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Abstract

Multi-Camera People Tracking (MCPT) is a crucial task
in intelligent surveillance systems. However, it presents
significant challenges due to issues such as heavy occlu-
sion and variations in appearance that arise from multiple
camera perspectives and congested scenarios. In this pa-
per, we propose an effective system that integrates both ap-
pearance and spatial-temporal information to address these
problems, consisting of three specially designed modules:
(1) A Multi-Object Tracking (MOT) method that minimizes
ID-switch errors and generates accurate trajectory appear-
ance features for MCPT. (2) A robust intra-camera associ-
ation method that leverages both appearance and spatial-
temporal information. (3) An effective post-processing
module comprising multi-step processing. Our proposed
system is evaluated on the test set of Track1 for the 2023 AI
CITY CHALLENGE, and the experimental results demon-
strate its effectiveness, achieving an IDF1 score of 93.31%
and ranking 3rd on the leaderboard.

1. Introduction

Multi-Camera People Tracking (MCPT) is an emerging
research area that aims to develop advanced computer vi-
sion algorithms and systems for tracking individuals across
multiple cameras. The goal of MCPT is to accurately locate
and track people in a given scene by integrating information
from multiple cameras, which can provide different view-
points and angles of the scene. The application of MCPT
is wide-ranging and can include video surveillance, crowd
management, social behavior analysis, and more.

Traditional single-camera people tracking methods of-
ten face various limitations, such as occlusion and camera
viewpoint dependency. In contrast, MCPT overcomes these
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Figure 1. Illustration of MCPT task. People with the same identity
in different cameras should be matchted.

limitations by fusing information from multiple cameras,
enabling the tracking of individuals across different cam-
era views. A typical MCPT pipeline consists of pedestrian
detection, re-identification (ReID), Multiple Object Track-
ing (MOT) and Intra-camera Association (ICA). First, the
pedestrian detector outputs pedestrian locations and feature
vectors are extracted via ReID module. Based on the detec-
tion results and ReID features, single-view trajectories are
generated by MOT module for each camera. Finally, ICA
module associate trajectories from different views and gen-
erates global identities.

In recent years, MCPT has gained significant attention
from both academic and industrial communities. Many re-
searchers have proposed various MCPT methods and sys-
tems that can achieve competitive accuracy and robustness
in challenging scenarios. However, MCPT is still a chal-
lenging research area, and we observe following problems
that need to be addressed in this challenge.

1. Existing Multiple Object Tracking methods can hardly
distinguish mutually occluded human bodies, which
often leads to frequent ID-switches.
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2. In intra-camera matching, it is difficult to distinguish
people with similar appearance or occluded people via
ReID features, thus results in ID-switches or ID anti-
nomy (will be explained in 3.2.2).

3. Most tracking-by-detection methods rely heavily on
the quality of detection. However, false positive de-
tection results may appear in complex scenes and in-
fluence the tracking results.

Faced with the above-mentioned problems, we design
a MCPT system that minimizes ID-switches leveraging
spatial-temporal and appearance information and removes
false positive detection results by multi-body-level detec-
tion. Specifically, to prevent ID-switches in single-view tra-
jectories, we propose a new MOT method specially tailored
for scenarios where severe occlusion between different peo-
ple is present. Besides, we adopt a new strategy to calcu-
late more effective appearance (ReID) features of trajecto-
ries based on detection confidence, which can also help the
correction of identities.

To overvome the limitation of ReID features when sim-
ilar people appears in the same scene, we leverage mul-
tiple sources of spatial-temporal information during intra-
camera association to reduce ID-switches between multi-
camera trajectories and ID antinomy in single-camera tra-
jectories. Finally, we design an effective post-processing
module to further remove ID antinomy and false negative
detection results. False negative detection results possibly
caused by occlusion are also corrected by trajectory com-
pensation and interpolation.

