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Abstract

Accurate phenotypic analysis can help plant breeders ef-
ficiently identify and analyze suitable plant traits to enhance
crop yield. While 2D images from RGB cameras are easily
accessible, their trait estimation performance is limited due
to occlusion and the absence of depth information. On the
other hand, 3D data from LiDAR sensors are noisy and lim-
ited in their ability to capture very thin plant parts such as
peanut plant pegs. To combine the merits of both the 2D and
3D data analysis, the 2D images were used to capture thin
parts in peanut plants, and deep learning-based 3D recon-
struction using captured 2D images was performed to ob-
tain 3D point clouds with information about the scene from
different angles. The neural radiance fields were optimized
for implicit 3D representation of the plants. The trained ra-
diance fields were queried for 3D reconstruction to achieve
point clouds for a 360-degree view and frontal view of the
plant. With frontal-view reconstruction and the correspond-
ing 2D images, we used Frustum PVCNN to perform 3D
detection of peanut pods. We showed the effectiveness of
PeanutNeRF on peanut plants with and without foliage: it
showed negligible noise and a chamfer distance of less than
4 x 10~ from a manually cleaned version. The pod detec-
tion showed a precision of around 0.7 at the loU threshold
of 0.5 on the validation set. This method can assist in ac-
curate plant phenotypic studies of peanuts and other impor-
tant crops.

1. Introduction

Peanut is an important oilseed and food crop grown in
over 100 countries. The total world production was around
50 million tons in 2022 [1]. Production of high-yielding
peanut varieties involves conventional and molecular plant
breeding programs to study and identify desirable traits in
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peanut plants [12, 13]. The pod yield per plant, number of
pods and pegs per plant, and shelling outturn are important
yield contributing traits and assist to study different geno-
types. Plant phenotyping is key to the study of the physio-
logical and morphological traits of peanut plants contribut-
ing to high yield.

While manual phenotyping is time-consuming and labor-
intensive, recent advancements in computer vision-based
high throughput phenotyping have enabled efficient anal-
ysis of plants’ physiology using both 2D and 3D sensing.
Leveraging 2D images captured using RGB cameras, sev-
eral studies have performed segmentation of plant parts
[3,5,26,34] and skeletonization to characterize plants’ ar-
chitecture [4, 8,38]. However, 2D RGB images lack depth
information and are prone to occlusion. Compared to 2D
images, 3D data such as point cloud data allows us to cap-
ture depth information directly with less occlusion and more
accurate position information. Point cloud data from Kinect
and LiDAR sensors of several plants are used to perform
skeletonization and segmentation of plants utilizing tradi-
tional techniques like region growth, color-based region
segmentation [2, 16,30-32]. In other studies advanced 3D
deep learning-based techniques operating on point cloud
data were employed.

While 3D data enables a geometrical understanding of
the scene and provides more accurate position information,
the collection of high-resolution data requires expensive de-
vices such as LiDAR. Less expensive equipment like In-
tel Realsense have limited resolution. In addition to the
cost of the devices, scanning using 3D sensors such as
FARO LiDAR is time-consuming, requires human supervi-
sion and can take hours for high-resolution scans. Further-
more, high-resolution 3D data requires a significant amount
of storage space. In terms of quality, the captured point
cloud data is relatively sparse and contains missing regions
due to the hardware limitation of 3D sensors. As a result,
very fine details like thin peanut plant pegs with less than
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Figure 1. Overview of PeanutNeRF approach: Overlapping images from video clips of a plant are used as input to train a neural radiance
field. The radiance field is queried to perform the 3D reconstruction and volume rendering of 2D views. The 3D reconstructed point clouds
and 2D views are used as input to Frustum PVCNN for 3D pod detection.

Imm of radius are rarely captured. Moreover, there is high
noise in captured data, which requires an additional denois-
ing operation.

We propose PeanutNeRF, a framework that utilizes 3D
radiance fields to conduct phenotypic analysis with a com-
bination of 2D and 3D data. Inspired by the recent ad-
vances in 3D scene modeling using implicit 3D models
(NeRF) [20], we first capture 2D data of a scene that con-
tains peanut plants. 2D data like RGB images or videos can
be easily captured with low-cost cameras and does not take
hours to capture high-resolution data of a single plant. As
a result, it also requires less human supervision and han-
dling. After the 2D data collection, we train 3D radiance
fields using NeRF and obtain an implicit representation of
the scene where we could sample 3D point clouds. Our ex-
periment shows that the 3D reconstruction of peanut plants
modeled by PeanutNeRF is more accurate, with higher res-
olution (capturing finely detailed structures such as peanut
plant peg) than that achieved from the traditional approach
of LiDAR + manual cleaning.

