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Abstract

This paper presents our approach for Track 3 (Natural-
istic Driving Action Recognition) of the 2023 Al City Chal-
lenge, where the objective is to classify distracting driving
activities in each untrimmed naturalistic driving video and
localize the accurate temporal boundaries of them. Our
solution relies on large model fine-tuning to train a base
video recognition model on a small-scale video dataset. Af-
ter that, we adopt multi-view multi-fold ensemble to pro-
duce fine-grained clip-level classification results. Given the
recognition probabilities, a non-trivial clustering and re-
moving post-processing algorithm is applied to generate fi-
nal location proposals. Extensive experiments demonstrate
that the proposed method achieves superior performance
against other methods and rank the Ist on the Test-A2 of
the challenge track.

1. Introduction

Nowadays, distracted driving is a serious issue that
causes serious direct and indirect harm to road safety. Dis-
tracting driving behavior is “any activity that diverts atten-
tion from driving” [21], such as drinking, eating, texting,
picking up from floor etc. It is reported that distracted
driving causes 1.35 million deaths in road accidents an-
nually [4]. Also, between 20 to 50 million people suffer
from the consequences of these accidents and non-fatal in-
juries [4]. It’s of great importance to build a precise driver
behavior monitoring system that can detect driver inatten-
tive behaviors to ensure driving safety.

In recent years, naturalistic driving research has attracted
a lot of attention, and many methods [2, 10,11,17,22,23,27,

] have been developed to identify and eliminate distract-
ing driving behavior on the road. However, lack of labels,
poor data quality and resolution have created obstacles for
gaining insights from data relevant to the driver activities in
the real world. In this regard, Al City Challenge [!8] has
published a new dataset and established a challenge track
(Naturalistic Driving Action Recognition) to push forward
the research of naturalistic driving action recognition. Ac-

cordingly, the dataset was collected using three cameras lo-
cated inside a stationary vehicle, and 16 kinds of distracted
driving activities (such as phone call, eating, and reaching
back) are densely labeled in each video. The objective is to
classify the distracted behavior activities by the driver and
detect the temporal intervals in a given untrimmed video.
This task can be regarded as a fine-grained temporal action
localization (TAL) problem. Compared to the general tem-
poral action localization task, there exist some major chal-
lenges in the Naturalistic Driving Action Recognition track
of the 2023 AI City Challenge [18]. First, the scale of the
dataset is small, while with 16 behavior categories, resulting
in insufficient diversity of samples. Second, there are large
intra-class variations and small inter-class dissimilarity. For
example, the “Talking to passenger at the right” and “Talk-
ing to passenger at backseat” classes are confusing. Third,
driver action videos from multiple camera views are pro-
vided in this task, while only single-view data is provided
in traditional TAL task.

To address above challenges, we firstly take advantages
of large video foundation models with self-supervised pre-
training [8,24,26] to build a strong video recognition model.
Then, we classify the activity type of video clips using
the trained recognition model together with a multi-view
ensemble technique. Finally, a non-trivial clustering and
removing post-processing algorithm is applied to perform
temporal action localization.

The rest of the paper is organized as follows.We shortly
review some related works in Section 2. The proposed
method is introduced in Section 3. Section 4 presents the
experimental results. Finally, we conclude and give some
perspectives in Section 5.

2. Related works

Video Recognition. Video recognition is a fundamental
task for video understanding, and there have been extensive
studies in this field. The objective is to classify a trimmed
video into specific action classes. In the early years, CNN
was extensively used in the literature, and many 2D-CNN
and 3D-CNN based methods were proposed [3,6,7, 14]. In-
spired by the success of Transformer in the image domain
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Figure 1. Overview of the proposed approach. The input video is split into short term clips and assigned a class label by different
camera-view classifier. Next, an empirical selective ensemble approach is applied to get the clip-level action sequence. And a non-trivial
post-processing approach is performed to get segment-level localization results.

tasks, some methods [I, 16] have been developed to apply
Transformer for video recognition recently.