The main contributions of this paper are summarized as
follows:

• We design a MOT method for MCPT task. Our MOT
could minimize the ID-switch errors and obtain more
accurate appearance feature for trajectories.

• We propose an intra-camera association approach
which leverages both appearance information and mul-
tiple sources of spatial-temporal information. Our as-
sociation approach requires only one single step as
it can simultaneously handle broken trajectories from
single camera and multi-camera trajectories.

• We propose a post-processing module to further refine
the MCPT results. The designed module can remove
ID antinomy and false positive detections, as well as
compensating for missing trajectories.

2. Related work
2.1. Pedestrian Detection

Object detection is one of the most fundamental task
in computer vision, which aims at localizing and classi-
fying accurately objects of some categories in images and

videos. Pedestrian detection, a special branch of object de-
tection, is also an important and challenging task, especially
in human-centric assignments. Generally, recent object de-
tection methods are often based on CNNs and can be clas-
sified into two categories: single-stage detectors and two-
stage detectors.

Single-stage detectors predict object position and cate-
gory after a single feature sampling and extraction using
predefined box scales. You Only Look Once (YOLO) [21]
and its follow-up work including YOLOv3 [22], YOLOv5
[12] and YOLOX [8], are among the most popular single-
stage detectors. YOLO utilize a backbone inspired from
GoogleLeNet [27] and transform the task into a classifi-
cation problem. It achieves real-time performance while
maintaining high prediction precision.

Two-stage detectors generate arbitrary region proposals
in the first stage and regress the location and category prob-
ability in the second stage. One of the most representative
two-stage object detection methods is Faster-RCNN [23].
Faster-RCNN introduces a region proposal network (RPN)
to generate region of interest (ROI) with greatly improved
efficiency. Afterwards, ROI pooling outputs a series of
fixed-size feature maps according to the image feature and
the ROIs. Finally, Faster-RCNN outputs refined bound-
ing box location and object category after regression and
softmax operation. Mask-RCNN [9] further extends Faster-
RCNN for instance segmentation by adding a parallel mask
prediction head.

In addition, recent works also propose many
transformer-based object detection methods, such as
DETR [44], YOLOS [6], Swin Transformer [19] and
VitDet [18]. These methods propose new strategies on
object query, attention mechanisms, label assignment,
feature matching, etc. The main advantage is that global
image feature is better captured compared to CNN-based
methods.

2.2. Re-identification

As an indispensable component of understanding human
behaviours, re-identification (ReID) targets at retrieval of
same person regardless of spatial variance. A typical ReID
system is composed of three parts: Feature Representation
Learning, Deep Metric Learning and Ranking Optimiza-
tion. Previous studies exploits a variety of feature learn-
ing strategies, including global feature [41], local feature
[35], auxiliary feature [26], video feature [31], etc. As for
Deep Metric Learning in ReID, different loss functions and
training strategies are developed to guide the feature repre-
sentation learning. For example, identity loss, verification
loss and triplet loss are three widely adopted loss functions,
along with their variants. Ranking optimization aims at the
optimization of the ranking order in a ranking list, typically
via re-ranking [30, 42, 43] or rank fusion [36, 40] methods.
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2.3. Multiple Object Tracking

Multiple Object Tracking (MOT) plays an important role
in understanding videos. It is often an indispensable mod-
ule in Multi-Camera Multi-Target tracking (MCMT). Exist-
ing methods can be partitioned into tracking-by-detection
methods and joint-detection-tracking methods.

Tracking-by-detection is the mainstream paradigm to
achieve high MOT performance. Tracking-by-detection
methods first detect multiple objects and then associate ob-
jects from different timestamps. SORT [2] is a simple yet
efficient framework for MOT task. In SORT, a Kalman
Filter is employed for each trajectory and to predict ob-
ject position. Then SORT calculate a cost matrix based
on the overlap of predicted box and detected box and solve
the assigning problem using Hungarian algorithm. Deep-
SORT [34] further introduces a matching cascade to lever-
age appearance information and motion clues. However,
real-time performance can hardly be accomplished due to
two-stage feature extraction. Bytetrack [37] removes the
background from low-scoring detection results to uncover
true objects, thereby improving the tracking performance on
occluded and small target. As appearance features are not
involved in association, the tracking of Bytetrack is highly
dependent on the detection performance.

