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Abstract

Unmanned Aerial Vehicle (UAV) detection in the wild
is a challenging task due to the presence of background
noise and the varying size of the object. To address these
obstacles, we propose a novel learning framework for ro-
bust UAV detectors, which we call Difference-based Multi-
scale Learning (DML). We argue that motion information
matters in UAV detection because of the low recognition
in one frame. Our method utilizes the frame difference
of multiple previous frames, extracting motion informa-
tion and blocking background noise. We also fuse mul-
tiple spatial-temporal scales for training and inferencing,
enabling fusion from different sources. In addition, to bet-
ter evaluate the performance of UAV detection in different
scales, we propose Multi-Scale Average Precision (MSAP)
metric to aggregate the detection accuracy over multiple
scales. Through extensive experiments, we demonstrate that
our proposed approach improves the detection accuracy of
baseline models. Notably, we achieve SOTA performance in
the 3rd Anti-UAV Challenge, with 2nd place in Track 2 and
4th place in Track 1.

1. Introduction

Unmanned Aerial Vehicles (UAVs), commonly known
as drones, have become increasingly prevalent in various
civil applications [29,40] due to their flexibility, affordabil-
ity, and popularity. However, the potential threat [17,42]
they pose to public safety cannot be ignored. UAVs have
been used to conduct physical and cyber-attacks and can
also violate aviation safety regulations, causing disruptions
and economic losses for airlines. In this regard, developing
anti-UAV techniques has become a crucial research direc-
tion. While radar technology has effectively detected tra-

IThis work is supported by NSFC (Grant No.: U2001209, 61902076)
and Natural Science Foundation of Shanghai (21ZR1406600).
* Corresponding author: Bo Yan.

Diff3
80
DIff3
Diff2
78 A
764 ¢ Diffl
9
z
© 74
3 Performance
< . VS.
Spatial-Temporal
l Scales
70 i
. IO —8— Scalel
Diffo Scale3
68 1@ Diff0 ofjmm——m— Baseline Model —8— Scale5
0 50 100 150 200 250 300
Time(ms)

Figure 1. Performance comparison with different spatial-temporal
scales. The baseline model is YOLOvVS. Diff means the number
of frame differences, i.e. temporal scales. Scale means the num-
ber of spatial scales. The performance improves significantly with
spatial-temporal scales, especially when Diff changes from 0 to 1.

ditional airborne threats, it faces significant challenges in
detecting small UAVs due to their low radar cross-sections,
erratic flight paths, and low flight altitudes. In contrast,
RGB [8,21] and infrared sensors [ 1,36] are well-adopted for
small object detection. Compared to RGB sensors, thermal
infrared(TIR) sensors are better under extreme conditions,
especially for low-light scenes or poor weather.

Recently computer vision and machine learning algo-
rithms have emerged as promising tools for UAV detection
and tracking in TIR [6,28,41]. However, two primary chal-
lenges remain, background noise and varying target sizes.
Background noise can significantly reduce the detection ac-
curacy of UAVs, as it can create false positives and in-
terfere with the detection model. In addition, the varying
sizes of UAVs can make them difficult to detect, especially
for traditional detection methods that rely on fixed-size pri-
ors. Previous works on UAV tracking have highly relied on
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Figure 2. A conceptual overview of our proposed method. (a) We use differences from multiple frames as input for the detection model.
It makes the detector aware of the motion information. (b) Our model learns with multiple temporal and spatial scales. Fusing different

scales will enhance the detector and make it robust to complex scenes.

templates [15, 16,43], which can be limited in their effec-
tiveness in challenging scenarios with occlusion, noise, and
varying object sizes.

We argue that a robust detector should adapt to UAV ap-
pearance, motion, and size changes, be robust to occlusions
and background noises, and enable the system for more ac-
curate and reliable detection and tracking. To address the
problem, we propose a novel learning framework for robust
UAV detectors, which we call Difference-based Multi-scale
Learning (DML), as shown in Fig. 2.

