions) reveals a connec-
tion, suggesting that NL other view descriptions are sup-
posed to be transferred from descriptions in other scenar-
ios. As illustrated in Figure 2, the relationship between
NL descriptions and NL other view descriptions can be ob-
served. The diagram indicates a potential weak connection,

Class Label List
Color

blue, brown, gray, orange, black,
purple, silver, green, white, yellow, red
Type sedan, SUV, pickup, van, bus, truck
Motion straight, stop, left, right

Table 1. The keywords information of each category. Word lists
are created from the CityFlow-NL training dataset [3].

whereby the current scenario 1 could be projected onto sce-
nario 2 or scenario 3. Consequently, when producing text-
video pairs, partial penalty weights are considered for NL
other view descriptions in comparison to standard NL de-
scriptions, accounting for the observed relationships among
the main scenario and additional scenarios.

3.2.2 Frame Analysis

The video frame information serves as an essential com-
ponent in the text-video module, significantly influencing
the outcome of the retrieval process. Each camera video is
partitioned into multiple video clips, assigned unique track
IDs, and accompanied by corresponding bounding boxes.
Within the video recognition model, a pristine local road
background is pictured by calculating the median value of
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“Ared sedan drives forward." ["A red sedan keeping straight.”

d

["Ared sedan runs down the street followed by a green van."

"Ared sedan keeping straight.”,
"Amaroon sedan runs down the road followed by a green vehicle."],

"Ared midsize sedan keep straight.", "Ared sedan drives forward.",
"A red car drove through an intersection.”], "Ared midsize sedan keep straight."],
"nl_other_views": "nl_other_views":

["Ared sedan keeping straight.”,
"Ared sedan runs down the street followed by a green van.",
"Amaroon sedan runs down the road followed by a green vehicle."]

Scenario 1

["Ared sedan runs down the street followed by a green van.",
"Ared car drove through an intersection.”,
"Amaroon sedan runs down the road followed by a green vehicle."]

Scenario 2

"nl_other_views":

["A red midsize sedan keep straight.",
"Ared car drove through an intersection.”,
"Ared sedan drives forward."]

Scenario 3

Figure 2. The different video frames and NL descriptions of the same vehicle in the CityFlow-NL train dataset. In the NL descriptions,
tracked-vehicle color, type, motion, and other surrounding vehicle information are provided. Some NL annotations from other camera

views are arranged in the NL other views.

each pixel across the video frames. Subsequently, a short
clip is produced, incorporating the given region of inter-
est (ROI) mask and background, along with the vehicle as-
sociated with the designated track ID. Additionally, a ran-
dom number is selected to determine the frame interval for
each iteration, facilitating image augmentation and enhanc-
ing the overall robustness of the model. A frame example
of the processed video is displayed in the left corner region
of Figure 3.

3.3. Model Architecture and Components

The architecture of the MLVR model has three differ-
ent parts, comprising five interconnected modules, namely
the video recognition module, vehicle color module, vehi-
cle type module, vehicle motion module, and vehicle sur-
rounding module. These modules synergistically ensure the
accurate matching and fusion of textual and frame infor-
mation, resulting in a more robust and generalized MLVR
system. By integrating the above components, the MLVR
model demonstrates enhanced performance in producing re-
liable retrieval results, thus contributing to the advancement
of vehicle retrieval methodologies in practical traffic appli-
cations.

3.3.1 Video Recognition Module

The video recognition module, which serves as the founda-
tion of our MLVR model, is adapted from the X-CLIP algo-
rithm to effectively discern the association between video
clips and their corresponding text sentences [| 1]. Multiple
natural language descriptions are linked to a single track
ID, so an equivalent number of text-video pairs are gener-
ated based on the number of descriptions to facilitate model
training. Additionally, the weights of NL other view de-
scriptions’ text-video pairs are adjusted to mitigate the in-

Textual
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Figure 3. The primary architecture of the video recognition mod-
ule. Frames are input into the frame and temporal encoders to gen-
erate visual representations, while text information is processed
by the text encoder to yield textual representations. The attention
similarity process combines visual and textual representations to
predict a score for model evaluation and updating.

fluence of other views on matching outcomes.