Joint-detection-tracking is also a feasible solution to im-
prove inference speed. For example, FairMOT [39] simul-
taneously estimates pixel-wise Re-ID features and objects
location based on a single backbone.

2.4. Multi-Camera Multi-Target Tracking

Multi-Camera Multi-Target Tracking (MCMT) has
gained increasing attention in research field for its prospect
of application for surveillance, health and ecological pur-
pose. Previous works [4, 11, 33] adopt graph-based ap-
proaches to associate detections from multiple image flows.
Some approaches [24, 28] also integrate Re-ID features in
the intra-camera association and can be applied in scenarios
without overlapping areas. Other methods leverage camera
calibration to provide accurate spatial information during
intra-camera association. For instance, Ran and Yael [5]
adopt homography matrix to transform head locations and
associate head detections across different camera views.
Recent approaches [3, 38] utilize 3D pose estimation tech-
niques and camera intrinsic and extrinsic parameters to pre-
cisely locate human joints in 3D space, which is considered
as high quality spatial information in the association step.
However, there methods heavily rely on the performance of
3D pose estimators and the accuracy of camera calibration.

3. Method
The proposed MCPT system is shown in Fig 2, which

includes pedestrian detection, Re-ID module, multi-object

tracking (MOT), intra-camera trajectory association (ICA)
and post-processing module. In this section, we mainly
elaborate the MOT, intra-camera trajectory association and
post-process in detail, while the rest is documented in Im-
plementation Details.

3.1. MOT

Once obtained detection results and corresponding ReID
features, we perform MOT to associate targets throughout
the video frames. Considering the final MCPT performance
is highly related to the results of MOT, we first analyze the
effect of two error cases that often occur in MOT: frag-
ments and ID-switches [16]. Since the fragments could
be effectively merged via later intra-camera association but
ID-switches is difficult to be corrected once determined,
we argue that ID-switches have severer impact on the final
MCPT performance than fragments. Meanwhile, it’s also
non-trival to obtain robust appearance features of a trajec-
tory considering occlusions and various poses. Simply ap-
plying single frame ReID feature or averaged ReID features
of all frames may not reflect the appearance of trajectory ac-
curately. Thus in this paper, we design a Multi-object track-
ing (MOT) method for MCPT task to minimize ID-switches
and obtain better trajectory appearance features.

Following Bytetrack [37], we set a low confidence
threshold (0.1) for detection results to preserve some low-
confidence detections (e.g. occluded targets and small tar-
gets). We use the Kalman-filter [13] to predict motion of
the tracked targets then adopts Hungarian algorithm [14] to
associate detection results to trajectories based on their lo-
cation.

3.1.1 Two-Step Matching

We adopt a two-step matching strategy in our MOT module.
The first step is to match the tracked trajectories with detec-
tions in current frame based on IOU . In the second step,
we match the untracked trajectories (which may be lost due
to occlusions) with the unmatched detections after the first
step.

Considering the error of motion estimation, IOU may
not fully reflect the relationship between the predicted posi-
tion by Kalman-filter of an untracked trajectory and its cur-
rent position (the detection in current frame). Its value re-
mains zero when there is no overlap between two bounding-
boxes. To better represents the relation of location in this
case, we proposed a new distance metric MIOU : given
two bounding-boxes B1 and B2, we find their smallest en-
closed bounding-box Be, MIOU is calculated by

MIOU = 1− |B1|+ |B2|
2 |Be|

(1)

