
Abstract  
 

As an essential food crop, rice is often infested with 
diseases that can cause significant yield losses and 
seriously damage economic income and food health. Early 
identification and control of rice diseases is an effective 
way to alleviate these problems. However, manual 
identification and diagnosis of rice leaf diseases requires 
experienced specialists and is time-consuming. In our 
study, we propose the ECA-ConvNeXt model, based on the 
ConvNeXt network, which can identify six categories of 
typical rice leaf diseases and healthy rice leaves. We also 
established a rice leaf disease identification dataset that 
contains images of healthy and diseased rice leaves with 
complex backgrounds and their disease category labels. In 
the proposed ECA-ConvNeXt model, we incorporated the 
ECA (Efficient Channel Attention) module, which 
improved the feature extraction performance using only a 
few parameters. Transfer learning was applied to load pre-
training weights and fine-tuning was used to reduce 
training costs and improve the model performance. We 
tested the performance of ECA-ConvNeXt on the rice leaf 
disease identification dataset. Experimental results show 
that the proposed model achieved an accuracy of 94.82%, 
a precision of 94.47%, a recall rate of 94.31%, and an F1-
Score of 94.33% on the rice leaf disease identification 
dataset. These results suggest that the proposed network 
effectively identifies rice leaf diseases. 
 

1. Introduction 
Rice is one of the most important human food crops, 

with abundant edible, economic, and medicinal values. 
According to statistics, half of the world's population 
consumes rice, and the total rice production ranks third in 
the world for food crop production, following corn and 
wheat [1]. However, all major rice production areas 
worldwide have suffered from rice diseases for a long time 
[2]. The spread of diseases can significantly reduce rice 
yield and quality and threaten the food supply. Therefore, 
reliable and rapid diagnosis of rice diseases and preventive 
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and control measures are crucial for disease control. 
Artificial Intelligence (AI) technology and targeted 
treatments offer new ways to identify rice diseases to 
ensure healthy rice growth accurately and are thus worth 
investigating. 

The emergence and development of computer vision and 
deep learning techniques have opened new directions for 
precision and smart agriculture. They also provide a new 
solution to the problem of identification and diagnosis of 
plant diseases. In the past few years, with the advances in 
digital camera technology and the improvement of 
computing power, image recognition methods have 
demonstrated superior performance in various applications 
and have been widely used in agriculture [3]. Currently, the 
identification of crop diseases is mainly accomplished by 
farmers and agricultural professionals. Manual 
identification methods are mainly derived from farmers' 
experience, books, search engines, and the guidance of 
professionals [4]. Nevertheless, these approaches are time-
consuming, laborious, economically costly, and have low 
accuracy. Therefore, with the rapid development of deep 
learning methods in image recognition, effective and 
accurate identification of crop diseases of rice and other 
crops by vision-based methods has become a popular 
research topic in crop protection in recent years. 

However, the current application of various deep 
learning models in the field of rice disease identification 
has yet to achieve the goal of accurately identifying rice 
leaf diseases. The main research challenge is to identify 
multiple categories of rice disease with high accuracy.  In 
addition, publicly available rice disease identification 
datasets are rare and there is limited data for model training 
and testing. The inadequacy of training samples can make 
it difficult to train an accurate model. Moreover, images 
taken in the rice field often suffer from non-uniform 
environmental backgrounds and multiple leaves can be 
taken in a single image. These pose challenges to leaf 
disease identification tasks. When taking images, lighting 
conditions, camera hardware, and parameter settings of 
cameras lead to differences in clarity, brightness, and 
sharpness of captured images. These variations in image 
quality can make it difficult for deep-learning models to 
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identify and learn features effectively. Furthermore, 
several diseases may be present on a single rice leaf, which 
can cause further complications. 

Our study proposes a new convolutional neural network 
(CNN) model for rice leaf disease identification to tackle 
these research difficulties and challenges. We also tested 
the model on the rice leaf disease identification dataset to 
evaluate its performance. The main contributions of our 
study are: 

(1) We proposed a new CNN model, called ECA-
ConvNeXt, for rice leaf disease identification. The 
proposed model can improve diseased rice leaves' 
classification and identification accuracy in complex 
backgrounds.  

(2) We constructed a dataset using public datasets 
combined with manual annotation. Seven types of rice 
leaves were included in the dataset. These are Healthy, 
Hispa, Brown Spot, Leaf Blast, Bacterial Blight, Bacterial 
Leaf Streak, and Sheath Blight. 