Powered by the 3D scene model from PeanutNeRF, we
conduct a preliminary study of plant phenotyping of peanuts
to study important traits like node count, and flowering
which depends upon thin plant parts like pegs and pods and
their locations. We conduct experiments on both defoliated
(leafless) and foliated (naturally leafy) plants where peanut
pods are more often to be occluded. A comparison is in
Figure 2. The pod detection in 3D data format is important
to achieve accurate phenotyping and improved yield. We
use Frustum PVCNN [18] to perform 3D peanut pods de-
tection and instance segmentation, from the 3D point cloud
sampled from the PeanutNeRF model. These initial results
show that our approach is able to detect most peanut pods
with an IoU of more than 0.5.

Our main contributions are:

Figure 2. Defoliated (left) and foliated (right) plant sample.

1. A novel collection of data for 360-degree and frontal
view video clips as well as extraction of overlapping
images for each video for 12 plants including defoli-
ated and foliated plants.

A neural radiance fields-based 3D analysis pipeline for
efficient and reliable reconstruction of peanut plants.

3D peanut pod detection and segmentation from
PeanutNeRF point clouds using Frustum PVCNN.

2. Related work

In terms of data acquisition, sensors such as LiDAR,
Kinect, and Intel Realsense can capture 3D information.
[2, 16, 30-32] but are costly and limited in their ability
to capture thin plant parts like pegs. The resulting point
cloud is sparse and contains noise. The 3D scans from dif-
ferent angles need to be aligned using a registration algo-
rithm by matching key points in different scans. For cap-
turing thin plant parts, X-Ray technology is used in vari-
ous studies involving root phenotyping [6, | 1]. In contrast
to data acquisition through 3D sensors, 2D sensors allow
cheap, and less labor-intensive data collection. Moreover,
the result contains negligible noise. Various studies in the
past utilized 2d multi-view images to perform 3D recon-
struction. 3D multi-view stereo reconstruction was used for
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cassava tree crown phenotyping and blueberry harvestabil-
ity trait extraction using Agisoft software [23, 35]. Shape-
from-silhouette method was used for the reconstruction of
plants [29] through the extraction of silhouettes of objects
of interest from multiple views. Simple shape carving was
used to reconstruct the roots of rice seedlings but it removed
the background. Structure from Motion (SfM) has been
used as it outputs sparse point clouds as well as camera
poses of input images. [9, 17,23,24]. Given the camera
poses, multi-view stereo has been adopted to achieve dense
point clouds of various plant types [10, 14,25,37]. Recent
advancements allow representing 3D volume as weights of
a neural network. Neural radiance fields [20] allows neural
implicit representation of a 3D shape. The density and color
of a 3D location are implicitly encoded in the network that
takes as input, a 3D coordinate and viewing direction. The
objective of NeRF is to perform novel view synthesis. It
allows 3D reconstruction, due to the implicit representation
of 3D shapes.

Detection of plant parts has been achieved in a variety of
ways. Segmentation was used to identify parts using tradi-
tional processing methods like cylinder fitting, color-based
region growth segmentation, and voxel cloud connectivity
segmentation [3 1, 33]. Hand-crafted features like fast point
feature histogram (FPFH) and principal curvature in SVM,
Random forest, and decision algorithms [40]. Later stud-
ies utilized deep learning to perform both semantic and in-
stance segmentation [15, 19]. However in these studies, the
plant parts were at a minimum distance from each other,
therefore individual instances were identified through clus-
tering. In peanut plants, the pods are nearby each other.
Therefore using the clustering approach can identify more
than one nearby pod as a single instance. Therefore we
adopt 3D detection to detect each individual pod and seg-
ment the pod in the detected bounding box.

3. PeanutNeRF: the approach

In this section, we describe our pipeline of utilizing the
NeRF-type implicit scene modeling method for peanut re-
construction and analysis tasks. We first give an overview of
NeRF and its Nerfacto [36] variant used for the reconstruc-
tion of peanut plants. Then we describe how to perform
downstream analysis tasks such as pod detection, from the
obtained radiance field model.

3.1. Neural Radiance Fields (NeRF)

NeRF implicitly represents a 3D scene using learned
continuous volumetric radiance field Fy on a set of im-
ages and camera poses to synthesize novel views not in
the training set. Specifically, Fj is modeled using trained
MLPs that take a continuous SD vector input including
spatial coordinates £ = (x,y,z) and viewing direction
d = (0,¢) and outputs density (&) and view-dependent
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Figure 3. NeRF model architecture. Given a 3D query and a view-
ing direction, the NeRF predicts the density and color.

radiance ¢ = (r, g,b) at that spatial location. NeRF per-
forms differentiable volume rendering of an implicit 3D
scene onto 2D images to optimize the MLPs using a loss
function that compares the predicted pixel and ground truth
pixel values. To compute the color of a single pixel, Let a
ray [r(t) = o + td] be emitted through the center of projec-
tion of camera space o through a given pixel on the image
plane, traversing between near ¢,, and far bounds ¢;. Uni-
form sampling is used to select K quadrature points ¢,
between ¢,, and t ;, NeRF’s approximation of expected color

[C(r)] for that pixel is given by:

K
C(r) = R(r,c,0) = ZT(tk)a(o(tk)é)c(tk), (1

k=1

where

k—1
T(tk) = exp <— > U(tk/)5k'>7 2
k'=1
¢(t) and o(t) are color and density at point 7(t), a(x) =
1 — exp(—=z) and § = tr41 — ty is the distance between
two quadrature points. Stratified sampling is used to select
quadrature points between ¢,, and ¢, the near and far planes
of the camera.