When B1 and B2 totally coincide, their MIOU equals to 0.
When there is no overlap between B1 and B2, their MIOU
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Figure 2. The pipeline of our MCPT system. The MCPT system first performs multi-body-level detection on multi-camera videos,
including full-body detection, visible-body detection and head detection. Then the ReID module extracts ReID features, which are fed into
our MOT algorithm along with detected full-body bounding boxes. Afterwards, single-camera trajectories are generated and are associated
across multiple cameras in intra-camera association via spatial-temporal and appearance information. Finally, the post-processing module
further refines the output results by handling with ID antinomy, false positive detection results and missing trajectories.

will be larger 0.5. As the distance between B1 and B2 in-
creases, their MIOU will approach to 1. Besides, we adopt
an adaptive threshold for Hungarian algorithm in the sec-
ond step based on the lost time of trajectory. We argue that
longer lost time of a trajectory results in an increase of un-
certainty of its current position. Thus the threshold will be
settled adaptively according to its lost time.

During experiments, we found that if two people nearly
coincide, there will be only one common detection box due
to non maximum suppression (NMS), and it may been the
enclosing bounding box of two people, which mixes their
information. Using this inaccurate bounding box for match-
ing may lead to wrong updating of kalman filter state, which
will increase the risk of ID-switches. Thus, we discard
these coinciding detections and mark both trajectories as
untracked until they separate.

Finally, we initialize a new trajectory for each un-
matched detection with confidence larger than the initial-
izing threshold (i.e.,0.5) and remove the untracked trajecto-
ries that have been lost for a long period (i.e.,>3s) after the
second step of association.

3.1.2 Confidence-Aware Trajectory Appearance

During the tracking, we design an online scheme to update
the appearance of trajectory via ReID feature of matched
detection, which is shown in Algorithm 1. Note that we only
consider detections with high confidence (i.e.,larger than a

threshold α) in trajectory to extract ReID feature. Since
detections with low confidence are often small or occluded
targets, their ReID features are not reliable enough. In cases
where there are no detections with high confidence in a tra-
jectory, we select the one with highest confidence to extract
ReID feature and consider it as the appearance of trajectory.

3.1.3 ReID-Based ID Correction

As the ID-switches usually happen during matching oc-
cluded targets, we adopt a delayed strategy to correct identi-
ties. In details, we dynamically maintain a temporal overlap
matrix C during tracking, in which C(i, j) > 0 means that
track i and track j both appears in some frames, thus they
must belongs to different people. As shown in Figure 3,
once an occluded trajectory i is matched again, we calcu-
late the ReID similarity between its matched detection and
trajectories i ∩ {j, C(i, j) > 0} (i.e., trajectories i and the
trajectories that have temporal overlaps with i). If the tra-
jectory with maximal ReID similarity to matched detection
is not i, indicating that the trajectory i is matched to the
wrong detection, we will thus initialize a new trajectory for
the wrongly matched detection to avoid ID-switches.

3.2. Intra-Camera Association

After MOT, we acquire all the single-camera trajectories
Tall =

⋃cn
ci=1 Tci , where Tci = [T 1

ci , . . . , T
nci
ci ], cn the total

number of camera views and nci the number of trajectories
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Algorithm 1: Confidence-Aware Trajectory Ap-
pearance

Input: previous trajectory appearance At−1, ReID
feature of matched detection F t, confidence
of matched detection ctF , previous
confidence of trajectory ct−1

A , number of
previous high-confidence detections in
trajectory nt−1

Output: updated trajectory appearance At, updated
number of previous high-confidence
detections in trajectory nt, updated
confidence of trajectory ctA

1 if ct > α then
2 At ← nt−1

nt−1+1A
t−1 + 1

nt−1+1F
t;

3 nt ← nt−1+1 ;
4 if ctF > ct−1

A then
5 ctA ← ctF ;
6 end
7 else
8 if ctF > ct−1

A then
9 ctA ← ctF ;

