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Abstract

Image fusion is a significant problem in many fields in-
cluding digital photography, computational imaging and
remote sensing, to name but a few. Recently, deep learning
has emerged as an important tool for image fusion. This
paper presents CSCFuse, which contains three deep con-
volutional sparse coding (CSC) networks for three kinds
of image fusion tasks (i.e., infrared and visible image fu-
sion, multi-exposure image fusion, and multi-spectral im-
age fusion). The CSC model and the iterative shrinkage and
thresholding algorithm are generalized into dictionary con-
volution units. As a result, all hyper-parameters are learned
from data. Our extensive experiments and comprehensive
comparisons reveal the superiority of CSCFuse with regard
to quantitative evaluation and visual inspection.

1. Introduction
With the development of computer vision, there has been

further deepening of the understanding of scenes, which
has led to higher demands for the quality of input im-
ages [21,30,51–54,63–65,82]. Image fusion is a fundamen-
tal topic in image processing [5,27,59,62,66,75–78], and it
aims to generate a fusion image by combining the comple-
mentary information of source images [32, 61, 80, 88, 89].
This technique has been applied to many scenarios. For ex-
ample, infrared and visible image fusion (IVF) is helpful for
object detection and recognition [35, 48–50, 84]. In digital
photography, high dynamic range (HDR) imaging can be
solved by multi-exposure image fusion (MEF) to generate
high-contrast and informative images [37, 46, 73].

Over the past a few decades, numerous image fusion al-
gorithms have been proposed, where transform based algo-
rithms are very popular [12, 13, 26, 28, 32, 58, 69–72, 85].
They transform source images into feature domain, detect
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the active levels, blend the features and at last apply the
inverse transformer in order to obtain the fused image. Re-
cently, deep neural networks have emerged as an effective
tool in image fusion [22, 32]. They are divided into three
groups: (1) Autoencoder-based methods. This is a deep-
learning variant of transform-based algorithms. The trans-
formers and inverse transformers are replaced by encoders
and decoders, respectively [11, 18, 24, 83, 86, 87, 90]. (2)
Supervised methods. For multi-focus image fusion, there
are ground truth images in the synthetic datasets [31]. For
MEF, Cai et al. constructed a large dataset providing the ref-
erence images by comparing 13 MEF/HDR algorithms [3].
Owing to the strong fitting ability, supervised learning net-
works are suitable for these tasks. (3) Human visual system-
based methods. In the case without a reference image, by
taking prior knowledge into account and setting proper loss
functions, researchers designed regression [38,74] or adver-
sarial [23,25,29,36] networks to make fusion images satisfy
human visual systems. However, it is found that many algo-
rithms are evaluated on a limited number of cherry-picked
images. Thus, their generalizations remain unknown. It
leaves room for possible improvement with reasonable and
interpretable formulations.

Convolutional sparse coding (CSC) has been success-
fully applied to computer vision tasks on account of its high
performance and robustness [4, 7, 10, 57]. The CSC model
is generally solved by the iterative shrinkage and threshold-
ing algorithm (ISTA), but the results significantly depend
on hyper-parameters. To address this problem, the CSC
model and ISTA are generalized into some dictionary con-
volutional units (DCUs) which are put in the hidden layers
of neural networks. In this manner, the hyper-parameters
(e.g. penalty parameters, dictionary filters and thresholding
functions) in DCUs are learnable. Based on the novel unit,
we design deep CSC networks for three fusion tasks, in-
cluding IVF, MEF, and multi-spectral image fusion (MSF).
In our experiments, we employ relatively large test datasets
to make a comprehensive and convincing evaluation. Ex-
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perimental results show that the deep CSC networks outper-
form the state-of-the-art (SOTA) methods in terms of both
objective metrics and visual inspection. Besides, our net-
works are with high reproducibility. The remainder of this
paper is organized as follows. Section 2 converts the CSC
and ISTA into a DCU. Then, in section 3 we design three
DCU based networks for IVF, MEF and MRF tasks. The
extensive experiments are reported in section 4. Section 5
concludes this paper.