We propose multi-frame differencing to utilize the mo-
tion information in a video sequence. Since the drones
are small and have low recognition in noisy backgrounds,
more than learning on single frames is needed for robust
detection. Frame differencing is commonly used in mo-
tion detection [2, 35]. However, the motion information be-
tween two frames may be limited, and the moving speed of
UAVs is diverse. To address this limitation, we use multi-
ple frames for differencing and enhancing the detection of
both slow-moving and fast-moving UAVs. It subtracts the
current frame’s pixel values from the previous frames’ pixel
values and highlights the areas where motion has occurred.

We also propose to fuse multiple spatial-temporal scales
to improve the detection of objects that vary in size and mo-
tion. In the case of UAV detection, the size of the UAV
can be significantly different across video frames. There-
fore a robust detector needs to be able to handle this varia-
tion. Aggregating the detection from different scales makes
the detector aware of different speeds and sizes.

To better evaluate UAV detection over diverse sizes, we
propose multi-scale average precision (MSAP). Existing
single-class mAP or IoU [42] are not appropriate for UAV's
because the difficulty is different for different sizes. There-
fore, MSAP calculates the detection accuracy over multiple
scales. Moreover, we emphasize the accuracy of small ob-
jects, which will better reflect real-world performance.

Finally, we develop our method on the 3rd Anti-UAV

Challenge Dataset, which enlarges the dataset from previ-
ous Anti-UAV competitions [17,42]. As shown in Fig. 1,
extensive experiments demonstrate that our method can sig-
nificantly improve the accuracy and achieve state-of-the-art
performance on the test set. Notably, our model achieved
SOTA performance on the dataset and took 2nd place in
the Anti-UAV Detection & Tracking track (Track2) and 4th
place in the Anti-UAV Tracking track (Track1). Our contri-
butions can be summarized as follows:

1. We develop a novel learning framework for robust
UAV detectors, which we call Difference-based Multi-
scale Learning (DML). It uses information from mul-
tiple spatial-temporal scales to enhance the perception
of the detectors.

2. We propose multi-frame differencing to extract motion
information from previous frames, which can improve
detection accuracy under challenging scenes with oc-
clusion and noise. Moreover, we integrate multiple
spatial scales to utilize multiple resolutions, allowing
it to detect objects of diverse sizes.

3. We propose a scale-aware metric for UAV detection,
which can better evaluate the performance of different
sizes of UAVs.

2. Related Work
2.1. Object Detection

Object detection is identifying and locating the presence
of objects of interest in an image or video. There are sev-
eral approaches to object detection, including traditional
methods, machine learning, and deep learning. The tra-
ditional approach [7, 26] usually has three stages: infor-
mative region selection, feature extraction, and classifica-
tion of the object. Machine learning and deep learning
approaches automate these stages by training with anno-
tated data. Deep object detection models can be catego-
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rized into two branches: two-staged detectors, represented
by RCNN [12] and Mask R-CNN [13], and one-stage detec-
tors, represented by YOLO [31] and SSD [24]. In general,
two-stage methods are more accurate than one-stage meth-
ods because they explicitly use the Rol Align operation to
align an object’s features. However, the recent one-stage
detectors [10, 37] have narrowed the performance gap and
have faster inferencing speed. We implement our approach
based on the well-adopted YOLOVS5 to show our effective-
ness.

2.2. Small Object Detection

Small object detection is a subfield of object detection
that focuses on detecting small objects in an image or video
feed. Identifying small objects is challenging because small
objects often move fast, are occluded by other objects, or
have low contrast. It is difficult to locate small objects, espe-
cially in a noisy background. There are several techniques
used in small object detection. Some of these techniques
include increasing image resolution [3, 9], augmenting in-
put data [19,24], introducing context information [4,5], and
scale-aware training [22, 25, 39]. Our approach fuses the
large-range spatial and temporal information for training
and inferencing for a given detector, excellently improving
the accuracy.