10 At ← F t ;
11 end
12 end

Figure 3. Illustration of ID correction. Two tracked trajectories
switch their ID due to occlusion in the left image. After occlusion,
we calculate the ReID similarity between matched detection and
trajectories to judge if there is ID-switches and assign new IDs for
the ID-switched trajectories after occlusion in the right image

from camera ci. The confidence score c and appearance
feature A of each trajectory are also stored to guide the fol-
lowing association step. Similar to [15], we perform hierar-
chical clustering to associate trajectories. But in addition to
appearance information, we also leverage spatial-temporal
constraints and integrate them into a distance matrix. Com-
pared to appearance-based methods, our distance matrix can
better reflect both the relation between single-camera trajec-
tories and between trajectories from different cameras, thus
can achieve more accurate association.

Figure 4. Example of matching points annotation between 2 cam-
eras

3.2.1 Appearance Distance Matrix

We construct a matrix DA to represent the distance between
the appearance features of trajectories. It is taken into con-
sideration of the formulation of distance matrix to help asso-
ciate trajectories with similar appearance. For two arbitrary
trajectories Ti and Tj from Tall, the appearance distance
can be calculated using the cosine score:

DA(Ti, Tj) = 1− cos(Ai, Aj) (2)

where Ai and Aj are appearance feature vectors of Ti and
Tj , respectively.

3.2.2 Spatial-Temporal Distance Matrices

Simply using trajectory appearance matrix as final matrix
is insufficient to tackle problems such as severe occlusions,
variance of view angles and people with similar clothes. To
cope with this issue, we construct another distance matrix
that incorporates both intra-camera spatial information (ho-
mograph distance) and inter-camera spatial-temporal infor-
mation (ID antinomy, speed constraint).

Homography distance We manually annotate several
matching points on the ground for each camera pair with
overlapping areas to compute homography matrix Hci→cj

from camera ci to camera cj . The annotation is illustrated
in Figure 4. In details, we find more than 5 pairs of match
points for each camera pair with overlapping areas and
record their coordinates. The selected points should meet
the following restrictions: (1) All the points should be on
the ground plane, since homography transform could only
represents transform between 2 planes. (2) The points in
the same camera should be as far away from each other as
possible. (3) It’s not allowed that more than 3 points in
one camera are on the same line. With the coordinates of
matched points pair

⋃m
k=1(P

k
ci , P

k
cj ), m the number of pairs,

we estimate the homography matrix Hci→cj from camera ci
to camera cj by minimizing the L2 error of distance be-
tween the transformed points from ci and their matched
points from cj .

Hci→cj = argmin
H∈R3×3

m∑
k=1

∥∥∥HP k
ci − P k

cj

∥∥∥2
2

(3)
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Given all trajectories from different cameras Tall =⋃cn
ci=1 Tci , where Tci = [T 1

ci , . . . , T
nci
ci ], nci the number

of trajectories from camera ci and cn the number of cam-
era views. For T a

ci =
⋃

tf∈[t1,...,t|Ta
ci |

] B
tf
ci,a and T b

cj =⋃
t′f∈[t′1,...,t

∣∣∣∣Tb
cj

∣∣∣∣]
B

t′f
cj ,b

two trajectories from different cam-

eras (ci ̸= cj), we can obtain the normalized homograph
distance between T a

ci and T b
cj :

DH(T a
ci , T

b
cj ) =


∑

ts∈I
Ta
ci

,Tb
cj

DH
ts (T

a
ci , T

b
cj ) if ITa

ci
,T b

cj
̸= ∅

0 else
(4)

DH
ts (T

a
ci , T

b
cj ) =

∥∥∥∆P ts
(ci,a;cj ,b)

∥∥∥
2

h̄ts
(ci,a;cj ,b)

∣∣∣ITa
ci
,T b

cj

∣∣∣ (5)

∆P ts
(ci,a;cj ,b)

= Hci→cjP
ts
ci,a − P ts

cj ,b
(6)

h̄ts
(ci,a;cj ,b)