Figure 3 presents the primary architecture of the video
recognition module. Frames are input into the frame en-
coder to extract visual features, which are subsequently
processed by the temporal encoder to establish time series
information. As a result, visual representations and their
corresponding mean-pooled vectors are generated. Concur-
rently, the text encoder processes textual information to pro-
duce textual representations, encompassing both sentence
and word-level data. The attention similarity process in-
tegrates visual and textual representations to compute the
video vector for model evaluation and optimization. The
video vector is displayed as follow:

V(vi, tj) = [s(vi, tj1), s(vis tj2), .o, s(vis tie)] (1)

where V' (v;,t;) represents the video vector corresponding
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Figure 4. The architecture of the vehicle color module, which employs a CLIP-based few-shot learning model, consists of several distinct
segments. The blue part collects general-purpose CLIP knowledge from the pre-trained model. After combining these knowledge sources

in the orange section, the final logits are calculated for class predictions.

to video ID 4 and text ID j. The term s(v;, t;;) denotes the
score associated with video ID 7 and text ID j for the k-
th natural language description. Furthermore, the s(v;, t;%)
can be represents as follow:

5(vi, tik) = Wik X (Sps + Spw + Sfs + Spw) /4, (2)

where wj;), denotes the weight assigned to the k-the NL de-
scription of text ID j. The weight is higher when the de-
scription is part of the NL description section and lower in
NL other views. The variables 5,5, Sy, S5, and sz, repre-
sent the video sentence score, video word score, frame sen-
tence score, and frame word score, respectively, which are
generated from the video recognition module. Additionally,
the symmetric InfoNCE loss is incorporated to optimize the
video recognition module with the mean value of the video
vector, as illustrated by the following equations:

1Y log__Cxp(mean(V (vi, ;)

Lyt = —— s 3
* TN LIS caplmean(Viw ) T

1 & exp(mean(V (v, t;)))
Ligy = —— S @
2 N ; OgZ;.V:l exp(mean(V (v, t;))) ©@

Lv'r‘m = Lv2t + Lt2v ) (5)

where the L., is the video recognition module loss con-
sisting of video-to-text loss L,o; and text-to-video loss L;s,
[11]. This dynamic approach not only enhances the over-
all performance of the MLVR system but also ensures its
adaptability and generalizability across various text-video
retrieval applications.

3.3.2  Vehicle Color and Type Module

Both the vehicle color module and the vehicle type mod-
ule are based on the Tip-Adapter model, which effectively
integrates the strengths of visual and textual few-shot in-
formation to enhance classification accuracy [20]. Figure 4
presents the architecture of the vehicle color module. In this
module, vehicle images are cropped using bounding boxes
from the trajectory, and corresponding labels are extracted
using the keyword parser. These images are then input into
the CLIP visual encoder to generate training features, while
the labels are encoded using a one-hot encoder to produce
training labels. The feature-key and label-value pairs are
utilized to train the cache model.

During the testing phase, the input image is fed into the
visual encoder to generate a visual feature, while the label
list is tokenized and input into the text encoder to produce a
text feature, as the CLIP framework. The CLIP knowledge,
which incorporates both textual and visual information, is
then combined with few-shot learning knowledge acquired
from the trained cache model, using the visual feature as
input. This fused knowledge is employed to generate the
final logits, leading to more accurate and meaningful clas-
sification results. The logits calculation equations can be
formatted as below:

C = emp(_wcm(l - ftestFtrain) ) (6)

lOthS = 'LkaO O] Ltrain + ftest © Ltoken ) (7)

where the cache model output C' is derived by employing
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Figure 5. The example of vehicle motion module. The starting
vector and the ending vector are represented by a green arrow and
a pink arrow, respectively. The angle between two vectors is illus-
trated by an orange arc.

the weight w.,,, the CLIP visual feature of the test im-
age fiest, and the few-shot training feature Fi.,,. Moreover,
the logits result from a combination of the cache model
C ©® Ly and the CLIP base model fieg ® Lioken- In equation
7, Wi f, Liain, and Lioken denote the knowledge fusing ra-
tio weight, the few-shot training one-hot label vectors, and
the weight of CLIP classifier from the textual encoder, re-
spectively. Considering the different pairs of multiple track
frames and their associated descriptions, the vehicle color
and type modules employ the mode value from a series of
logits as the output of the vector.

3.3.3 Vehicle Motion Module

Through an in-depth analysis of vehicle maneuver trajec-
tories, the vehicle motion module has been developed as a
cultured direction control system. Utilizing the provided
trajectories (comprising a list of bounding boxes), the ve-
hicle starting vector is obtained by fitting the first partition
of the trajectory center points using linear regression, while
the vehicle ending vector is generated by fitting the last par-
tition center points with an alternate linear regression func-
tion. Subsequently, the angle between the two vectors is
computed to establish a baseline. Additionally, a set of
threshold parameters is hypothesized to ascertain the final
direction. The process for calculating the motion degree of
a pickup vehicle is visually depicted in Figure 5, providing
a clear representation of the methodology employed in the
vehicle motion model.

3.3.4 Vehicle Surrounding Module

The vehicle surrounding module aims to extract informa-
tion about neighboring vehicles in the vicinity of the tracked
vehicle. Initially, textual representations of neighboring ve-
hicle data are derived from natural language descriptions
using the keyword parser. Simultaneously, other tracked

vehicles within the same frame are identified and marked
with bounding boxes, akin to the Region Proposal Net-
work (RPN) generating multiple region candidates. Subse-
quently, the vehicle surrounding module branches into two
distinct pathways.