Besides the consideration of network architecture de-

sign, some recent works take advantages of large video
foundation pretraining models to improve the performance.
Recently, some self-supervised pretraining [8, 24, 26] and
multi-modal pretraining methods [12, 29] have been pro-
posed for video recognition. In [24], the authors presented
a self-supervised learning method called Video-MAE for
video transformer pretraining. They propose to mask the
video tube with an extremely high ratio, and encourage the
model to extract more effective video representations dur-
ing the pretraining process.
Temporal Action Localization. Temporal Action Local-
ization aims to locate the action activities and classify their
categories. The TAL methods can be categorized into two-
stage methods and single-stage ones. The two-stage ap-
proaches [15,32] first generate many candidate segments
as action proposals, and then classify the proposals into
the corresponding action categories. Single-stage TAL ap-
proaches [30,31] localize actions and obtain action cate-
gory in one stage without the need for action proposals.

3. Method

The proposed method relies on large model fine-tuning
to train a base video recognition model on a small-scale
video dataset. After that, we adopt multi-view multi-fold
ensemble to produce fine-grained clip-level classification
results. Given the recognition probabilities, a non-trivial

clustering and removing post-processing algorithm is ap-
plied to generate final location segments. The pipeline is
depicted in Fig. 1.

3.1. Large model fine-tuning for recognition

Since the scale of distracted behavior dataset is relatively
small, it tends to be over-fitting easily when training. Lots
of works [8, 24,26, 29] prove that large pre-trained model
can learn diverse visual concepts and show surpassing per-
formance on various downstream few-shot tasks. MAE [9]
is the recently top-performance image pre-training algo-
rithm which proposes a mask modeling pretext task for
self-supervised learning. VideoMAE [24] extends MAE [9]
to spatio-temporal space and shows excellent performance
on various video understanding benchmarks. To leverage
the power of large model, we adopt VideoMAE [24] as
the based model of our clip-level distracted action classi-
fier. More specifically, our backbone is ViT-L/16 and we
initialize the model with learned VideoMAE on Kinetics-
710 [13].

For fine-tuning, we apply dropout blocks, learning rate
decay scheme and early-stop to avoid catastrophic forget-
ting and over-fitting problem.

3.2. Multi-view multi-fold ensemble.

Consistent with [25], we train our action recognition
network with k-Fold cross validation (k=5) for better gener-
alization. The main difference with [25] lies in the utiliza-
tion of different camera views. Since the dataset provide
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Figure 2. Different camera has different capacity to capture differ-
ent distracted actions.

calibrated multi view videos, it is beneficial to take multi
view information into consideration. By intuition, dash-
board camera is expert in capturing the face-related activ-
ities (e.g. yawning, hand on head), rear view camera does
well in hand-related activities (e.g. eating, texting), while
right side camera has a good view for body-related actions
(e.g. picking, taking). Indeed, as depicted in Fig. 2, “Right
Side” data has perspective view of the interaction between
the driver hand and the control pane, which is useful for
“Adjusting Control Pane”. In addition, “Dashboard” camera
lacks the ability to capture the “Text” activities with limited
view field.

To better leverage the advantage of different camera
views, we empirically select camera view for specific dis-
tracted action class. We find it can make a big improve-
ments with selective ensemble of different views.

3.3. Clustering and Removing.

Given an untrimmed video, the recognition network
produced a classification probability sequence. The post-
processing procedure is aimed at clustering the discrete clip
to action segments and removing the unnecessary noise. As
depicted in Fig. 1, the procedure is consisted of three main
operations: smoothing, linking, removing. The “smooth-
ing” operation is to correct the mis-classified clip to make
a continuous action segment. The “linking” operation is to
link the adjacent short segments to a unified one. While
the “removing” operation is to is remove the isolated short
segments caused by dataset noise.

Table 1. The list of distracted driving activities in the Track3 of
the 2023 AI City Challenge videos.