Using MLPs with ReLU, the density o(t) is modeled
only as the function of spatial coordinates while the color
¢(t) is modeled as the function of both spatial coordinates
and viewing direction as illustrated in NeRF model archi-
tecture in Figure 3. To improve the neural network’s per-
formance, the input viewing direction d and spatial position
r(t) are encoded in higher dimensions before being fed to
NeREF field. The following equation describes the form of
MLPs utilized:

[o(t), 2(t)] = MLPy1 (72 (r(t))) 3)

c(t) = MLPy2(2(t),va(d)) @

Using NeRF, the point clouds having the desired number
of points can be reconstructed. Moreover, it reduces mem-
ory consumption by compression of high-resolution point
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clouds as they are represented by the trained weights of
MLP.

To optimize the MLP weight, the sum of squared error
loss is used with respect to RGB image collection. Each
image is paired with its intrinsic and extrinsic camera pa-
rameters estimated using structure from motion. A set of
camera rays are pre-computed corresponding to pixel j in
image ¢ with each ray emitting from 3D location o: and
through the pixel;; with direction d;;. In addition to using
the described radiance field with randomly sampled quadra-
ture points, the weights corresponding to each point result
from a volume renderer that correlates the importance of
each point in the final rendering of the image. Therefore
these weights resulting from the first radiance field (coarse
network) are used to guide further sampling of points. The
points biased towards regions of higher weights are fed as
input to another radiance field called fine network which is
similar in structure to the coarse network.

3.2. Nerfacto

While NeRF uses a coarse network (a NeRF field) to
guide the sampling of more relevant points, the Nerfacto
approach [36] utilizes a proposal sampler to sample the lo-
cations of the regions that contribute most to the final ren-
der. The proposal sampler consists of multiple density fields
to represent the coarse density. Each density field is mod-
eled as a small fused MLP and takes hash encoding of the
input. The density function does not need to learn the high-
frequency details during the initial passes. It is used to guide
the sampling of relevant locations. The sampled locations
resulting from the proposal sampler are fed as input to the
Nerfacto field to predict the final density and radiance for
the rendering. Different from the NeRF field, the Nerafacto
field uses hash encoding to encode the spatial position and
spherical harmonics encoding to encode the viewing direc-
tion as represented in Nerfacto model architecture in Fig-
ure 4. The encoded position and direction are fed as input
to MLPs in a manner similar to NeRF field as described in
Equations (3) and (4) except that the nerfacto also takes as
input, appearance embeddings in MLP to output the color
as shown in Equation (4). These appearance embeddings
are trainable and are optimized alongside MLP parameters
(0). The loss function based on the nerfacto field is:

L=y
j

2

’C(Tij) —C(ryj) 5)
2

3.3. Frustum PVCNN

In this subsection, we demonstrate how to perform im-
portant phenotypic analysis using the learned 3D radiance
field from the subsections. In particular, we design Frustum
PVCNN that is similar to Frustum pointnet, except that it
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Figure 4. Nerfacto model architecture. Given the 3D posi-
tion, viewing direction, and appearance embeddings, the Nerfacto
model predicts the density and color.

uses PVCNN [ 18] as the backbone module for feature ag-
gregation. Overall, it consists of three modules: Frustum
proposal, mask segmentation, and 3D bounding box esti-
mation.

3.3.1 Frustum proposal

In this module, we leverage a 2D detector to detect peanut
pods from frontal view images. Specifically, we use yolov5
detector whose weights are trained on ImageNet data be-
fore applying transfer learning to detect peanut pods in our
data. After detecting the proposed regions for pods in 2D
images, we use the corresponding 3d reconstruction from
PeanutNeRF. This is done so that the proposed region of
pod in 2D image can be lifted to the corresponding 3D frus-
tum. After estimating the 3D frustum, we collect all points
in between the frustum to obtain frustum point clouds.

3.3.2 Mask segmentation

The obtained frustum point clouds contain points belonging
to the target pod, as well as irrelevant categories of fore-
ground occlusion and background clutter. We train PVCNN
as a pointwise binary segmentator, to distinguish between
the target object (pod) and distractors (frontal occlusion and
background clutter). PVCNN utilizes point-voxel convolu-
tion for feature aggregation in point clouds. After perform-
ing the binary segmentation, we filter the points belonging
to the target pod. Performing binary segmentation for each
frustum allows us to achieve the pod instance segmentation
task.