The rest of the article is organized as follows: Section II 
describes the applications related to CNNs and transfer 
learning methods in rice disease identification. Section III 
provides a detailed description of the dataset acquisition 
and building process. Section IV presents the network 
structure of ECA-ConvNeXt, including the ECA module 
and fine-tuning method. Section V presents the 
performance evaluation of the ECA-ConvNeXt model and 
the comparison with the state-of-the-art (SOTA) models. 
Section VI discusses the limitations of our current study 
and suggests future research. Section VII summarizes our 
study. 

2. Related Work 

2.1 Convolutional Neural Networks on Crop 
Disease Identification 

Deep learning methods based on CNNs have been 
widely used in crop disease identification in recent years. 
Gupta et al. [5] introduced a CNN-based deep learning 
classification model using the ADAM optimizer to train 
their model and test the optimal input size of images. Their 
experimental results showed that when the image input size 
was 512×512 pixels, the classification accuracy of four 
categories of diseased rice leaves reached 92.83%. Deng et 
al. [6] selected DenseNet-121, SE-ResNet-50, and 
ResNeSt-50 as sub-models to construct a recognition 
model by integrated learning, which minimized the 
confusion between different types of diseased leaf images. 
The accuracy of the integrated model for classifying six 
different rice disease images was up to 91%. Haridasan et 
al. [7] used image segmentation techniques to determine 
the diseased parts of rice leaves, incorporating a support 
vector machine (SVM) and a CNN. The experimental 
results indicated that the model's accuracy for classifying 

five types of diseased rice leaves reached 91.45%, 
alleviating the disease control problem in Indian rice fields. 
These studies show that CNNs have been widely applied to 
rice disease identification and have yielded many successes. 
However, there is still room to improve identification 
accuracy and increase the number of categories for disease 
identification. 

2.2 Transfer Learning for Rice Disease 
Identification 

Building a deep learning model for rice disease 
classification and identification requires enormous time 
and computational resources. Using transfer learning 
methods to obtain prior knowledge from trained models 
and transfer them to the training of rice disease 
identification models can improve the training speed and 
cope with the problem of limited diseased rice leaf images. 
Narmadha et al. [8] proposed a new deep learning-based 
rice disease diagnosis model DenseNet169-MLP. Their 
method utilized DenseNet-169 for transfer learning and 
replaced the fully connected layer of the DenseNet model 
with an MLP (Multi-Layer Perceptron) to achieve rice 
disease classification using the extracted features. The 
experimental results showed that the classification 
accuracy of DenseNet169-MLP for three different 
categories of rice diseases was 97.68%. Chen et al. [3] 
proposed a deep learning framework DENS-INCEP for 
rice disease identification. The proposed method combined 
pre-trained DenseNet on ImageNet with the Inception 
module for transfer learning and introduced the focal loss 
function to enhance the learning capability of tiny lesion 
features. The experimental results showed that the 
accuracy of DENS-INCEP for identifying three different 
categories of rice diseases in the public dataset UCI [9] was 
94.07%. Latif et al. [10] proposed a deep convolutional 
neural network (DCNN) based transfer learning method 
using VGG19 to extract features and perform feature 
downscaling to complete the classification of rice diseases 
with fine-tuning. Their experimental results indicated that 
this model could accurately detect and diagnose six 
different categories of rice leaf diseases with the highest 
average accuracy of 96.08%. These studies show that 
applying transfer learning methods to rice disease 
identification models effectively improves accuracy.  

Given that there is still room to boost the performance 
of rice disease identification, our study proposes the ECA-
ConvNeXt rice leaf disease identification model based on 
the latest convolutional neural network ConvNeXt [11]. 
Our results show that the ECA-ConvNeXt model can 
complete the accurate identification of rice leaf diseases in 
seven categories with only a slight increase in model 
parameters and computational costs. 
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3. Dataset Collection and Construction 
To build a practical and extensive rice leaf disease 

identification model, we investigated a variety of rice 
diseases and selected six categories of typical and common 
rice leaf diseases and healthy rice leaves to build the 
identification dataset. The dataset contains 4523 raw 
images and their disease category labels. This section 
introduces the process of data annotation and data 
augmentation in detail. 