Class ID. Distracted driver behavior
0 Normal
1 Drinking
2 Phone Call (Right)
3 Phone Call (Left)
4 Eating
5 Texting (Right)
6 Texting (Left)
7 Reaching behind
8 Adjusting Control Panel
9 Picking up from floor (Driver)
10 Picking up from floor (Passenger)
11 Talking to passenger at the right
12 Talking to passenger at backseat
13 Yawning
14 Hand on head
15 Singing or dance with music

4. Experiments
4.1. Dataset

The dataset [20] consist of a total of 34 hours driving
videos recorded by 35 drivers. In each video, drivers ran-
domly perform each of the 16 distracting activities once,
in random order. Three cameras are mounted in the car,
to record synchronously from different angles. Each driver
performs the data collection twice: once without a distrac-
tor and a second time with a distractor (e.g. sunglasses, hat).
In this way, 6 videos are collected for each driver, 3 videos
synchronized with no appearance block and 3 videos syn-
chronized with an appearance, giving a total of 210 videos.

The Track 3 of Naturalistic Driving Action Recognition,
the 2023 AI City Challenge videos are divided into three
datasets including “A1” for training, “A2” and “B” for test-
ing. The goal of the the Track 3 is to locate the precise
start time, end time and type of distracted behavior from the
untrimmed videos. The information of the distracted behav-
ior is listed in Tab. 1.