2. Dictionary Convolutional Units
In dictionary learning, CSC is a typical method for im-

age processing. Given an image x ∈ Rc×h×w (c = 1 for
gray images and c = 3 for RGB images) and q convolu-
tional filters d ∈ Rq×c×s×s, CSC can be formulated as the
following problem:

min
z

1

2
‖x− d ∗ z‖22 + λg(z), (1)

where λ is a hyperparameter, ∗ denotes the convolution op-
erator, z ∈ Rq×h×w is the sparse feature map (or say, code)
and g(·) is a sparse regularizer. This problem can be solved
by ISTA, and it is easy to write the updating rule for feature
maps as below,

z(k+1) ← proxλ/ρ

(
z(k) +

1

ρ
dT ∗ (x− d ∗ z(k))

)
, (2)

where ρ is the step size and dT ∈ Rc×q×s×s is the flipped
version of d along horizontal and vertical directions. Note
that prox(·) is the proximal operator of the regularizer g(·).
If g(·) is the `1-norm, its corresponding proximal operator
is the soft shrinkage thresholding (SST) function defined by
SSTγ(x) = sign(x)ReLU(|x| − γ), where ReLU(x) =
max(x, 0) is the rectified linear unit and sign(x) is the sign
function. CSC provides a pipeline to extract features of
an image, but its performance highly depends on the con-
figuration of {λ, ρ,d}. By the principle of algorithm un-
rolling [8, 44, 56], the ISTA of CSC can be generalized as
a unit in neural networks. We employ two convolutional
units, Convi(i = 0, 1), to replace d and dT /ρ, and proxi-
mal operator prox(·) is extended to the activation function
f(·). Hence, Eq.(2) can be rewritten as

z(k+1) = f
(
BN

(
z(k) +Conv1(x− Conv0(z

(k)))
))
, (3)

where we also take batch normalization (BN) into account.
It is worth pointing out that, except for SST, the activation
function can be freely set to alternatives (e.g., ReLU, para-
metric ReLU (PReLU) and so on) if the regularizer g(·) is
not set to `1-norm. In what follows, Eq. (3) is called a dic-
tionary convolutional unit (DCU). By stacking DCUs, the
original CSC model can be represented as a deep CSC neu-
ral network.

In addition, stacking DCUs is interpretable to represen-
tation learning. Conv0 serves as a decoder, since it maps
z(k) from feature space to image space. And Conv1 serves
as an encoder, since it maps the residual between the origi-
nal image x and the reconstructed image Conv0(z(k)) from
image space to feature space. Then, the encoded residual is
added to the current code z(k) for updating. Eventually,
the output passes through BN and an activation function for
non-linearity. This process can be regarded as an iterative
auto-encoder.

3. CSCFuse
In this section, we apply deep CSC neural networks to

the image fusion problem, and exhibit three paradigms of
model formulation for three different image fusion tasks.

3.1. Infrared and Visible Image Fusion

By combining autoencoders and the CSC model, we pro-
pose a CSC-based IVF network (CSC-IVFN), which can be
regarded as a flexible data-driven transformer. During the
training phase, we train CSC-IVFN in an autoencoder fash-
ion using all the available infrared and visible training im-
ages. In the testing phase, we use the well-trained encoder
to obtain the base and detail features of the infrared and
visible images. These features are then fused by an extra
fusion layer and decoded by the trained decoder to produce
the final fused images.
Training Phase. The architecture is displayed in Fig. 1
(a). Firstly, the input image x1 is decomposed into a base
image xB containing low-frequency information and a de-
tail image xD containing high-frequency textures. Similar
to [15, 33], xB is obtained by applying a box-blur filter to
x, and as for the detail image there is xD = x− xB. Then,
the base and detail images pass through N stacked DCUs,
and we will get the final feature maps, that is, zD and zB.
And next we feed them into a decoder to decode the base
and detail images. Finally, they are combined to reconstruct
the input image. Here, the output is activated by a sigmoid
function to make sure that the values range from 0 to 1. The
loss function is the mean squared error (MSE) plus struc-
tural similarity (SSIM) loss,

LIVF =
1

hw

(
‖x− x̂‖22 + λIVF 1− SSIM(x, x̂)

2

)
, (4)

where λIVF is a trade-off parameter to balance the MSE
and SSIM [67]. Note that MSE is used to keep the spatial
consistency and SSIM guarantees local details in terms of
structure, contrast and brightness [67].
Testing Phase. After training a CSC-IVFN, there is a trans-
former (encoder) and an inverse transformer (decoder). In