3.3.3 3D bounding box estimation

Given the segmented mask of pods from the previous step,
we further process the data for 3D bounding box estima-
tion. The 3D bounding box is paramterized by its center
(Cz, Ty, c,) and size (I, w, h). The “residual” approach is
adopted for box dimension estimation. We use a template
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with pre-defined box dimensions and train the pointnet (re-
ferred to as the box estimation net) for regression of residual
dimensions. The regression for the box center is achieved
in two steps. In the first step, we use pointnet (referred to
as T-Net) to regress the center residual. This is performed
since in some cases, the center of the bounding box slightly
differs from the center of the instance mask. Therefore this
slight difference is regressed by the T-net as center resid-
ual. Additionally, the box estimation net containing outputs
for box dimension also contains outputs for center residual
from instance mask. The residual is combined with the cen-
ter residual predicted from T-net and masked points’ cen-
troid to recover an absolute center as represented in Equa-
tion (6):

Cpred = Cmask + AC't—nel + AC'box—net (6)

The three networks involving mask segmentation
PVCNN, T-net, and box estimation point net are simulta-
neously optimized with multi-task losses in Equation (7).
Lnasi 1s used for instance segmentation by PVCNN,
Lci—reg is used for T-net, Ly_req is used for center re-
gression of box estimation net. L,_,., are for box size.
The corner loss represents the sum of distances between the
8 corners of predicted and ground truth boxes. Softmax is
used for the classification task and smooth /; (Huber) loss
is used for regression cases.

Lnuti-task = Limask + )\(Lclfreg + L027reg

(7
Ls—reg + ’YLcomer)

4. Experiments

In this section, we first evaluate the quality of the 3D
reconstruction of PeanutNeRF and compare it against the
standard LiDAR approach. To demonstrate the power of
PeanutNeRF, we present a preliminary study of using the
model learned with PeanutNeRF to help peanut phenotypic
analysis—the detection and segmentation of peanut pods.

4.1. Data collection

The data collection was performed for defoliated and fo-
liated peanut plants using a customized setup. Peanut plants
are different from many other plants as the plant cannot
stand straight by itself being kept in a pot. Moreover, the
important parts like pods fruit are below the ground while
some important parts like pegs and nodes are above the
ground. To allow the scanning of the peanut plant in a way
to capture the important parts of the plant along with the
whole plant architecture, a cloth dryer was installed with a
rod attached to the ceiling and the plant was fixed using the
cloth dryer. To set up the plant, the branches of the plants
were secured by cloth dryer clips. In this way, the plant’s
branches are widely spread around so that the plant’s ar-
chitecture along with pods and pegs were mostly detectable

by the sensor as shown in Figure 5. To perform the 3D re-
construction of the frontal view of the plant, plain cloths
are arranged in the background. The video clips covering
a 360-degree view of the plant do not have a plain back-
ground.

Figure 5. Data collection setup.

4.2. Experimental setting

The Nerfacto model was trained separately for each
plant’s data. The overlapping images are extracted and
Colmap [27, 28] is used to extract the poses of each im-
age. To perform the 3D reconstruction of video covering
the entire plant with a 360-degree view, camera poses were
selected from the validation set images and ray tracing was
performed. The Nerfacto model was queried in this to pre-
dict RGB value and density for each query during the ray
tracing process. For frontal view reconstruction, the camera
poses were selected manually using NeRF Studio viewer
tool [36] so that the plant covered most of the image. In the
case of the frontal view plant, the Nerfacto model was used
to extract the image as well as the corresponding point cloud
for each selected camera pose. Our PeanutNeRF model
was trained with an Adam optimizer with a learning rate
of 0.01. The training was performed for 30,000 iterations.
Each training iteration used a batch of 4096 rays where as
the NeRF model was trained with rectified Adam optimizer
with a learning rate of 0.0005. The training was performed
for 1,000,000 iterations and each iteration used a batch of
1024 rays.

To compare the performance of PeanutNeRF, we use a
FARO LiDAR scanner to perform a more standard 3D mod-
eling task of the peanut plant. We performed three LIiDAR
scans for each selected plant sample. The scans are reg-
istered using the FARO Scene software to achieve the 3D
model. We normalize both 3D models before comparison
so that the result achieved using the LiDAR scans and that
from PeanutNeRF are at the same scale.

To train the frustum PVCNN, we prepared a dataset us-
ing a selected defoliated and foliated plant. Reconstruction
was performed for 7 frontal views from different camera
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poses for each plant. The reconstructed point clouds and
their corresponding 2D images are collected. The dataset
is annotated by first labeling the bounding boxes in the 2D
image and then extracting the frustum point cloud corre-
sponding to the 2D bounding box. We have a total of 172
pod samples (train/val split of 150/22) for defoliated and
129 pod samples (train/val split of 109/20) for the foliated
plant from 7 views of each plant. As a preprocessing step,
all pod sample coordinates were translated by subtracting
all coordinates in a pod from the maximum coordinates in
that pod sample. We did not normalize as normalization can
affect the size as well as the network’s regression output.
The frustum PVCNN is trained for 500 epochs with a batch
size of 4. Adam optimizer was used with a learning rate
of 0.01 and a cosine annealing learning rate scheduler was
used. The network was trained separately for defoliated and
foliated categories. During validation, we evaluated the per-
formance of Frustum PVCNN on frustums in the validation
set which are extracted from manually labeled 2D bounding
boxes and precision refers to the percentage of predictions
above a certain threshold. For inference on the test set, we
first used yolov5 detector for performing the detection. The
2D detected pods are used to extract corresponding frustum
point clouds which were input to Frustum PVCNN for mask
segmentation and bounding box prediction.