4.2. Implementation details.

The implementation is based on the public toolbox Py-
torch [19]. All experiments are conducted on a worksta-
tion with eight V100 GPU cards of 32GB memory. For
the video recognition network, we adopt the same network
as [24]. More specifically, we adopt 16-frame vanilla ViT-
L model [5] as the backbone while the classification head
uses a simple linear head. During training, the frame num of
each clip is 16 and the sampling rate is 4. We train each view
for 35 epochs, with a learning rate of 1.25 x 10~%, weight
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Table 2. The accuracy (%) of different distracted class. The result is evaluated on the validation set of each 5-Fold split.
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Fold 0
Dashboard 89.32 | 71.64 | 83.22 | 88.68 | 73.26 | 62.25 | 58.50 | 59.38 | 72.48 | 60.38 | 85.71 | 52.88 | 48.02 | 50.0 | 94.05 | 90.36 | 71.25
Rightside 88.94 | 79.1 | 83.22 | 81.13 | 36.63 | 56.95 | 68.03 | 79.69 | 92.66 | 81.13 | 83.67 | 38.46 | 57.63 | 16.28 | 83.92 | 81.73 | 69.32
Rearview 89.52 | 77.61 | 82.55 | 91.19 | 58.91 | 80.79 | 80.79 | 65.63 | 88.07 | 69.81 | 87.76 | 71.15 | 35.59 | 66.28 | 94.05 | 87.31 | 76.69
Avg. Ensemble | 91.07 | 77.61 | 82.55 | 89.94 | 61.22 | 68.75 | 87.16 | 71.70 | 87.15 | 71.70 | 89.79 | 62.5 | 44.06 | 52.32 | 95.24 | 89.34 | 74.86
Our Ensemble | 89.68 | 76.12 | 82.55 | 90.57 | 64.85 | 80.13 | 62.59 | 78.13 | 91.74 | 71.70 | 89.80 | 57.68 | 42.37 | 53.59 | 95.83 | 88.32 | 75.97
Fold 1
Dashboard 78.76 | 93.22 | 89.93 | 92.44 | 73.28 | 72.66 | 80.24 | 79.17 | 82.4 | 46.55 | 83.93 | 73.30 | 77.71 | 94.05 | 92.24 | 72.2 | 80.13
Rightside 77.31 | 83.06 | 93.53 | 94.12 | 52.67 | 80.58 | 85.63 | 93.06 | 92.0 | 75.86 | 73.21 | 72.67 | 86.96 | 55.95 | 68.10 | 81.34 | 79.12
Rearview 79.84 | 94.92 | 92.81 | 94.12 | 61.07 | 84.17 | 85.63 | 83.33 | 91.2 | 51.72 | 78.57 | 83.85 | 85.87 | 80.95 | 92.24 | 76.17 | 82.28
Avg. Ensemble | 81.32 | 93.22 | 92.09 | 94.11 | 67.18 | 84.89 | 88.02 | 94.44 | 91.2 | 63.79 | 80.36 | 82.61 | 86.41 | 90.48 | 93.10 | 80.31 | 85.22
Our Ensemble | 78.03 | 91.53 | 92.81 | 96.64 | 70.23 | 90.64 | 89.62 | 94.44 | 92.8 | 68.97 | 85.71 | 78.88 | 87.50 | 95.23 | 94.83 | 81.87 | 86.98
Fold 2
Dashboard 85.18 | 55.56 | 84.92 | 85.09 | 61.02 | 70.15 | 83.08 | 90.91 | 70.87 | 26.92 | 68.33 | 71.43 | 82.61 | 72.22 | 94.90 | 94.00 | 74.82
Rightside 83.34 | 48.15 | 84.13 | 85.09 | 43.50 | 88.56 | 87.06 | 90.91 | 77.95 | 59.62 | 68.33 | 70.86 | 69.02 | 41.11 | 81.53 | 86.0 | 72.82
Rearview 86.03 | 50.62 | 84.13 | 85.09 | 66.10 | 70.65 | 87.88 | 71.65 | 26.92 | 58.33 | 87.43 | 73.91 | 65.56 | 92.99 | 86.00 | 92.99 | 72.81
Avg. Ensemble | 87.83 | 51.85 | 84.92 | 85.09 | 62.71 | 76.12 | 85.07 | 90.91 | 75.59 | 32.69 | 70.00 | 84.57 | 85.33 | 66.67 | 92.99 | 90.00 | 76.39
Our Ensemble | 85.60 | 51.85 | 84.92 | 85.71 | 63.84 | 87.56 | 87.56 | 9091 | 77.95 | 3846 | 75.0 | 81.14 | 83.70 | 73.33 | 92.99 | 87.00 | 77.97
Fold 3
Dashboard 87.12 | 53.14 | 71.68 | 95.65 | 63.35 | 84.42 | 62.61 | 90.0 | 62.31 | 70.0 | 34.09 | 61.29 | 54.12 | 55.35 | 81.36 | 70.41 | 68.56
Rightside 85.34 | 48.25 | 69.03 | 81.16 | 27.48 | 92.86 | 60.43 | 90.0 | 97.83 | 75.00 | 29.55 | 61.75 | 61.76 | 20.54 | 77.27 | 53.25 | 64.47
Rearview 84.97 | 46.15 | 71.68 | 92.75 | 66.41 | 85.06 | 64.35 | 95.0 | 84.06 | 85.0 | 34.09 | 64.52 | 61.28 | 42.86 | 85.91 | 69.82 | 70.86
Avg. Ensemble | 87.55 | 52.44 | 71.68 | 92.75 | 60.31 | 90.91 | 67.83 | 90.00 | 90.58 | 82.50 | 35.22 | 65.44 | 62.35 | 41.96 | 82.73 | 69.82 | 71.51
Our Ensemble | 86.41 | 50.35 | 71.68 | 92.75 | 62.60 | 94.16 | 70.43 | 87.5 | 97.10 | 82.50 | 35.22 | 65.90 | 62.35 | 56.25 | 85.91 | 57.99 | 72.44
Fold 4
Dashboard 91.52 | 36.76 | 77.03 | 75.46 | 45.26 | 81.65 | 94.26 | 80.00 | 57.84 | 46.81 | 81.13 | 54.03 | 56.92 | 56.32 | 72.33 | 80.92 | 68.02
Rightside 87.99 | 44.11 | 75.00 | 78.53 | 38.95 | 82.28 | 89.34 | 83.33 | 70.59 | 57.45 | 77.36 | 45.34 | 52.31 | 49.42 | 52.20 | 76.80 | 66.31
Rearview 89.61 | 39.71 | 77.03 | 60.12 | 38.94 | 79.11 | 75.41 | 83.33 | 62.75 | 53.14 | 90.57 | 68.94 | 62.31 | 56.32 | 68.55 | 78.87 | 67.80
Avg. Ensemble | 91.30 | 41.18 | 77.03 | 74.23 | 47.37 | 82.29 | 90.98 | 81.67 | 64.71 | 59.57 | 86.79 | 64.60 | 56.15 | 56.32 | 69.81 | 78.35 | 70.15
Our Ensemble | 89.39 | 41.18 | 77.02 | 61.96 | 51.58 | 82.91 | 91.80 | 81.67 | 70.59 | 59.57 | 84.91 | 62.73 | 52.31 | 58.62 | 69.81 | 77.84 | 69.62

decay of 0.2, cosine annealing schedule, and 5 warm-up
epochs.