1In the training phase, both infrared and visible images are indiscrimi-
nately denoted by x.
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Figure 1. Network structure for our CSCFuse.

the test phase, CSC-IVFN is feed with a pair of infrared and
visible images. In what follows, we use IB, ID, V B and
V D to represent the base and detail feature maps of infrared
and visible images, respectively. As exhibited in Fig. 1 (b),
a fusion layer is inserted between the encoder and decoder
in the test phase. It can be expressed by a unified merging
operation F(·),

FB = F(IB,V B) = wB
1 ⊗ IB ⊕wB

2 ⊗ V B,

FD = F(ID,V D) = wD
1 ⊗ ID ⊕wD

2 ⊗ V D.
(5)

Here, ⊗ and ⊕ are element-wise product and addition.
For the determination of {wB

1 ,w
B
2 } and {wD

1 ,w
D
2 },

Here we focus on introducing the saliency-weighted fusion
strategy [15]. Other conventional fusion strategies such as
`1-norm and weighted average can refer to [18].

To highlight and retain the saliency target and informa-
tion, the fusion weight of this strategy is determined by
the saliency degree. We take base weights as an example.
Firstly, the saliency value of IB at the kth pixel can be ob-
tained by SB

I (k) =
∑255
i=0 H

B
I (i)|IB(k)− i|, where IB(k)

is the value of the kth pixel and HB
I (i) is the frequency of

pixel value i. The initial weight at the kth pixel is w̃B
1 (k) =

SB
I (k)/

[
SB
I (k) + SB

V (k)
]

and w̃B
2 (k) = 1 − w̃B

2 (k). To
prevent region boundaries and artifacts, the weight map is
refined via the guided filter G(·, ·) with the guidance of base
and detail feature maps:

wB
1 = G(w̃B

1 , I
B)/

[
G(w̃B

1 , I
B) + G(w̃B

2 , I
V)
]
,

wB
2 = 1−wB

1 .
(6)

3.2. Multi-Exposure Image Fusion

Most of MEF algorithms fall under the umbrella of
weighted summation framework, f =

∑K
k=1 wk ⊗ xk,

where {xk}Kk=1 are source images, {wk}Kk=1 are the cor-
responding weight maps, f is the fused image and K de-
notes the number of exposures. We propose a CSC-based
MEF network (CSC-MEFN). Different from CSC-IVFN,
CSC-MEFN is an end-to-end network. Here DCUs extract
feature maps, which are then used to predict weight maps
to generate the fusion image. To avoid chroma distortion,
the proposed CSC-MEFN works in the YCbCr space, and
its channels are denoted by yk, bk and rk. As shown in
Fig. 1 (c), Y channels {yk}Kk=1 pass through CSC-MEFN
one-by-one. At first, CSC-MEFN stacks N DCUs to code
the Y channels. Then, it is followed by a 1 × 1 convolu-
tional unit to get the final code zk. Thereafter, the codes
{zk}Kk=1 are converted into weight maps {wk}Kk=1 by soft-
max activation. At last, the fused Y channel yF is ob-
tained by yF =

∑K
k=1 wk ⊗ yk. As for the Cb chan-

nels, we employ the MEF `1-norm fusion strategy, i.e.,
bF =

∑K
k=1 ‖bk − 0.5‖1bk/

∑K
k=1 ‖bk − 0.5‖1. So Cr

channels do. After the separate fusion of three channels, the
fusion image f is transformed from YCbCr to RGB space.
Eventually, we apply a post-processing [20]: the values at
0.5% and 99.5% intensity levels are mapped to [0,1], and
values out of this range are clipped.

CSC-MEFN is supervised by improved MEFSSIM [37].
It evaluates the similarity between source images {xk}Kk=1

and the fusion image f in terms of illumination, contrast
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and structure. Our experimental results show that MEFS-
SIM often leads to haloes. Essentially, halo artifacts result
from the pixel fluctuation in the illumination map (i.e., Y
channel). To suppress haloes, we propose a halo loss de-
fined by the `1-norm on gradients of the illumination map,
Lhalo = ‖∇yF‖1, where ∇ denotes the image gradient op-
erator. In our experiments, ∇ is implemented by horizontal
and vertical Sobel filters. In summary, given the penalty
parameter λMEF, the loss function of CSC-MEFN is ex-
pressed by