2.3. Infrared Object Detection

Infrared object detection involves detecting objects in an
image or video using infrared radiation. Due to the intrinsic
of infrared images, the targets usually have a low signal-
to-noise ratio and low contrast in a heavily noisy back-
ground, which is challenging to detect. Deep learning meth-
ods have prevailed in recent works for learning from a large
amount of data covering complex scenes. TIRNet [6] adopt
a VGG [34] network in a end-to-end manner. Mclntosh et
al. [28] builds a target-to-clutter network based on Faster-
RCNN [11] and Yolo-v3 [32]. ISNet [41] uses a U-Net [33
structure with edge-aware blocks to leverage the edge as a
critical feature. However, UAVs differ from other objects in
that UAVs are small, and fast-moving, so temporal informa-
tion is critical in UAV detection and tracking [15,43]. Our
approach uses multi-frame differences to reduce the noise
and introduce moving traces.

3. Methodology
3.1. Revisiting Infrared UAV Detection

Infrared images are well-used to detect UAV's due to their
ability to detect heat signatures. However, there are several
challenges in anti-UAV detection in infrared images. As
shown in Fig. 3(a), one of the challenges is the varying size
of the UAV. [30] Small UAVs, in particular, are challeng-
ing to detect due to their low visibility and limited feature
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Figure 3. Two main challenges in UAV detection. (a) The drone
may fly away from the camera, and its size is drastically changing.
(b) Backgrounds such as trees, clouds, and buildings are common
distractions that make the drone less recognizable.

information. At the same time, huge targets are challeng-
ing to detect. Because most of the UAV data are focused on
smaller scales and some model architectures, like YOLOVS,
are based on fixed anchors, the confidence level of huge tar-
gets is low.

Another challenge is the low contrast between the UAV
and the background, which makes it difficult to detect the
UAV in the noisy background. Fig. 3(b) demonstrates the
drone in a complex background, such as a building, with
very low recognition. It is tough to distinguish the drone’s
position by just a single image. Additionally, the UAV’s
shape, orientation, speed, and altitude can also affect the
detection performance.

The general detectors like YOLO [31] failed to address
the previous problems since the limited ability in spatial
and temporal scale awareness. Previous anti-UAV mod-
els [20,25] focus on multiple spatial scale learning for small
UAVs. However, the motion also matters for small object
learning. Due to the background noise and low visibility for
small UAVs, it is hard to detect with only the spatial infor-
mation. Recent work on UAV tracking [ 5] also introduces
a change detection-based correlation filter which enhances
the features with motion information and achieves excellent
performance. Therefore, we emphasize the motion infor-
mation to be as the same important as spatial information.

3.2. Framework Overview

We introduce difference-based multi-scale learning for
infrared UAV detection. As shown in Fig. 2, the difference
here refers to frame differences, including motion informa-
tion from previous frames. Multi-scale refers to multiple
spatial and temporal scales. Our method is a plug-and-play
framework for different detectors. Fig. 4 shows the detailed
training and inferencing procedures. We use the popular
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Figure 5. Visualization of multiple temporal scales. We show two
examples of tiny targets and noisy backgrounds separately. The
features are extracted from the third conclusion layer.

detector YOLOVS as our base model.

For the training process, we randomly apply spatial and
temporal scales for training and expand the infrared input
(1 channel) to 3 channels. For the inferencing process, the
input is multiplied (T'emporal Scales x Spatial Scales)
times for augmentation. Then all scales of inputs are fed
into the detector to generate output anchors. Finally, we
filter anchors with Non-Maximum Suppression(NMS) and
select the most confident one for output.

3.3. Multi-frame Differencing

Temporal information is essential in small object detec-
tion, especially for infrared drones. Because of the UAV’s
small size and fast motion, the IR background has signif-
icant background noise and more occlusions in the com-
plex background. The frame difference method is the clas-

sical algorithm to remove background noise and extract mo-
tion information. Multi-frame frame difference can improve
UAV detection because it can adapt to different motion am-
plitudes of UAVs.