3.1 Image Dataset Collection 
There are few publicly available rice leaf disease 

datasets on the Internet. The experimental data for this 
study are mainly collected from the Internet, public dataset 
Rice Leaf Disease Image Samples [12], and relevant rice 
leaf disease images and labels provided by Kaggle 
(https://www.kaggle.com). The dataset contains a variety 
of rice leaves and the images in the dataset were taken 
under different lighting conditions and at different camera 
angles. The central parts of the images are the diseased 
leaves, and the background parts of most images are the 
natural environment backgrounds with soil and ground. 
The dataset mainly consists of images with only one type 
of rice leaf diseases that appear on rice leaves. The 
collected data were further processed, and our research 
team members removed duplicated images and labels from 
different sources.  

The dataset contains six categories of rice leaf diseases 
and healthy rice leaves. Each leaf type has different 
morphological characteristics, as shown in Figure 1. 
Healthy leaves are bright, dark, and green, with smooth leaf 
edges and no spots in the leaves. Hispa leaves have white 
spots or white longitudinal streaks. In severe cases, the 
whole rice leaves wither, affecting the fruiting of the spike 
or even resulting in no fruits. Brown Spot appear on leaves 
as small oval spots, and the center of the spots is brown. 
Near the edge, there are different shades of yellow halo. 
When severe, the halos can be fused into large irregular 
spots. Leaf Blast appear on leaves as elliptical spots; the 
spots' edges appear brown, and the middle is gray-white. In 
humid environments, a gray-green mold layer may appear. 
Bacterial Blight appears on leaves as yellow-green or dark-
green spots in the early stage. Then, along the leaf veins, 
they quickly expand into stripes. Bacterial Leaf Streak 
appears on leaves as small and transparent dark brown 
spots. With the spread of this disease, the spot area 
gradually becomes more visible. Sheath Blight appears on 
leaves as dark green spots, and they later expand to oval 
shapes. Often multiple spots are fused into a large pattern. 
In dry conditions, the edge of the spot is brown, and the 
center appears straw yellow to gray. 

The exact construction process of the rice leaf disease 
identification dataset is as follows: 

(1) Dataset preparation and annotation: we combined the 
data from the Internet and other publicly available datasets 
for data aggregation. Under the guidance of plant 
protection experts, the researchers annotated and checked 
the images and labels to avoid labeling errors and to 
remove duplicated images. 

(2) Dataset splitting: using random seeds, we split the 
image samples of each category into a training dataset, a 
validation dataset, and a testing dataset in a ratio of 6:2:2 
to form the experimental dataset. 

 
 
Figure 1: The dataset contains seven types of leaves, including 
healthy rice leaves and six types of diseased leaves. (a) Healthy 
Leaf is bright green without diseased spots. (b) Hispa appears 
on leaves as white spot-like stripes. (c) Brown Spot appears on 
leaves as a central brownish spot surrounded by a yellow halo 
near the margin. (d) Leaf Blast appears on leaves as a brown 
border and grayish-white and elliptical spots in the center. (e) 
Bacterial Blight appears on leaves as white spots, expands 
along the leaf, and forms stripes.  (f) Bacterial Leaf Streak 
appears on leaves as a dark yellow water-stained spot. (g) 
Sheath Blight appears on leaves as brown edges and a yellow 
straw center. 
 

 
Figure 2: Image pre-processing results. (a) An original image 
in the training dataset with a size of 326×240. (b) The image is 
randomly cropped to a size of 150×230. (c) The image is scaled 
to the fixed size of 224×224. (d) An original image in the 
validation and testing dataset with a size of 220×277. (e) The 
image is scaled to 256 pixels on the short edge with a size of 
256×322. (f) The image is cropped in the center to the fixed 
size of 224×224. 

6237



(3) Data augmentation: after the dataset was split, the 
images and their labels in the training dataset, validation 
dataset, and testing dataset were augmented in different 
ways to balance the dataset based on the existing 
distribution of the images corresponding to their types. 

3.2 Data Augmentation and Pre-processing 
Data augmentation is an effective method to expand the 

dataset size, and increasing the dataset size is beneficial to 
improve the generality of a trained model. We performed 
data augmentation operations, including "Double flip", 
"Rotate 120", "Rotate 60", "Horizontal flip", and "Vertical 
flip" by OpenCV on the dataset based on the number of 
leaves from different categories to complete the 
construction of the rice leaf disease identification dataset. 
The number of images in the training, validation, and 
testing dataset for different types of leaves is shown in 
Table 1. 