4.3. Evaluation metrics

To evaluate the 3D reconstruction performance of
PeanutNeRF, we measure two types of metrics.

First, we evaluate the image synthesis results from cam-
era poses in the validation set and compare them with
ground truth images. Peak signal-to-noise ratio (PSNR),
structural similarity index measure (SSIM), and learned per-
ceptual image patch similarity (LPIPS) are used.

MAX?
PSNR =10 -log,, (MSEI> (8)
where
1 m—1n—1
MSE = — [1(i,) = K@, 7)>  ©
mn “— <
=0 j=0
and M AX; is the maximum pixel value of the image.
2 20,
SSIM($7y): ( 1% My+cl)( g y+02) (10)

(2 + 122 + 1) (007 + o + c2)

where [, is the pixel sample mean of x; py is pixel sample
mean of y; o the variance of x; o¥” the variance of Y;
o™ the covariance of = and y/; ¢; and ¢, are two variables
to stabilize the division with weak denominators. L is the

dynamic range of the pixel values. k1 = 0.01, kp = 0.03.

We also evaluate the 3D point cloud obtained from
PeanutNeRF. To compare the level of noise, chamfer dis-
tance is used as shown in Equation (11) to estimate the dis-
tance of a noisy point cloud from its cleaned version.

2

CD(S,S:) = ‘S| Z ;reun lz — yll3

(11)
min ||z —y|3

|Sa| =5 e

where S; and S, represents the two point clouds.

The LPIPS [39] is used to estimate the similarity be-
tween the activations of two image patches. The high value
of LPIPS corresponds to more distance and dissimilarity be-
tween the image patches while the low distance shows that
the image patches are similar. For pod detection evaluation,
we report the precision of pod samples with IoU thresholds
of 0.5, 0.6, and 0.7 to determine the true positives.

4.4. Results and discussion

Our experiments show that the performance of Nerfacto
is significantly higher than that of NeRF as shown in Ta-
ble 1. The PSNR for Nerfacto exceeded 25 while that for
NeRF was less than 18 for both foliated and defoliated
plants. Similarly, Nerfacto showed a higher SSIM (more
than 0.8). The LPSIS obtained using Nerfacto was less than
half of that obtained using NeRF.

Type Method LPIPS PSNR SSIM
Defolinied  NERF 0.4407 1626 0.7587
clohialed  Nerfacto  0.1067 25.61  0.8642
Foliaed  NeRF 04568 1732 0.7194
oliate Nerfacto  0.1432  25.99  0.8089

Table 1. Performance of NeRF and Nerfacto on the defoliated and
foliated plant.

Comparison of noise among the point cloud registered
from LiDAR scans and that reconstructed using nerfacto
show that LiDAR-based plant model contains more noise
when measured in terms of the Chamfer distance. The noise
in the foliated and defoliated plants are compared with the
manually-cleaned versions. In addition, denoised versions
were formed by applying the statistical outlier removal
method with a nearest neighbor value of 6 and standard de-
viation multiplier (nSigma) value of 1, 5, and 10. Cham-
fer distance of denoised and raw version with the manually
cleaned version is significantly lower in the case of nerfacto-
based reconstruction compared to the model from LiDAR
scans as illustrated in Table 2. The Chamfer distance in the
case of LiDAR-based model is more than 5 times that of
nerfacto-based model in both foliated and defoliated plants.
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Figure 6. Comparison of registration results from LiDAR scans and Nerfacto for a defoliated plant (top two rows) and a foliated plant
(bottom two rows). Samples contain raw data and results denoised using statistical outlier removal at std dev multiplier (Std/nSigma) value

of 1, 5, and 10.

It was observed that by decreasing the nSigma value,
the denoising becomes more aggressive, and the Chamfer
distance from the manually cleaned version is the lowest.
While with the highest nSigma value (10), the denoising
is less aggressive and the distance is closer to the raw re-
sult. These quantitative results were also supported by the
visualization of 3D models as illustrated in Figure 6. In ad-
dition, we observed that the thin parts including pegs in the
defoliated plant were missed in the LiDAR capture while
they were mostly captured in nerfacto based reconstructed
as shown in Figure 6.