=
hts
ci,a + hts

cj ,b

2
(7)

where ITa
ci
,T b

cj
= [t1, ..., t|Ta

ci
|]
⋂
[t′1, ..., t

∣∣∣T b
cj

∣∣∣],
nTa

ci
,T b

cj
=

∣∣∣ITa
ci
,T b

cj

∣∣∣, P ts
ci,a the midpoint of the bottom of

bounding box Bts
ci,a and hts

ci,a the height of bounding box
Bts

ci,a. We utilize the midpoint of the bottom of bounding
box to conduct homography transform because it is usually
the closest point to the ground and can be regarded as the
best point to reflect the location of a person. For trajectories
from the same camera, we assign zero values for their
homograph distances.

ID antinomy To prevent the phenomenon that multiple
people in the same frame of the same camera are assigned
with the same identity (we called this as ID antinomy, which
will also be used in latter post-processing), we penalize it
according to the number of overlapping frames of two tra-
jectories in the same camera:

DT (T a
ci , T

b
ci) = nTa

ci
,T b

ci
(8)

where nTa
ci
,T b

ci
denotes the number of overlapping frames.

Similarly, trajectories from different cameras are assigned
with zero values.

Speed constraint Since there is an upper bound for hu-
man speed in the real life, two trajectories from the same
camera cannot belong to the same person if the interval be-
tween one’s ending time and the other one’s beginning time
is too short for the distance between one’s endpoint and the
other one’s beginning point. We penalize the distance of
such pairs via another distance matrix DS . Without losing

ID Antinomy

ReID + Spatial-
Temporal Information

ReID

Similar Appearance

In Occlusion

Figure 5. Example of ID antinomy caused by the limitation of ap-
pearance (ie., ReID) features. The left column show that people
with similar appearance or in occlusion can be assigned with the
same identity when only appearance features are considered. As
illustrated in the right column, this problem can be resolved by
introducing our distance matrix that leverages spatial-temporal in-
formation.

generality, we assume T a
ci ends before the beginning of T b

ci .

DS(T a
ci , T

b
ci) =

{
N if v(ci,a;ci,b) > αs

0 else
(9)

v(ci,a;ci,b) =

2

∥∥∥∥P t|Ta
ci |

ci,a − P
t′1
ci,b

∥∥∥∥
2∣∣∣t|Ta

ci
| − t′1

∣∣∣ (ht|Ta
ci

|
ci,a + h

t′1
ci,b

)
(10)

Where N is a large constant and αs is an empirical speed
threshold. t′1,t|Ta

ci
| are the beginning time of T b

ci and the

end time of T a
ci , respectively. P

t|Ta
ci |

ci,a and P
t′1
ci,b

are the mid-

points of the bottom of boundding boxes B
t|Ta

ci |
ci,a and B

t′1
ci,b

,

respectively. h
t|Ta

ci |
ci,a and h

t′1
ci,b

are the heights of B
t|Ta

ci |
ci,a and

B
t′1
ci,b

, respectively.

3.2.3 Final Association Distance Matrix

Adaptive weight matrix To better combine different dis-
tance matrices, we first construct an adaptive weight matrix
W based on the confidence of trajectories (i.e., the maximal
detection confidence of trajectories).

W (T a, T b) =
λmin(ca, cb) + β

wH
a,b + β

(11)

wH
a,b = λmin(ca, cb) + (1− λ)θ(DH(T a, T b)) (12)

Where c is the trajectory confidence, θ(·) is a function and

θ(x) =

{
0 x ≤ 0
1 x > 0

. β is a small value to prevent the
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denominator from zero value. The construction of weight
matrix is based on the following observation: The confi-
dence of detection and the reliability of ReID feature are
both highly correlated to the completeness of the target in
detection box. The final distance matrix can be represented
as a weighted sum of the four distance matrices:

D = WDA + (1−W )DH + wTD
T + wSD

S (13)

3.2.4 One-Step Trajectory Association

Once the distance matrix of all trajectories from different
cameras is constructed, we associate the trajectories via hi-
erarchical clustering. Unlike previous work [15] utilizing
two steps to cluster single-camera trajectories and multi-
camera trajectories respectively, we tackle the problem by
bridging the above two types of trajectories adopting an
adaptive weighting strategy in Equation 13, thus perform
one-step clustering.