LMEF =
1

hw

(
−MEFSSIM + λMEFLhalo

)
. (7)

3.3. Multi-Spectral Image Fusion

Owing to the limitation of multi-spectral imaging de-
vices, multi-spectral images (MS) contain enriched spec-
tral information but with low resolution (LR). One of the
promising techniques for acquiring a high-resolution (HR)
MS is to fuse the LRMS with a guidance image (e.g.
panchromatic or RGB images). This problem is a special
MSF task. We present a CSC-based MSF network (CSC-
MSFN) for the general MSF task. It is assumed that LR and
guidance images are represented by xLR = dLR ∗ zLR and
xG = dG ∗ zG, respectively. Given the dictionary of HR
images dF, the HR image is represented by

xF = dF ∗ (zLR) ↑ . (8)

The symbol ↑ denotes the upsampling operator. According
to this model, CSC-MSFN separately extracts codes of xLR

and xG by two sequences of DCUs, and we utilize the fast
guidance filter to super-resolve zLR with the guidance of
zG. At last, the HR image is recovered by a 3× 3 convolu-
tional unit. The loss function is set to MSE between ground
truth and fusion images.

4. Experiments
Here we elaborate the implementation and configuration

details of our networks. Experiments are conducted to show
the performance of our models and the rationality of net-
work structures. For each task, our experiments utilized
training, validation and test datasets. The hyperparameters
are determined by validation set.

4.1. Infrared and Visible Image Fusion

Datasets, Metrics and Details. IVF experiments use three
datasets (FLIR, NIR and TNO). The 180 pairs of images
in FLIR compose the training set. Two subsets, Water (51
pairs) and OldBuilding (51 pairs) of NIR, are used for val-
idation. To comprehensively evaluate the performance of
different models, we employ TNO (40 pairs), NIR-Country

Table 1. Quantitative results of the IVF task. Boldface and under-
line indicate the best and the second best results, respectively.

Dataset: FLIR
DeepF DenseF DLF FEZL FGAN SDF TVAL Ours

EN 7.21 7.21 6.99 6.91 7.02 7.15 6.80 7.61
MI 2.73 2.73 2.78 2.78 2.68 2.31 2.47 3.02
SD 37.35 37.32 32.58 31.16 34.38 35.89 28.07 55.94
SF 15.47 15.50 14.52 14.16 11.51 18.79 14.04 21.85
VIF 0.50 0.50 0.42 0.33 0.29 0.50 0.33 0.70
AG 4.80 4.82 4.15 3.38 3.20 5.57 3.52 6.92

SCD 1.72 1.72 1.57 1.42 1.18 1.50 1.40 1.80

Dataset: NIR-Country Scene
DeepF DenseF DLF FEZL FGAN SDF TVAL Ours

EN 7.30 7.30 7.22 7.19 7.06 7.30 7.13 7.36
MI 4.04 4.04 3.97 3.81 3.00 3.29 3.67 3.86
SD 45.82 45.85 42.31 44.44 34.91 43.74 40.47 69.37
SF 18.63 18.72 18.36 17.04 14.31 20.65 16.69 28.29
VIF 0.68 0.68 0.61 0.55 0.42 0.69 0.53 1.05
AG 6.18 6.23 5.92 5.38 4.56 6.82 5.32 9.42

SCD 1.37 1.37 1.22 1.14 0.51 1.19 1.09 1.73

Dataset: TNO
DeepF DenseF DLF FEZL FGAN SDF TVAL Ours

EN 6.86 6.84 6.38 6.63 6.58 6.67 6.40 6.91
MI 2.30 2.30 2.15 2.23 2.34 1.72 2.04 2.50
SD 32.25 31.82 22.94 28.05 29.04 28.04 23.01 46.97
SF 11.13 11.09 9.80 9.46 8.76 12.60 9.03 12.88
VIF 0.58 0.57 0.31 0.31 0.26 0.46 0.28 0.62
AG 3.60 3.60 2.72 2.55 2.42 3.98 2.52 4.22

SCD 1.80 1.80 1.62 1.67 1.40 1.68 1.60 1.70

Table 2. Quantitative results of the MEF task. Boldface and un-
derline indicate the best and the second best results, respectively.