To improve the generality of the rice leaf disease 
identification model, we converted images of arbitrary 
sizes into a fixed size of 224×224 as the model input. 
Specifically, the images in the training dataset were 
cropped randomly to different sizes and aspect ratios and 
then scaled to a fixed size of 224×224. The images in the 
validation and testing dataset were scaled to 256 pixels on 
their short edge and then cropped in the center to have 
images of a fixed size of 224×224. The details in the pre-
processing can be seen in Figure 2. The last step is the 
normalization transform, which normalizes the tensor 
image by the mean and the standard deviation from the 
ImageNet dataset. The calculation is as in equation (1): 

 outputሾchannelሿ ൌ inputሾchannelሿ − meanሾchannelሿstdሾchannelሿ    ሺ1ሻ 
 

where std[channel] denotes the standard deviation of the 
channel. The values of the mean and the standard deviation 
are [0.485, 0.456, 0.406] and [0.229, 0.224, 0.225]. The 
normalization transform can alleviate the gradient 
disappearance phenomenon during training, improve the 
learning speed and reduce the dependency of model 
training on initialization. 

4. Methods 
In this section, we present the ECA-ConvNeXt in detail. 

The proposed ECA-ConvNeXt is a CNN architecture for 
identifying six types of rice leaf diseases and healthy rice 
leaves based on the ConvNeXt network. We used the ECA 
attention module, which makes an appropriate 
modification to the intersection part of the convolutional 
layers and fully connected layers, to improve the model's 
feature extraction capability. We also adopted the fine-
tuning approach of transfer learning to improve the training 
efficiency and reduce the time cost. We next introduce the 
modules of the proposed architecture, as shown in Figure 
3. 

4.1 Overview of the ECA-ConvNeXt Network 
The architecture of ECA-ConvNeXt can be divided into 

five stages, and the size of the baseline model determines 
the number of ConvNeXt blocks in each stage. The block 
composition of the rice leaf disease identification model is 
(3,3,27,3), which is called ECA-ConvNeXt_Base, in our 
study. We added the ECA module between the 
convolutional layers and the global average pooling layer 
(in Figure 5) to improve the channel attention mechanism 
of the model, further extract the feature information of the 
images, and adjust the weight settings of the feature and 
non-feature channels. Model training adopts the transfer 

 

Figure 3: The architecture of ECA-ConvNeXt. The 
ConvNeXt network is divided into five stages. Each 
stage is in a different color. The ECA attention modules 
are added to follow all convolutional layers. The final 
output is processed by a global average pooling layer 
and a fully connected layer. The output of the network 
is a seven-dimensional vector that denotes the predicted 
probabilities of seven types. 
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learning method, fine-tuning (in Figure 6). The pre-training 
weights, completed by ConvNeXt_Base training on 
ImageNet-1K, are set as the initialization weights of the 
rice leaf disease identification model to reduce the training 
costs and improve the model performance. 

The main framework of ConvNeXt is based on 
ResNet50/ResNet200, which is inspired by the Swin 
Transformer [13]. Liu et al. [11] tested the limits of the 
pure ConvNets and proposed several vital components to 
construct and improve the ConvNeXt network. The 
network was also trained and evaluated on ImageNet-1K 
to complete the network structure of ConvNeXt. 
ConvNeXt adjusts the ratio of blocks of each stage to 
1:1:3:1 and finally obtains the block ratio as (3,3,9,3), 
which increases the number of parameters of the model. 
For larger scale models, the number of blocks is further 
boosted to (3,3,27,3). ConvNeXt also introduces the idea 
of group convolution, replacing 3×3 convolution with 3×3 
group convolution.  

Meanwhile, ConvNeXt learns from ResNeXt [14] and 
adds an inverted bottleneck to the network structure. To 
accommodate larger kernel sizes, the depth-wise 
convolution of the inverted bottleneck layer is shifted up 
by one layer, and the detailed structure is shown in Figure 
4. Finally, the detailed modules of the network, such as 

activation functions and batch normalization, are further 
optimized to form the ConvNeXt network structure. 

4.2 ECA Module 
The images containing diseased leaves are input to the 

rice leaf disease identification model. Most distinctions in 
appearances between different types of diseased rice leaves 
are from the diseased spot areas. Therefore, we added a 
channel attention mechanism following the convolutional 
layers to improve the model's identification performance. 
The attention mechanism can target particular parts of the 
data and assign different weights to different input 
components to filter out the significant parts among a large 
amount of information.  