4.3. Evaluation metric.

Video Recognition. For video recognition, we take the
common used classification accuracy to measure our recog-
nition model. Concretely, the recognition evaluation metric
is given by:

TP+ TN
TP+TN+FP+ FN

Accuracy = (D)
where TP, F P, and F'N represent the number of true posi-
tive , false positive, and false negative clips, respectively. A
little difference with the former works, we take the perfor-
mance on clip level for model selection instead of on seg-
ment level.

Temporal Action Localization. For temporal action local-
ization, we report the average activity overlap metric (0s)
given by official, which is defined as follows. Given a

groundtruth action g with start time gs and end time ge, we
select predicted activity p of the same class as g and highest
temporal overlap score with g as its positive match. Anther
constraint is that start time ps and end time pe are in the
range [gs—10s, gs + 10s] and [ge—10s, ge + 10s], respec-
tively. The overlap between g and p is defined as the ratio
between the temporal intersection and the temporal union
of the two activities, i.e.,

max(min(ge, pe) — max(gs, ps),0)

mazx(ge, pe) — min(gs, ps)

os(p,g) = (2)

After matching each ground truth activity in order of their
start times, all unmatched ground truth activities and all un-
matched predicted activities will receive an overlap score of
0. The final score is the average overlap score among all
matched and unmatched activities.
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Table 3. Results of 5-Fold cross-validation.

Camera View | Fold | Accuracy(%)
80.63
80.84
79.43
80.99
86.69
81.06
82.79
81.33
80.07
85.90
78.25
80.40
79.29
78.29
84.14

—_

Dashboard

Rear View

Right Side

N A W= A WD~ hks WD

4.4. Results

Video Recognition. We apply the 5-fold cross valida-
tion on each camera view and evaluate the recognition
performance. Tab. 2 depicts the class accuracy compar-
ison with different camera views. As shown in Tab. 2,
the performance of different class varies among different
camera views. Besides, the proposed selective ensemble
way achieves competitive or superior performance. Our
selective ensemble method is able to gain significant im-
provements over single view results. The average gain is
around 5%. Compared with average ensemble, the pro-
posed method records an improvement of 1 points accuracy
on average. The overall accuracy of different folds of dif-
ferent camera vies are reported in Tab. 3. The results are
slight different when we change the validation set of user
(driver) data, which lead to the hypothesis that the large
model might lead to more stable performance even if we
randomly split user data for training and validation.
Temporal Action Localization. With the models trained
on “Al1” split, we inference “A2” split videos and submit
our localization results to the evaluation system. Our pro-
posed method rank 1st with 0.7416 os score. The final
leader board result is listed in Tab. 4. We surpass the second
place with a large margin (+4%) without any extral data or
annotation, which validates the effectiveness and good gen-
eralization ability of the proposed approach.

5. Conclusion

In this paper, we have presented a solution for the Track
3 of the 2023 AI City Challenge. Our method is built
upon the self-supervised pretrained large model for clip-
level video recognition. Then we adopt multi-view multi-
fold ensemble to improve recognition performance. Finally,

Table 4. Summary of the Track 3 leader board.

Rank Team Name Score (mOS)
1 Meituan-IoTCV (our) 0.7416
2 JUN_boat 0.7014
3 ctc-Al 0.6723
4 RW 0.6245
5 Purdue Digital Twin Lab 0.5921

a non-trivial clustering and removing post-processing al-
gorithm is introduced to locate the temporal boundaries.
We achieve the highest score on the leader board test set
‘6A277.
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