The first branch processes the original frame image,
feeding into the GLIP model [9] to establish a connection
between NL descriptions and image feature information. In
the second branch, different track ID vehicles in the given
frame are merged into the relevant vehicle regions. These
vehicle proposals are then inputted into the vehicle color
and vehicle type models to determine the best-matching sur-
rounding vehicle in accordance with the NL descriptions’
adjacent vehicle textual representations.

The outputs from both branches are combined to gener-
ate the final vehicle surrounding SVector. The architecture
of the vehicle surrounding module is visually represented in
Figure 6, providing a comprehensive overview of the pro-
cess. This intricate structure effectively leverages multiple
sources of information to generate accurate predictions.

3.4. Model Postprocessing
3.4.1 Data Fusion

In this subsection, we focus on the post-processing and re-
sult fusion of the MLVR model. Utilizing the vector outputs
from the five modules described earlier, weighted and fused
vectors are computed. The weighted vector, denoted as V',
is determined using the following equation:

3
n
VY = (wf x E VP 4+ wy x malel—”) X
1=
i=1

S®
where V¥ represents the ¢-th text-video pair vector, while
wY’ and wy’ denote the weights associated with NL descrip-
tions and all descriptions, respectively. To capture the pri-
mary information from NL descriptions, the first three NL
text-video pairs are averaged. Moreover, the maximum vec-
tor from the entire set of text-video pairs is obtained to con-
sider the information from NL other view descriptions.

The fused vector, denoted as V', integrates the vector
information from the five modules, and is calculated using
the following equation:

VI = w! xVetw! xVitw!, x V" +w! x Ve 4wl x v,

€))
where V¢, Vi, V™ V3, and V" represent the CVector,
TVector, MVector, SVector, and V Vector, respectively, as
illustrated in Figure 1. These vectors are generated from
the five distinct modules. Corresponding weights, w/,
wi, w!, wf, and w/, are applied during the computation.
This systematic approach to vector calculation ensures that
the MLVR model effectively incorporates information from
various sources, thereby enhancing the overall rigor and ro-
bustness of the retrieval process.
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Branch 1 GLIP Prediction

Frame

NL Descriptions

"nl": [
"Ared sedan drives forward.",
"Ared midsize sedan keep straight.",
"Ared car drove through an intersection.],

“nl_other_views":
"Ared sedan keeping straight.",
"Ared sedan runs down the street followed by a green van.",
"Amaroon sedan runs down the road followed by a green vehicle." ]

Frame Path

" Jvalidation/S02/c007/img1/000006 jpg"

Branch 2 Boxes from other Track IDs

u" { Vehicle Color Module
.mn

Vehicle Type Module

Figure 6. The structure of vehicle surrounding module. The frame and text are fed into the GLIP model to predict the track vehicle and
adjacent vehicle positions and attributes. Concurrently, other vehicles mentioned in the frame with different track IDs, are marked as
proposals, which are subsequently filtered by the vehicle color model and vehicle type model. The final SVector output is a product of the
combined results from the GLIP model, vehicle color model, and vehicle type model.

Algorithm 1 Matching Elimination System

1: Input the text-video matrix tv

2: for start row = 1, length do

3:  Get the highest score column index hci in tv[row, :|

4:  Get the highest score row index hri in tv[:, hei]

5. if row == hri then

6 For every element in column hci except
tv[hri, hei], minus a threshold mit

7:  endif

8: end for

3.4.2 Match Control System

Following data fusion, the match control system is em-
ployed to identify the optimal text-video match. A match-
ing elimination system is devised to re-rank the score ma-
trix, thereby enhancing the final MRR score. Algorithm 1
outlines the core steps of the matching elimination system.
The input text-video matrix is generated with m rows corre-
sponding to text IDs and m columns corresponding to video
IDs. In this algorithm, the highest score column index (hci)
and the highest score row index (hri) are obtained for each
row in the input text-video matrix. If the current row is
equal to the highest score row index, a predefined threshold
(mt) is subtracted from every element in the column hci,
except for the element at position tv[hri, hei).

Figure 7 illustrates a 6 x 6 text-video matrix example. In
this example, the highest score is found at the intersection
of row 3 and column 2, indicating a match between text ID
3 and video ID 2. Consequently, a predetermined threshold
bias is subtracted from all other elements in column 2. This

Figure 7. The matrix example of matching elimination system.

procedure is iteratively applied to all rows, resulting in a
more robust and effectively sound matching process.