The classical channel attention module is SENet, whose 
critical operations are the squeeze and the excitation 
operations. It works by obtaining the importance of each 
channel of the feature map through the SE module and then 
using it as a criterion to assign weights to each feature so 
that the neural network can focus on the feature channels 
[15]. The core idea is to automatically learn feature weights 
through fully connected networks and data losses to 
increase the effective feature channel weights. 

Wang et al. [16] argue that the dimensionality reduction 
operation in the SE module can negatively affect the 
channel attention mechanism, and capturing the 
dependencies among all channels is also ineffective. Thus, 
the ECA module uses 1×1 convolutional layers directly 
following the global average pooling layer and removes the 
fully connected layers to avoid dimensionality reduction. 
The ECA module effectively captures cross-channel 
interactions and involves only a few parameters to achieve 
good results. The structural changes of the ECA module to 
the SE module are shown in Figure 5. An adaptive equation 
determines the size of the convolution kernel as in (2): 𝑘 ൌ ฬ𝑙𝑜𝑔ଶ 𝐶𝛾 ൅ 𝑏𝛾ฬ（2）      
where 𝑘 denotes the kernel size and 𝐶 denotes the channel 
dimension. 𝛾 and 𝑏 are set to 2 and 1, respectively.  

4.3 Fine-tuning 
To improve the effectiveness and performance of the 

rice leaf disease identification model, fine-tuning was used 
in the training process of the ECA-ConvNeXt. Sharing the 
relevant model parameters that have been trained on large-
scale datasets to the current model can improve learning 
efficiency and reduce training costs. The fine-tuning 
method facilitates the learning of parameters by freezing 
the convolutional layers of the pre-trained model that are 
used to extract generic features to update the remaining 
convolutional layers and fully connected layers [17]. Its 

Name Training Validation Testing 
Healthy 864 95 96 
Hispa 729 80 81 

Brown Spot 834 92 93 
Leaf Blast 699 77 78 

Bacterial Blight 261 28 29 
Bacterial Leaf Streak 168 27 27 

Sheath Blight 126 18 21 
Table 1: Distribution of rice leaf disease images in the dataset 

 

 
Figure 4: The inverted bottleneck of ConvNeXt and the 
associated network architecture. (a) In the bottleneck layer of 
ResNeXt, the depth-wise separable convolution is in the middle 
layer, and the input and output values are larger than the 
intermediate values.  (b) Improved inverted bottleneck layer, with 
the depth-wise separable convolution still in the middle layer, and 
the input and output values are smaller than the intermediate 
values. (c) The inverted bottleneck of ConvNeXt, where the 
depth-wise separable convolution is moved up, and the input and 
output values are still smaller than the intermediate values. 
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specific structure is shown in Figure 6, and we only needed 
a small learning rate and a small number of training epochs 
to achieve a good training performance. 

5. Experiments and Analyses 
This section describes and analyzes the experimental 

process of the rice leaf disease identification model in 
detail and compares the experimental results with other 
SOTA models. 

5.1 Experimental Setup  
The experiments of the model were conducted using a 

high-performance computer (HPC) with the Ubuntu 20.04 
LTS operating system. The HPC is equipped with seven 
Nvidia RTX3090s, each with a memory size of 24 GB, thus 
having a total video memory of 168 GB. The details of the 
HPC are shown in Table 2. Pytorch 1.12 was used to 
implement the proposed method. 

To avoid overfitting during model training, the model 
parameters are divided into two parts: weights and bias. 
The decay operation was only applied to weights, thus 
regulating the effect of model complexity on the loss 
function [18]. In addition, we chose AdamW as the 
optimizer for ECA-ConvNeXt to get a better training result. 
To ensure the stability of the model, we used the warm-up 
method to select a small learning rate at the beginning of 
training for one epoch. After the learning rate was updated 
to a pre-set value, the model used the Cosine Learning Rate 
Decay method to adjust the learning rate. Due to the 
incorporation of the fine-tuning method, the required 
learning rate and the number of training epochs are both 
low. After experimental testing, the training epoch is 30, 
the initial learning rate is 2.5e-4, and the final learning rate 
is 1e-6. The learning rate of each epoch is determined 
jointly by the initial and final learning rate. We confirm 
that 30 epochs achieved the best accuracy on the testing 

 

Figure 5: Structure of the SE module and the 
ECA module. ECANet is an improved version 
of SENet. ECANet uses a one-dimensional 
convolutional layer directly following Global 
Average Pooling (GAP) and removes the fully 
connected layer in SENet. 