We also analyzed performance using four positional en-
codings in Nerfacto. Frequency encoding from the original
study [20] was used which encodes input coordinates as si-
nusoidal of various frequencies. Hash grid encoding [21]
was used that adapts to the training data distribution and
inherits the benefits of the Hash table for efficient perfor-
mance. In one blob encoding [22], a kernel is used to

Type Denoising level Nerfacto LiDAR
nSigma=1 0.97 28.13
. nSigma=>5 2.11 42.81
Defoliated  ioma=10 282 44.39
Raw result 3.39 44.55
nSigma=1 1.81 14.86
Foliated nSigma=>5 2.24 30.17

nSigma=10 3.2 32.78
Raw result 3.66 33.18

Table 2. Chamfer distance (CD) between the manually cleaned
point cloud and the raw and denoised data from Nerfactor and
LiDAR. Denoising is performed using statistical outlier removal
with standard deviation multiplier (nSigma) values of 1, 5, and 10.
CD is multiplied by 10%.
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activate multiple adjacent entries instead of a single one.
Spherical harmonics (SH) [7] was used to apply the encod-
ing of high-frequency functions on manifolds. It was ob-
served that the choice of positional encoding significantly
impacts the performance metrics for both foliated and defo-
liated plants. (Table 3). We observed that using Hash grid-
based positional encoding can achieve better performance.
The PSNR achieved using Hash grid encoding was more
than 25 while it was less than 23 using other encodings.
The LPSIS using spherical harmonics, frequency, and one
blob encoding was more than 3 times that achieved using
hash encoding. Similarly, the SSIM using Hash encoding
exceeded 0.8 and was higher than other encodings.

Type PE LPIPS PSNR SSIM
Hashgrid  0.1067 25.61 0.8642

Defoliaied SH 04263 1952  0.7808
COUACE Brequency 04313 2088  0.7795
Oneblob 03964 2227 0.7847

Hash grid  0.1432  25.99 0.8089

Folied SH 04609 2022  0.7288
Frequency 0.4635 2045 0.7283

Oneblob 04815 22.07 0.7417

Table 3. Nerfacto performance at different Positional (PE) encod-
ings. (SH represents spherical harmonics encoding.)

(b)

Figure 7. Visualization of mask instance segmentation. The pre-
dicted mask in each frustum is represented by a different color.

Figure 8. Pod detection results on the validation set. The bounding
boxes are represented in blue outline.

In the task of 3D pod detection, the network showed al-
most similar performance for both foliated and defoliated

ToU threshold Defoliated Foliated

0.5 0.72 0.7
0.6 0.63 0.65
0.7 0.45 0.5

Table 4. Precision on the validation set at different IoU thresholds.

categories and the precision achieved at the IoU threshold
of 0.5 is around 70% and it is more than 45% as the IoU
threshold is increased to 0.7 (Table 4). The mask instance
segmentation shows a mean IoU of more than 0.8 and most
masks for pods were correctly predicted as shown in Fig-
ure 7. In some cases, mask segmentation showed errors.
Therefore, the bounding box dimension and center regres-
sion showed high error from ground truth and the IoU of the
predicted box with the ground truth box was less than 0.4.
These bounding boxes were considered as missed detection
in the validation dataset. The detected pods on the valida-
tion set showed mostly detected pods and few missed pods
as illustrated in Figure 8. The proposed method has some
limitations. Using frustum PVCNN, the pods are detected
only in frontal-view point clouds. Additionally, the nerfacto
model has to be trained per plant.

5. Conclusion

We presented the use of NeRF for 3D reconstruction of
peanut plants. The Nerfacto method showed better results
than the original NeRF and is able to recover most of the
thin plant parts. We trained Frustum PVCNN on the frontal
view reconstructed point clouds and corresponding 2D im-
ages of the selected defoliated plant to achieve 3D pod de-
tection. In future studies, we aim to perform detection from
reconstruction covering a 360-degree view of the plant. In
addition to pod detection, we aim to detect the thin parts
including pegs recovered from the 3D reconstruction.

Acknowledgements

We thank Jacob Brannon, Javier Rodriguez-Sanchez, Orr
Shalev, and all Biosensing Automation and Intelligence lab
members for useful discussions and help in data collection,
and experiments.Additionally, we gratefully thank for the
computing resources and technical expertise from the Geor-
gia Advanced Computing Resource Center (GACRC). The
first author is supported by Higher Education Commission
under US-Pakistan Knowledge Corridor.