Due to difficulties caused by possible false positive de-
tections and severe occlusions, the detection noise and
ReID noise would have a great impact on clustering results.
Therefore, strict restrictions have to be applied on the ini-
tialization of clustering centers. First, clusters with a to-
tal detection number above a certain threshold is selected
as clustering center candidates. The distance between each
pair of candidates is examined to ensure that each candidate
corresponds to a distinct person, otherwise two clusters will
be merged. Then clusters possessing large distance values
to existing centers are appended as new center candidates
to avoid possible omission. Finally, all the rest clusters will
re-clustered to the center candidate to which the distance is
the minimum among all candidates.

3.3. Post-Processing

The multi-camera trajectories after inter-camera associ-
ation still suffer from ID antinomy and false negative de-
tection. Besides, the full-body bounding boxes that we
adopted in intra-camera association is not totally consistent
with the official standard of labeling. Thus we design a
post-processing module to further refine the multi-camera
trajectories.

Removal of ID antinomy As mentioned earlier, it is not
appropriate to assign the same identity to multiple people
in the same frame of the same camera, thus we remove the
part of multi-camera trajectories that have ID antinomy.

Trajectory compensation from multiple cameras Due
to removal of ID antinomy and low detection confidence
(occluded or small targets), there will be some missing tra-
jectories although with the existence of detection bounding
boxes. To address this problem, we design a trajectory com-
pensation procedure that leverages trajectories from other

Figure 6. Illustration of compensation. Missing trajectories are
compemsated from other camera views by homography and the
criteria based on IOU with detection boxes.

camera views to compensate missing trajectories. We per-
form homography from the trajectory in other camera views
(if exists) to the camera view where the person is possibly
missing. if there is a detection box nearly coinciding the
transformed box (i.e, with a high IOU value), it will be
regarded as a part of the missing trajectory and will be ap-
pended to the multi-camera trajectory of this person.

Multi-body-level detection matching In our system,
three different body-level detectors are employed: full-body
detector, visible-body detector and head detector. In intra-
camera association, the full-body bounding boxes are essen-
tial to provide an approximate foot location. However, we
observe that only the visible body parts is labelled in syn-
thetic scenes when the corresponding person’s head is visi-
ble. For real scenes, A bounding box is annotated if 60% of
the body is seen, or the head and shoulder are seen. Thus we
first match different body-level detection results via an IOU
threshold. Then we judge if a bounding box should be out-
putted based on whether it is matched with a head bounding
box or whether the matched visible bounding box occupies
60% the area of the full-body bounding box in real scenes.
During this procedure, false positive full-body detection re-
sults can be filtered because there is low probability that
multi-body-level false positive detection results occur at the
same time. Finally, the full-body bounding boxes in trajec-
tories will be replaced by visible-body bounding boxes.

Interpolation As a commonly used post-processing for
tracking, we also perform interpolation to fill the missing
frames of trajectory which may been caused by false nega-
tive detections in occluded scenarios.
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4. Experiments
4.1. Dataset and Evaluation Metrics

The AIC23 MCMT Tracking dataset1 [20] comprises 22
indoor scenes captured by multiple cameras across various
settings. It includes 10 training scenes, 5 validation scenes,
and 7 testing scenes. The dataset contains real-world data
captured from cameras placed in warehouse buildings, as
well as synthetically generated data from multiple indoor
settings. The synthetic animated people dataset, which
makes up a significant portion of the total dataset, is cre-
ated using the NVIDIA Omniverse Platform.