Fig. 2(a) shows the generation of multi-frame differ-
ences. Since only previous frames can be utilized in a UAV
detection pipeline for streaming videos, our frame differ-
ences are calculated with the following formula:

Diffi=1 —I1;; (D

where Dif f; is the frame difference for previous i — th
frame of time ¢. We feed the frame difference as input to the
network with the original image and propose a fusion for
frame difference input. The augmented inputs TAug, (I;)
can be expressed as follows:

TAug,(L;) = [Iy, Dif fi, Canny(Dif fi)]  (2)

where Dif f can be selected from different time intervals
1. The input includes the original image, frame difference,
and edge as the three channels, and the edge is extracted
from the frame difference by the Canny operator. According
to [41], infrared images have noisy backgrounds, and the
edge information can be more accurately localized for small
objects. Therefore, we include canny edges as a part of the
input.

Fig. 5 demonstrates the effectiveness of the multi-frame
differencing. We visualize the features of the convolution
layers with the detection results. With no differencing, the
detector suffers from background noise and fails to have a
confident prediction. With more temporal information, even
slow-moving small objects can also be detected.

3.4. Fusing Multiple Spatial-Temporal Scales

Exploiting spatial information is also a critical technique
for small object detection. The tiny object has features of
low recognition, and huge objects are also hard to detect for
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Figure 6. Visualization of multiple spatial scales. We show two
examples of tiny targets and large targets separately. The features
are extracted from the third convolution layer.

detectors with fixed anchors and trained on a dataset full
of small objects. The multi-scale information is widely ap-
plied to detection, such as feature extraction in FPN [23]
and anchors in YOLO [32]. We here combine multi-spatial
scales with multi-temporal scales to enhance the perceptual
capability of the network. As shown in the figure, we used
joint enhancement during training and testing. During train-
ing, our spatiotemporal augmented input can be represented
as:

STAug; ; = SAug;(TAug,(I})) 3)

where SAug; is the resolution scaling of j ratio. For exam-
ple, with a 640 x 512 input, the SAug, means we linearly
interpolate the input to 1280 x 1024.

For inferencing steps, we predict from all kinds of aug-
mented input, do Non-maximum Suppression(NMS) for all
anchors, and select the bounding box with the highest score.
The prediction process can be expressed as follows:

P =NMS || JF(STAug, ;(1)) @)

,J

where F is the detection model which will generate the pre-
dicted anchors. The final prediction P is produced by doing
NMS over the union of all temporal scale 7 and spatial scale
J.

Fig. 6 demonstrates how spatial scales affect perfor-
mance. For tiny objects, the low-resolution images such as
0.5x and 1x resolution, the features are noisy, and the de-
tections are not confident. Due to the dataset’s bias for small
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Figure 7. Height and width distribution. UAVs are usually small
in height and width, and vary in scale and height-width ratio.

Dataset Small Medium Large  Total
Train 85,087 60,203 18,134 163,424
Validation 29,492 18,518 4,702 52,712

Table 1. Statistics of the 3rd Anti-UAV Challenge Dataset. Small
drones have a height or width of under 0.025 ratios of the image;
medium drones are under 0.05 and above 0.025; large drones are
above 0.05.

objects, the high-resolution input will have low-recognition
features for huge objects. We can achieve robust detection
with multiple scales.

3.5. Multi-scale Evaluation

Fig. 7 shows the distribution and correlation of drone
sizes in the 3rd Anti-UAV Challenge training set. The size
of the drones varies very much, from a few pixels to more
than a hundred pixels (0.01 to 0.1 of the original image size)
exist, so it is not reasonable to use a uniform evaluation in-
dex. Moreover, most drones are of small sizes, which we
need to pay more attention to. However, existing single-
class metrics are not appropriate for general UAV detection
because the size of UAVs is variable. Moreover, the diffi-
culty is different for different sizes of UAVs, resulting in a
large gap between the metrics and the real-world detection
performance.