References

[1] Fas usda (https://ipad.fas.usda.gov). 1

[2] Zurui Ao, Fangfang Wu, Saihan Hu, Ying Sun, Yanjun Su,
Qinghua Guo, and Qinchuan Xin. Automatic segmentation
of stem and leaf components and individual maize plants

6261



(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

in field terrestrial lidar data using convolutional neural net-
works. The Crop Journal, 10(5):1239-1250, 2022. 1, 2
Suchet Bargoti and James P Underwood. Image segmenta-
tion for fruit detection and yield estimation in apple orchards.
Journal of Field Robotics, 34(6):1039-1060, 2017. 1

Ayan Chaudhury and Christophe Godin. Skeletonization of
plant point cloud data using stochastic optimization frame-
work. Frontiers in Plant Science, 11:773, 2020. 1

Sruti Das Choudhury, Saptarsi Goswami, Srinidhi Bashyam,
Ashok Samal, and Tala Awada. Automated stem angle de-
termination for temporal plant phenotyping analysis. In Pro-
ceedings of the IEEE International Conference on Computer
Vision Workshops, pages 2022-2029, 2017. 1

Keith E Duncan and Christopher N Topp. Phenotyping com-
plex plant structures with a large format industrial scale
high-resolution x-ray tomography instrument. In High-
Throughput Plant Phenotyping: Methods and Protocols,
pages 119-132. Springer, 2022. 2

Carlos Esteves, Tianjian Lu, Mohammed Suhail, Yi-fan
Chen, and Ameesh Makadia. Generalized fourier features
for coordinate-based learning of functions on manifolds. 8
Mathieu Gaillard, Chenyong Miao, James Schnable, and
Bedrich Benes. Sorghum segmentation by skeleton extrac-
tion. In Computer Vision—-ECCV 2020 Workshops: Glasgow,
UK, August 23-28, 2020, Proceedings, Part VI, pages 296—
311. Springer, 2021. 1

Jordi Gené-Mola, Ricardo Sanz-Cortiella, Joan R Rosell-
Polo, Josep-Ramon Morros, Javier Ruiz-Hidalgo, Verdnica
Vilaplana, and Eduard Gregorio. Fruit detection and 3d
location using instance segmentation neural networks and
structure-from-motion photogrammetry.  Computers and
Electronics in Agriculture, 169:105165, 2020. 3

Jingwei Guo and Lihong Xu. Automatic segmentation for
plant leaves via multiview stereo reconstruction. Mathemat-
ical Problems in Engineering, 2017, 2017. 3

Tsung-Han Han and Yan-Fu Kuo. Developing a sys-
tem for three-dimensional quantification of root traits of
rice seedlings. Computers and Electronics in Agriculture,
152:90-100, 2018. 2

Pasupuleti Janila, SN Nigam, Manish K Pandey, P Nagesh,
and Rajeev K Varshney. Groundnut improvement: use of
genetic and genomic tools. Frontiers in plant science, 4:23,
2013. 1

Pasupuleti Janila, Murali T Variath, Manish K Pandey,
Haile Desmae, Babu N Motagi, Patrick Okori, Surendra S
Manohar, AL Rathnakumar, T Radhakrishnan, Boshou Liao,
et al. Genomic tools in groundnut breeding program: status
and perspectives. Frontiers in Plant Science, 7:289, 2016. 1
Dawei Li, Guoliang Shi, Weijian Kong, Sifan Wang, and
Yang Chen. A leaf segmentation and phenotypic feature ex-
traction framework for multiview stereo plant point clouds.
IEEE Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing, 13:2321-2336, 2020. 3

Dawei Li, Guoliang Shi, Jinsheng Li, Yingliang Chen,
Songyin Zhang, Shiyu Xiang, and Shichao Jin. Plantnet: A
dual-function point cloud segmentation network for multiple
plant species. ISPRS Journal of Photogrammetry and Re-
mote Sensing, 184:243-263, 2022. 3

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

6262

Yinglun Li, Weiliang Wen, Teng Miao, Sheng Wu, Ze-
tao Yu, Xiaodong Wang, Xinyu Guo, and Chunjiang Zhao.
Automatic organ-level point cloud segmentation of maize
shoots by integrating high-throughput data acquisition and
deep learning. Computers and Electronics in Agriculture,
193:106702, 2022. 1,2

Xu Liu, Steven W Chen, Shreyas Aditya, Nivedha Sivaku-
mar, Sandeep Dcunha, Chao Qu, Camillo J Taylor, Jnanesh-
war Das, and Vijay Kumar. Robust fruit counting: Com-
bining deep learning, tracking, and structure from motion.
In 2018 IEEE/RSJ international conference on intelligent
robots and systems (IROS), pages 1045-1052. IEEE, 2018.
3

Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-
voxel cnn for efficient 3d deep learning. In Conference on
Neural Information Processing Systems (NeurIPS), 2019. 2,
4

Liyi Luo, Xintong Jiang, Yu Yang, Eugene Roy Antony
Samy, Mark Lefsrud, Valerio Hoyos-Villegas, and Shang-
peng Sun. Eff-3dpseg: 3d organ-level plant shoot segmenta-
tion using annotation-efficient point clouds. arXiv preprint
arXiv:2212.10263,2022. 3

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99-106, 2021. 2,
3,7

Thomas Miiller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics
(ToG), 41(4):1-15, 2022. 7