In order to improve the performance of the ReID module,
we finetune the model on Randperson dataset, which is a
public synthetic dataset containing 8,000 virtual characters,
11 scenes, 19 cameras, 38 videos of dense pedestrians, and
1,801,816 cropped pedestrian images.

For metrics of evaluation, the IDF1 score will be used
to rank the performance of each team on the leaderboard.
IDF1 measures the ratio of correctly identified detections
over the average number of ground-truth and computed
detections. Other evaluation measures adopted by the
MOTChallenge [1, 17], such as IDP and IDR, will be dis-
played but they will not be used for ranking purposes.

4.2. Implementation Details

Multi-body-level detection. For human full-body detec-
tion, we adopted the same detection model of Bytetrack
[37], which is a YOLO-v5x [12] trained on several pub-
lic pedestrian detection datasets. The visible-body detection
and head detection model is a YOLO-v5m model pretrained
on Crowdhuman dataset [25].

Re-identification. The network structure we adopted for
ReID is MGN(R101) [29]. We initialize the model with
the pretrained weight from LUPerson [7]. In order to ex-
tract accurate ReID features both from real-world data and
from synthetic data, we finetune the model with Randperson
dataset [32] based on the Fastreid toolbox [10].

Empirical parameter setting. α for high confidence
threshold is set as 0.88. N,αs in Equation 9 are set as 10
and 2, respectively. λ in Equation 11 and Equation 12 is
set as 0.65, β in Equation 10 is set as 0.01. wT and wS in
Equation 13 are both set as 1. The linkage criterion for hi-
erarchical clustering is average distance and the threshold is
set as 0.35.

4.3. Results

Table 1 displays the ablation study of the different pro-
posed strategies. Compared to the baseline (ByteTrack +
hierarchical clustering based on ReID features), our refined

1https://www.aicitychallenge.org/2023-data-and-evaluation/

Method IDF1 IDP IDR

Baseline 89.30 88.84 89.76
+our MOT 91.05 90.62 91.50

+spatial-temporal 93.08 92.35 93.82
+post-processing 93.31 93.43 93.19

Table 1. Comparaison of different MCPT methods on AIC23
MCMT Tracking test set.

Rank Team ID Team Name IDF1

1 6 UWIPL ETRI 95.36
2 9 HCMIU-CVIP 94.17
3 41 AILab (ours) 93.31
4 51 FraunhoferIOSB 92.84
5 10 Skygazer 92.33
6 113 hust432 92.07
7 133 ctcore 91.09

Table 2. Leaderboard of Track 1 in the AI City Challenge 2023.

MOT approach yields a 1.75% increase in IDF1, demon-
strating the effectiveness of the proposed single-camera
tracking method. Integrating spatial-temporal information
into distance matrix results in an IDF1 of 93.08%. Im-
plementing a post-processing step to remove ID antinomy,
compensate and interpolate trajectories and refine final out-
puts further enhances the IDF1 by 0.23%, achieving an
IDF1 of 93.31% on the final leaderboard.

The result of our proposed system was entered into the
evaluation system of the AICity Challenge 2023 Track 1,
which achieved an IDF1 score of 93.31% and ranked third
among more than 40 teams. The final leaderboard is shown
in Table 2.

5. Conclusion

In this paper, we propose an effective Multi-Camera Peo-
ple Tracking system. It mainly contains three modules:
MOT, intra-camera association and post-process module.
For MOT, we minimize the ID-switches error and obtain
more accurate appearance feature for trajectories. Besides,
we develop an intra-camera association approach which
leverage both appearance information and multiple sources
of spatial-temporal information. The post-process module
which contains multi-step post processing to eliminate ID
antinomy and false positive detections as well as compen-
sate missing trajectories. The experimental results on the
public test set of Track1 for the 2023 AI CITY CHAL-
LENGE validate the effectiveness of our method, as it at-
tains an IDF1 score of 93.31%, securing the third place on
the leaderboard.
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