 
Figure 6: Structure of the fine-tuning approach. The model 
parameters for extracting generic features trained on the source 
dataset are frozen, and the unfrozen parameters are re-trained on 
the target dataset for optimization. The fully connected layer is 
adjusted based on the number of classification categories. 
 
 

 
Figure 7: Learning rate variation. The learning rate changes 
continuously as the epoch increases, the first epoch is the warm-
up phase, and the learning rate is tiny. From the second epoch, 
the learning rate is adjusted to the pre-set value (2.5e-4), and the 
learning rate is constantly changed based on the Cosine 
Learning Rate Decay method. The final learning rate was close 
to 1e-6. 
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dataset with an accuracy of 94.82%. The rule to update the 
learning rate is shown in Figure 7, and other training 
parameters are set in Table 3. 

5.2 Evaluation Metrics 
We evaluated the model using the metrics that included 

Accuracy, Precision, Recall, and F1-Score, commonly 
used to evaluate models for classification tasks. Accuracy = TP + TNTP + FP + FN + TN 

Precision = TPTP + FP 

Recall = TPTP + FN 

F1 − Score = 2 × Precision × RecallPrecision＋Recall 
where TP denotes True Positive, TN denotes True 
Negative, FP denotes False Positive, and FN denotes False 
Negative. Accuracy is the most commonly used metric in 
classification performance evaluation. It intuitively reflects 
the model's classification performance. F1-Score evaluates 
the model more comprehensively by considering both the 
Precision and Recall of the model. 

5.3 Performance of ECA-ConvNeXt 
Our experimental results showed that the ECA-

ConvNeXt achieved a better classification performance to 
identify six types of typical rice leaf diseases and healthy 
rice leaves than other SOTA models on the testing dataset, 
which contains 425 images. ECA-ConvNeXt achieved 
94.82% for Accuracy, 94.47% for Precision, 94.31% for 
Recall, and 94.33% for F1-Score. The Precision, Recall, 
and F1-Score of the seven categories of rice leaf disease 
identification results in the testing dataset are shown in 
Table 4. Meanwhile, the confusion matrix of the testing 
dataset identification results is in Figure 8, which shows 
that the identification performance of ECA-ConvNeXt was 
the highest for Sheath Blight with an accuracy of 100% and 
the lowest for Bacterial Leaf Streak with an accuracy of 
85.2%. The accuracy values of Bacterial Blight, Brown 
Spot, Healthy, Hispa, and Leaf Blast were 93.1%, 98.9%, 
90.6%, 98.8% and 93.6%, respectively. 

Comparison experiments were conducted to further 
verify the effectiveness of the ECA-ConvNeXt model 
compared to other SOTA models in the classification 
domain. Table 5 compares the performance of four 
classification SOTA models on the rice leaf disease 
identification dataset. The results show that the ECA-
ConvNeXt model improves the classification Accuracy by 
4.2% and 1.6% compared to VGG-19 and VGG-16. The 
model also improves the classification Accuracy by 1.6% 
and 2.3% compared to that of ResNet-34 and ResNet-50. 

 
Figure 8: Confusion matrix of the identification results. The 
confusion matrix is normalized over the true (rows) condition 
for our proposed model. The horizontal axis represents the 
predicted classes and the vertical axis represents the true classes. 
Each cell element represents the proportion of the number of the 
predicted class to the total number of the true class. The diagonal 
elements represent correctly classified outcomes. All other 
elements represent incorrectly classified outcomes. 
 