MEON Brisque Niqe Piqe

EF 8.67 18.83 2.91 31.06
GGIF 9.15 19.17 2.52 32.19

DenseFuse 11.85 26.44 2.58 29.61
MEF-Net 9.36 19.45 2.52 32.29
FMMR 9.86 20.11 2.55 32.09

DSIFTEF 9.38 18.65 2.53 32.29
Lee18 9.81 18.51 2.46 32.54
Ours 8.17 18.26 2.39 27.83

(52 pairs) and the rest pairs of FLIR (40 pairs) as test
datasets. To quantitatively measure the fusion performance,
seven metrics are employed: entropy (EN), mutual informa-
tion (MI), standard deviation (SD), spatial frequency (SF),
visual information fidelity (VIF), average gradient (AG),
and sum of the correlations of differences (SCD). Larger
metrics indicate that a fusion image is better. In our experi-
ment, the tuning parameter λIVF in Eq. (4) is set to 5. The
network is optimized over 60 epochs with a learning rate of
10−2 in the first 30 epochs and 10−3 in the rest epochs. The
number of DCUs, activation function and fusion strategy
are reported as follows: the number of DCUs in base or de-
tail encoder is 7; the activation functions in base and detail
encoders are set as PReLU and SST, respectively; the fusion
strategies for base and detail images are saliency-weighted
fusion and `1-norm fusion [18], respectively. Selection of
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Figure 2. Visually fusion results for our CSCFuse vs. SOTA methods.

Figure 3. Visually fusion results for our CSCFuse vs. SOTA methods.

EF GGIF DenseFuse MEF-Net

FMMR DSIFTEF Lee18 Ours

Figure 4. The fused images of Balanced Rock.

the above configurations was made by grid search on the
validation set.

Comparison with SOTA Methods. To verify the superior-
ity of our CSC-IVFN, we compare its fusion results with
nine popular IVIF fusion methods, including ADKT [1],
CSR [33], DeepFuse [47], DenseFuse [18], DLF [17],
FEZL [15], FusionGAN [36], SDF [2] and TVAL [9]. Six
metrics of all methods are displayed in Table 1. It is shown
that our method achieves the best performance on all test
sets with regard to most metrics. Therefore, our method is
suitable for various scenarios with different kinds of illumi-
nations and object categories. In contrast, the other meth-
ods (including DeepFuse, DenseFuse and SDF) can achieve
good performance on certain test sets concerning a part of
metrics. Besides the metric comparison, representative fu-
sion images are displayed in Figs. 2 and 3. In the visible

image, there are lots of bushes. In the infrared image, we
can observe a bunker. However, it is not easy to recognize
the bushes/bunker in the infrared/visible image. It is found
that our fusion image keeps the details and textures of the
visible image, and preserves the interest objects (i.e., the
bushes and the bunker). In addition, its contrast is fairly
high. In conclusion, both visible spectrum and thermal ra-
diation information are retained in our fusion image. How-
ever, other methods cannot generate satisfactory images as
good as ours.

4.2. Multi-Exposure Image Fusion

Datasets, Metrics and Details. Three datasets SICE [3],
TCI2018 [37] and HDRPS2 are employed in our experi-
ments. HDRPS and TCI2018 are used for test and valida-
tion, respectively. SICE is a large and high-quality dataset.
It is divided into two parts for training and validation. Many
papers use MEFSSIM to evaluate the performance, but
CSC-MEFN is supervised by MEFSSIM. Hence, it is un-
fair for other methods. As an alternative, we utilize four
SOTA blind image quality indices , i.e., blind/referenceless
image spatial quality evaluator (Brisque) [42], naturalness
image quality evaluator (Niqe) [43], perception based im-
age quality evaluator (Piqe) [45] and multi-task end-to-end
optimized deep neural network (MEON) based blind image

2http://markfairchild.org/HDR.html
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Table 3. Quantitative results of the MSF task. Boldface and underline indicate the best and the second best results, respectively.