We propose the multi-scale average precision (MSAP)
metric, which integrates the detection accuracy above mul-
tiple scales. Specifically, we divide the UAV into multiple
scales based on the proportion of the UAV to the whole im-
age and then calculate the average precision (AP) separately
for the results of UAV detection before weighting the aver-
age. The input is from a single class of UAVs, and the out-
put is a multi-scale integrated evaluation index. The metric
can be expressed as a harmonic mean of the average preci-
sion of 3 scales:

3

MSAP = 45—
ap. T ap, T 4p

&)

where AP;, AP,,, and AP, indicate the average precision
at 0.5 IoU for small, medium, and large UAVs. We set large
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Time Space | Precision Recall AP50 AP9S | Small Medium Large MSAP | Accuracy | Time(ms)
0x 1x 0.847 0.727 0.801 0471 | 0.512 0.928 0963  0.737 0.679 16.7
0x 3x 0.877 0.735 0.814 0471 | 0.546 0.931 0965 0.761 0.689 69.9
0x 5x 0.883 0.742 0.817 0477 | 0.549 0.934 0.968 0.764 0.697 93.5
1x 1x 0.868 0.75 0.816 0.483 | 0.546 0.929 0974  0.762 0.759 17.1
Ix 3x 0.897 0.778 0.843 0.485 | 0.626 0.932 0971  0.811 0.780 73.3
1x 5x 0.898 0.782 0.846 0.489 | 0.631 0.935 0.972  0.815 0.785 98.9
2x 1x 0.87 0.763 0.823 0.485 | 0.561 0.935 0974  0.773 0.782 333
2x 3x 0.897 0.786 0.846 0.484 | 0.630 0.936 0971 0.814 0.795 119
2x 5x 0.898 0.791 0.85 0.489 | 0.637 0.940 0.972  0.819 0.799 186.8
3x 1x 0.872 0.766  0.826 0.485 | 0.566 0.937 0.975  0.777 0.792 47.5
3x 3x 0.896 0.79 0.846 0.483 | 0.630 0.938 0971 0.814 0.799 182
3x S5x 0.899 0.794 0.85 0.489 | 0.637 0.942 0.973  0.820 0.803 268.2

Table 2. Evaluation on different spatial and temporal scales. The first row indicates the YOLOVS baseline model. Temporal Ox means
no frame difference is used, and Temporal 1 means only one frame difference is used. Temporal 2x and 3x will run the detection for 2
and 3 frame difference inputs for generating final results. Spatial 1x use only the original resolution which is 640 x 512. And Spatial 2x
use [0.5,1,2] resolution ratio for inference, and Spatial 3x use [0.5,0.75,1,1.5,2] with [0.75,1.5] flipped left-right. Small, Medium, Large

indicate the AP of the specified size of the drones. Bold texts indicate the best results of the same temporal scale.

objects for sizes > (.05 of the image, medium objects for
sizes 0.05 to 0.025, and small objects for sizes < 0.025.
We show the detailed statistics of the training and validation
set of the 3rd Anti-UAV Challenge Dataset in Tab. 1. The
majority is the small drones which are more challenging to
detect. The harmonic mean gives more weight to smaller
items and less to larger items to balance the values.

4. Experiments
4.1. Experimental Settings

Dataset Details. The 3rd Anti-UAV dataset is a dataset
for discovering, detecting, recognizing, and tracking Un-
manned Aerial Vehicle (UAV) targets in the wild and simul-
taneously estimating the tracking states of the targets given
Thermal Infrared (TIR) videos. The dataset is used for the
Anti-UAV Challenge [17,42], a competition for developing
algorithms for detecting and tracking UAVs in the wild. The
dataset has been released in three subsets, the training sub-
set, the test subset for track 1, and the test subset for track
2. The training subset consists of 200 thermal infrared video
sequences and publishes detailed annotation files (whether
the target exists, the target location, and many environment
labels). The frame size is 640 x 512, and there are at most
1500 frames in a video. We adopt the official split of the
training set for the ablation study, which has 150 videos for
train and 50 for validation. Then we train our model on the
training and validation subset and test on tracks 1 and 2 for
submitting to the 3rd Anti-UAV Challenge.

