Supplementary Material for
Investigating Catastrophic Overfitting in Fast Adversarial Training: A Self-fitting Perspective

A. Experiment details.

FAT settings. We train ResNet18 on Cifar10 with the FGSM-AT method [3] for 100 epochs in Pytorch [1]. We set $\epsilon = 8/255$ and $\epsilon = 16/255$ and use a SGD [2] optimizer with 0.1 learning rate. The learning rate decays with a factor of 0.1 at the 80th and 90th epochs. To better study CO, we use zero initialization to generate adversarial samples, and weight decay is set to 0 to reproduce CO stably. The batch size is 128. Images are padded with 4 pixels and randomly cropped and flipped horizontally.

Figure 1. FGSM-AT training with different ϵ on Cifar10 using WideResNet28-10. Catastrophic overfitting happens at 15th epoch for $\epsilon = 8/255$ and 4th epoch for $\epsilon = 16/255$.

PGD-AT details in further discussion. There is only a little difference between the settings of PGD-AT and FAT. PGD-AT uses a smaller step size and more iterations with $\epsilon = 16/255$. The learning rate decays at the 75th and 90th epochs. The robust accuracy during training of different settings is shown in Fig. 3.

B. Experiments on WideResnet28-10.

This section reports experiments on WideResNet28-10 about self-fitting. Compared to ResNet18, WideResNet28-10 has more parameters and therefore has a stronger learning capability.

Training curve. Fig. 1 shows the training curve of WideResNet28-10 on Cifar10 with FGSM-AT method. The training setting also follows Appendix A. Catastrophic overfitting happens earlier than ResNet18. After CO, the random-label FGSM accuracy also increases quickly with training accuracy, suggesting that self-information dominates the classification.

Probability changes with attack step size’s increase. Fig. 2 visualizes that when the step size of FGSM perturbation gradually increases, how output probability of the network in the corresponding classes. The model is trained on Cifar10 using WideResNet28-10. When the step size increases, the probability firstly decreases, meaning that the perturbation can fool the network, then increases, meaning that the network can recognize the self-information in the perturbation when the step size is large enough.

Table 1. Accuracy drop of different networks trained on Cifar10 using WideResNet28-10. Compared to the network without CO, the network with CO has a large drop in FGSM accuracy while little change in clean accuracy.

<table>
<thead>
<tr>
<th></th>
<th>CLEAN</th>
<th>FGSM</th>
<th>PGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/O CO, NOT PRUNED</td>
<td>76.4%</td>
<td>51.2%</td>
<td>45.4%</td>
</tr>
<tr>
<td>W/O CO, PRUNED</td>
<td>-19.9%</td>
<td>-19.5%</td>
<td>-16.2%</td>
</tr>
<tr>
<td>WITH CO, NOT PRUNED</td>
<td>79.2%</td>
<td>99.5%</td>
<td>0.0%</td>
</tr>
<tr>
<td>WITH CO, PRUNED</td>
<td>-10.4%</td>
<td>-92.4%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

Channel variance in descending order. Fig. 4 shows
the variance values in descending order of networks with and without the CO on WideResNet28-10. The features after the first layer of WideResNet28-10 have only 16 channels. After CO, some channels become dominant to recognize self-information, thus having a larger variance. While some channels for data-information become unimportant and “dead”.

Figure 3. Training curves of multi-step AT with different iterations and step sizes. PGD accuracy is calculated using a PGD20 attack with 3 random starts.

the first layer with the highest variance is pruned. The network without CO has a similar drop in all accuracy after pruning. In contrast, after pruning, the network with CO has a drop of 92.4% in FGSM accuracy, while the clean accuracy only decreases by 10.4%.

References

Accuracy of pruned network. Tab. 1 shows the accuracy change of different setting after pruning, which is for WideResNet28-10 trained on Cifar10. Only one channel of

Figure 4. The variance values in descending order of networks with and without the CO on WideResNet28-10. The network with CO has a larger maximum variance value and more zero variance channels.