Images CNMF GSA FUSE MAPSMM GLPHS PNN PFCN Ours

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

RF apples 34.57 0.94 32.73 0.68 38.25 0.94 41.44 0.98 43.55 0.98 39.93 0.97 41.60 0.99 51.58 1.00
RF peppers 33.13 0.93 30.96 0.70 35.77 0.92 39.56 0.97 41.60 0.98 39.48 0.97 40.47 0.98 49.54 0.99
Sponges 31.14 0.95 26.31 0.74 33.76 0.94 35.25 0.93 37.29 0.97 31.39 0.96 32.03 0.98 43.29 0.99
Stuffed toys 30.04 0.87 27.33 0.58 34.30 0.94 36.46 0.94 38.39 0.97 33.67 0.96 33.10 0.97 44.11 0.99
Superballs 21.29 0.83 32.53 0.76 36.36 0.91 27.56 0.60 39.31 0.95 36.99 0.95 36.74 0.97 46.29 0.99
Thread spools 32.37 0.89 30.66 0.66 33.96 0.91 34.92 0.94 36.36 0.96 35.81 0.95 38.82 0.98 42.55 0.99
Mean 30.42 0.90 30.09 0.69 35.40 0.93 35.87 0.89 39.42 0.97 36.21 0.96 37.13 0.98 46.23 0.99

CNMF GSA FUSE MAPSMM

GLPHS PNN PFCN Ours

Figure 5. The error maps of stuffed toys (band 3). Their values
are amplified 10 times for easier visual inspection. The error goes
larger from black to white.

quality assessment [39]. Smaller values indicate that a fu-
sion image is better. Experiments show that large λMEF

makes training unstable, so at the ith iteration it is set to
min{0.25(i − 1), λMEF

max }. We select λMEF
max = 10 to make

halo loss and MEFSSIM loss have similar magnitudes. The
network is optimized by Adam over 50 epochs with a learn-
ing rate of 5 × 10−4. The network configuration is deter-
mined by validation datasets. We utilize N = 3 DCUs to
extract codes and SST is employed as an activation func-
tion.
Comparison with SOTA Methods. CSC-MEFN is com-
pared with seven classic and recent SOTA methods, includ-
ing EF [41], GGIF [14], DenseFuse [18], MEF-Net [38],
FMMR [19], DSIFTEF [34], Lee18 [16]. The metrics are
listed in Table 2. Our network outperforms other methods.
Lee18 and EF are ranked in the second and third places. Fig.
4 displays the fusion images. It is shown that GGIF, MEF-
Net, FMMR, DSIFTEF and Lee18 suffer from strong halo
effects around edges between the sky and rocks. For EF the
right rock is too dark, and for DenseFuse the sun cannot be
recognized. The contrast of local regions for both EF and
DenseFuse is low. Our fusion image strikes the balance.

4.3. Multi-Spectral Image Fusion

Datasets, Metrics and Details. We employ a multi-
spectral/RGB image fusion dataset, Cave [79]. It contains
32 scenes, each of which has a 31-band multi-spectral im-

age and an RGB image. It is divided into three parts
for training, testing and validation. The Wald protocol is
used to construct training sets. We employ peak signal-to-
noise ratio (PSNR) and SSIM as evaluation indexes. Larger
PSNR and SSIM indicate that a fusion image is better. The
network is optimized by Adam over 100 epochs with a
learning rate of 5 × 10−4. SST is employed as an activa-
tion function. The number of DCUs is empirically set to 4
for a speed and accuracy trade-off.
Comparison with SOTA Methods. CSC-MSFN is com-
pared with seven classic and recent SOTA methods, includ-
ing CNMF [81], GSA [60], FUSE [68], MAPSMM [6],
GLPHS [55], PNN [40] and PFCN [91]. The metrics listed
in Table 3 show that our network achieves the largest PSNR
and SSIM. GLPHS and PFCN can be ranked in the second
place in terms of PSNR and SSIM, respectively. The error
maps of the third band of stuffed toys are displayed in Fig. 5.
We found that CNMF, GSA and PFCN break down when re-
constructing the color checkerboard and stuffed toys, while
FUSE, MAPSMM, GLPHS and PNN perform badly at the
edges. In summary, CSC-MSFN has the best performance.

5. Conclusion
Inspired by converting the ISTA and CSC models into a

hidden layer of neural networks, this paper proposes three
deep CSC networks for IVF, MEF and MSF tasks. Exten-
sive experiments and comprehensive comparisons demon-
strate that our networks outperform the SOTA methods.
Furthermore, numerous experiments show that our net-
works are highly reproducible.
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