Item Specification 

Central Processing Unit AMD EPYC 7543 32-Core 
Processor × 2 

Graphics Processing Unit Nvidia RTX3090 [PCIe 24GB] 
× 7 

Operating System Ubuntu 20.04 LTS 
Memory 560 GB 

Solid State Drive Storage 200 GB 
Programming Language Python 3.9 

Version of CUDA 11.4 
Deep Learning Framework PyTorch 1.12 

Table 2: Specification of the HPC 
 

Parameter Value 
Optimizer AdamW 
Batch Size 16 

Initial Learning Rate 2.5e-4 
Final Learning Rate 1e-6 
Weight Decay Rate 5e-1 

Table 3: Training parameter settings 
 

Type of Disease Precision Recall F1-Score 
Bacterial Blight 0.9000 0.9310 0.9153 

Bacterial Leaf Streak 0.8846 0.8519 0.8679 
Brown Spot 0.9020 0.9892 0.9436 

Healthy 0.9775 0.9063 0.9405 
Hispa 0.9756 0.9877 0.9816 

Leaf Blast 0.9733 0.9359 0.9542 
Sheath Blight 1.0000 1.0000 1.0000 

Average 0.9447 0.9431 0.9433 
Table 4: Precision, Recall, F1-Score, and their average for each 
type of leaf in the testing dataset. 
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5.4 Ablation Experiments and Analyses 
We designed ablation experiments to investigate the 

effects of the attention mechanism ECA module of the 
ConvNeXt network on improvements in Accuracy, 
Precision, Recall, and F1-Score using the same rice leaf 
disease identification dataset. The baseline model for this 
experiment is the ConvNeXt network with the fine-tuning 
method added. The training strategy, data pre-processing, 
and data augmentation methods were used in the ablation 
experiments. The experimental results of the ablation 
experiments are shown in Table 6. 

Adding the attention mechanism ECA module between 
the convolutional layers and the global average pooling 
layer of the network improves the feature extraction 
capability of the model with fewer model parameters, 
resulting in better classification performance. Accuracy 
was improved by 0.7% compared to the baseline model, 
while Precision, Recall, and F1-Score were also slightly 
improved by 0.28%, 0.17%, and 0.24%, respectively. 

6. Discussion 
Based on the characteristics of the rice leaf disease 

identification task, we used the ECA attention module and 
transfer learning to optimize the network structure. These 
approaches enabled the model to achieve a higher 
identification accuracy and a better performance in 
detecting six categories of typical rice leaf diseases and 
healthy rice leaves. However, in the production 
environment, the disease category of an individual rice 
leave may not be unique, which can vastly increase the 
difficulty of the model to perform the identification task 
and lead to the degradation of the model performance. In 
addition, it is not easy to obtain images with a constant size 
in the natural environment of farmland as agricultural 

workers may use different imaging devices or mobile 
phones to capture rice leaf images.  To deal with this 
problem, we proposed a pre-processing technique to resize 
images to a resolution of 224×224. This enables the model 
to take rice leaf images of different sizes as input. 

Furthermore, since there are quantitative variations in 
different types of images and Bacterial Leaf Streak and 
Sheath Blight are significantly fewer than other types of 
rice leaf images, we used different levels of data 
augmentation to process different categories of images to 
make the dataset balanced in terms of quantity distribution. 
For future research, we intend to develop a mobile 
application for labeling rice leaf images on the spot. 

In addition, we intend to expand the rice leaf disease 
identification dataset by manually collecting images of 
diseased rice leaves in the farmland. We released 3353 
sample images of the rice leaf disease identification dataset: 
https://www.kaggle.com/datasets/wangxiaoqii/rice-leaf-
disease-identification-dataset. The full dataset is available 
upon request. 

In terms of its utility, the ECA-ConvNeXt architecture 
can fit into modern agricultural production environments 
driven by IoT (Internet of Things) and big data. With the 
images captured by cameras in the field, we can quickly 
identify rice leaf diseases and establish a monitoring 
system for disease control in agricultural production. 
Nevertheless, the widespread use of the rice leaf disease 
identification model based on ECA-ConvNeXt and other 
deep learning models in the future would require 
infrastructure and hardware, which would incur economic 
costs. 

7. Conclusion 
This paper proposes the ECA-ConvNeXt model based 

on the latest CNN network ConvNeXt to identify six 
categories of typical rice leaf diseases and healthy rice 
leaves.  We constructed the rice leaf disease identification 
dataset that contains real-world images. The ECA-
ConvNeXt model improves the identification accuracy and 
the training performance by fine-tuning, introducing the 
ECA module, and other effective methods. The accuracy 
of the model is better than other SOTA methods. Applying 
the ECA-ConvNeXt model in rice cultivation can 
potentially decrease yield reductions and economic losses. 
Based on the similarities of diagnostic methods for 
diseased leaves of different crops, the proposed model has 
broad application prospects and can be extended to disease 
identification of other crops. 
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