Thomas Miiller, Brian McWilliams, Fabrice Rousselle,
Markus Gross, and Jan Novak. Neural importance sampling.
ACM Transactions on Graphics (ToG), 38(5):1-19, 2019. 7
Xueping Ni, Changying Li, Huanyu Jiang, and Fumiomi
Takeda. Three-dimensional photogrammetry with deep
learning instance segmentation to extract berry fruit har-
vestability traits. ISPRS Journal of Photogrammetry and Re-
mote Sensing, 171:297-309, 2021. 3

Yeping Peng, Mingbin Yang, Genping Zhao, and
Guangzhong Cao. Binocular-vision-based structure from
motion for 3-d reconstruction of plants. IEEE Geoscience
and Remote Sensing Letters, 19:1-5, 2021. 3

Johann Christian Rose, Stefan Paulus, and Heiner
Kuhlmann.  Accuracy analysis of a multi-view stereo
approach for phenotyping of tomato plants at the organ
level. Sensors, 15(5):9651-9665, 2015. 3

Hanno Scharr, Massimo Minervini, Andrew P French, Chris-
tian Klukas, David M Kramer, Xiaoming Liu, Imanol Lu-
engo, Jean-Michel Pape, Gerrit Polder, Danijela Vukadi-
novic, et al. Leaf segmentation in plant phenotyping: a col-
lation study. Machine vision and applications, 27:585-606,
2016. 1

Johannes Lutz Schonberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 5
Johannes Lutz Schonberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-



(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]

(39]

[40]

structured multi-view stereo. In European Conference on
Computer Vision (ECCV), 2016. 5

Weinan Shi, Rick van de Zedde, Huanyu Jiang, and Gert
Kootstra. Plant-part segmentation using deep learning and
multi-view vision.  Biosystems Engineering, 187:81-95,
2019. 3

Guoxiang Sun and Xiaochan Wang. Three-dimensional
point cloud reconstruction and morphology measurement
method for greenhouse plants based on the kinect sensor self-
calibration. Agronomy, 9(10):596, 2019. 1, 2

Shangpeng Sun, Changying Li, Peng W Chee, Andrew H
Paterson, Yu Jiang, Rui Xu, Jon S Robertson, Jeevan Ad-
hikari, and Tariq Shehzad. Three-dimensional photogram-
metric mapping of cotton bolls in situ based on point cloud
segmentation and clustering. ISPRS Journal of Photogram-
metry and Remote Sensing, 160:195-207, 2020. 1, 2,3
Shangpeng Sun, Changying Li, Peng W Chee, Andrew H Pa-
terson, Cheng Meng, Jingyi Zhang, Ping Ma, Jon S Robert-
son, and Jeevan Adhikari. High resolution 3d terrestrial lidar
for cotton plant main stalk and node detection. Computers
and electronics in agriculture, 187:106276, 2021. 1, 2
Shangpeng Sun, Changying Li, Andrew Paterson, and Peng
Chee. Three-dimensional cotton plant shoot architecture seg-
mentation and phenotypic trait characterization using terres-
trial lidar point cloud data. In 2020 ASABE Annual Interna-
tional Virtual Meeting, page 1. American Society of Agricul-
tural and Biological Engineers, 2020. 3

Shangpeng Sun, Changying Li, Andrew H Paterson, Peng W
Chee, and Jon S Robertson. Image processing algorithms for
infield single cotton boll counting and yield prediction. Com-
puters and electronics in agriculture, 166:104976, 2019. 1
Pongsakorn Sunvittayakul, Piya Kittipadakul, Passorn Won-
napinij, Pornchanan Chanchay, Pitchaporn Wannitikul,
Sukhita Sathitnaitham, Phongnapha Phanthanong, Kanok-
phu Changwitchukarn, Anongpat Suttangkakul, Hernan Ce-
ballos, et al. Cassava root crown phenotyping using three-
dimension (3d) multi-view stereo reconstruction. Scientific
Reports, 12(1):10030, 2022. 3

Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li,
Brent Yi, Justin Kerr, Terrance Wang, Alexander Kristof-
fersen, Jake Austin, Kamyar Salahi, et al. Nerfstudio: A
modular framework for neural radiance field development.
arXiv preprint arXiv:2302.04264, 2023. 3,4, 5

Sheng Wu, Weiliang Wen, Yongjian Wang, Jiangchuan Fan,
Chuanyu Wang, Wenbo Gou, and Xinyu Guo. Mvs-pheno: a
portable and low-cost phenotyping platform for maize shoots
using multiview stereo 3d reconstruction. Plant Phenomics,
2020, 2020. 3

Sheng Wu, Weiliang Wen, Boxiang Xiao, Xinyu Guo, Jian-
jun Du, Chuanyu Wang, and Yongjian Wang. An accurate
skeleton extraction approach from 3d point clouds of maize
plants. Frontiers in plant science, 10:248, 2019. 1

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 6

Illia Ziamtsov and Saket Navlakha. Machine learning ap-
proaches to improve three basic plant phenotyping tasks

6263

using three-dimensional point clouds.
181(4):1425-1440, 2019. 3

Plant physiology,