4. Experiments
4.1. Dataset and Evaluation Metric

The dataset employed for the evaluation of the MLVR
model is CityFlow-NL, a comprehensive dataset that con-
sists of 2,155 distinct vehicle trajectories and associated
track IDs, as well as corresponding natural language de-
scriptions [3]. These descriptions encompass both the cur-
rent view and additional views with the same vehicle color
and type information. In addition to the primary dataset, a
separate test set comprising 184 distinct vehicle trajectories
is utilized to assess the MLVR model’s final performance.
This test set follows a similar format to the training dataset,
ensuring a fair and accurate evaluation of the model’s capa-
bilities in handling various scenarios and vehicle attributes.
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The mean reciprocal rank (MRR) serves as the pri-
mary evaluation metric for assessing the performance of the
MLVR model using the CityFlow-NL dataset. MRR is a
widely recognized and effective measure for quantifying the
quality of text-video retrieval systems, taking into account
the ranks of correct matches. The MRR is mathematically
defined as follows:

1L 1
MRR = — 10
N ; rank; ’ (10)

where [V represents the total number of text query IDs, and
rank; denotes the rank index of the correct match track ID
for the i-th query. By calculating the average of the recip-
rocal ranks for all queries, the MRR offers a comprehensive
and reliable criterion for evaluating the performance of the
MLVR model in the context of text-video retrieval tasks.
Utilizing this evaluation metric allows for systematic com-
parisons among different models.

4.2. Implementation Details

In the experiment, we modified the state-of-the-art
video-text retrieval model, X-CLIP, as the baseline for our
video recognition module. The module incorporates the
CLIP ViT base pre-trained model with patch 16 as its un-
derlying architecture. The training process is executed with
a learning rate of le-4 and is configured to accept a max-
imum of 32 words for each text query and a maximum of
20 frames for each video clip. The model is trained over 50
epochs, utilizing a batch size of 40 samples per batch. Our
experimental setup employs a distributed training approach,
harnessing the power of four NVIDIA V100 GPUs for ef-
ficient parallel computation. For the vehicle color and type
modules, we employ the Tip-Adapter model to achieve ro-
bust and accurate few-shot classification performance. The
model utilizes the ResNet-50 architecture as its backbone.
The training process is conducted with a learning rate of
0.001 and spans a total of 100 epochs, leveraging a few-shot
setting with 1024 shots.

4.3. Result and Analysis

A comprehensive analysis of our MLVR model’s perfor-
mance is presented, comparing it with other participating
teams and conducting an ablation study to assess the contri-
butions of each individual module towards the overall per-
formance. Table 2 depicts the public leaderboard for the
task of tracked-vehicle retrieval using natural language de-
scriptions. The table illustrates the top 5 teams ranked by
their MRR scores. Our MLVR model achieves a second-
place ranking with an MRR score of 0.8179, marginally
trailing the top-performing team, which attained an MRR
score of 0.8263. These results underscore the competitive
performance of our MLVR model in the context of tracked
vehicle retrieval using natural language descriptions.

Rank Team ID Team Name MRR
1 9 HCMIU-CVIP 0.8263
2 28 10V 0.8179
3 85  AIO-NLRetrieve 0.4795
4 151 AIO2022 0.4659
5 76  DUT_RelD 0.4392

Table 2. The public leaderboard of tracked-vehicle retrieval by
natural language descriptions.

VCT VM VSI VS12 MCS MRR

0.2761
0.4191
0.5885
0.6714
0.7160
0.8179

Baseline
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SNENENENEN
SNENENEN
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v v v

Table 3. Ablation study analysis of our MLVR method.

Table 3 presents an ablation study of our MLVR ap-
proach, elucidating the influence of each module on the
MRR score. Due to submission limits, only six distinct
ablation experiment results are displayed. Employing the
baseline video recognition module alone results in an MRR
score of 0.2761. The integration of the vehicle color and
vehicle type modules (VCT) elevates the MRR score to
0.4191. Further incorporating the vehicle motion module
(VM) enhances the MRR score to 0.5885. The inclusion of
the match control system (MCS) yields an MRR score of
0.6714. By combining the branch 1 (VS1) GLIP prediction
of vehicle surrounding module and the previous modules,
the MRR score reaches 0.7160. Adding the vehicle sur-
rounding module with branches 1 and 2 (VS12) culminates
in the highest MRR score of 0.8179. This ablation study
emphasizes the efficacy of each module in augmenting the
overall performance of our MLVR model.

5. Conclusion

This research paper introduces an innovative multi-
modal technique, called the Multi-modal Language Vehi-
cle Retrieval (MLVR) system, for retrieving the trajectory
of tracked vehicles based on natural language descriptions.
By seamlessly integrating text, image, and video knowl-
edge, we unlock immense potential for multi-perspective
retrieval, particularly locating the best vehicle candidate
from the multi-camera with multiple natural language de-
scriptions. Our proposed approach demonstrates its effec-
tiveness by achieving an impressive score on Track 2 at the
7th Al City Challenge, which highlighted the promising po-
tential of MLVR in the traffic field of multi-modal retrieval.
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