Evaluation Metrics. Our evaluation metrics are divided
into three parts, first is the generic detection metrics, in-
cluding precision, recall, and average precision(AP); our

proposed multi-scale perception metric MSAP; Accuracy
(Acc) proposed by 3rd Anti-UAV Challenge. Accuracy is
defined as follows:
T
_ IOUtX(S(’Ut>O)+pt
acc=3" E:

(13 (v > 0))

t=1
0.3

-
— 0.2 % (Z W) (6)

t=1

where for frame ¢, IoU; is the intersection and union set
(IoU) between the predicted tracking frame and its corre-
sponding real frame, and p; is the predicted visibility flag,
which is equal to 1 when the predicted frame is empty and
0 otherwise. v, is the real label visibility flag of the target.
The indicator function §(v; > 0) is equal to 1 when v; > 0
and O otherwise. In short, Accuracy metric evaluates the
IoU between bounding boxes of the prediction and ground
truth, with a penalty on false alerts of drones.

Training Details. We implement our method on the popu-
lar YOLOVS5 [18] model, a compound-scaled one-stage ob-
ject detection model. We adopt the YOLOVS Large model
that is pretrained on the COCO dataset as the base model.
We train our model for 20 epochs on the training dataset
with an SGD optimizer. The batch size is 32, the learning
rate is le-3. We concatenate the frame difference with the
origin frame as RGB channels: the blue channel is the origi-
nal image, the green channel is the frame difference, and the
red channel is the canny edge of the frame difference. We
apply multi-scale input for the training batches, for which
we randomly resize the input to a resolution ratio from 0.5
to 1.5. The temporal scale y of the training batches is set to
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Figure 8. Qualitative comparison on the validation set. We use different colors and digits for different models.

zero when frame differencing is not used (0x in Tab. 2), and
one otherwise. We have done ablation on multiple temporal
scales in Sec. 4.4, and find that the temporal scale of 1 is
better for training.

Inferencing Details. When evaluating on the validation
set, we have experimented with different spatial-temporal
scale settings (Sec. 4.2), and hyperparameters of confidence
and IoU thresholds (Sec. 4.4). The models share the same
training settings for spatial scales, which means multiple
spatial scale training is applied for each model. And the
models differ in the scales of space and time when inferenc-
ing. For the models using frame difference, we preprocess
the frames with different temporal scales with Eq. (2) and
then different spatial scales with Eq. (3). We use the sec-
ond frame as the previous frame of the first frame because
the first frame has no previous frame for frame differencing.
We only choose one bounding box with the maximum score
for each frame because there is one target in the dataset at
most.

4.2. Quantitative Evaluation

Tab. 2 shows the performance and efficiency compari-
son for each time and spatial scale setting. Our models are
trained on the training set for 20 rounds and then tested on
the validation set. Time represents the detection time of a
frame in milliseconds, and we use one 3090 GPU for the
time testing. The first row of which represents the base
model of YOLOv5. The model’s accuracy grows steadily
as the temporal and spatial scales increase. In particular,
the model goes from no frame difference to one frame dif-
ference, with a 2.2% increase in MSAP, an 8% increase in

accuracy, and only a slight increase in time consumption.
Finally, we achieved an accuracy of 0.803 and an MSAP of
0.762 on the validation set. Our proposed MSAP is more
sensitive to small objects’ performance variation than the
commonly used Average Precision and can better reflect the
real-world detection performance.

At the same time, improving temporal and spatial multi-
ple scales has a powerful impact on the accuracy of small
objects. For a model with a spatial scale of 1, boosting
the temporal scale can improve the AP by 3.4%, 1.5%, and
0.5%, respectively, while for a model with a temporal scale
of 1, boosting the spatial scale can improve it by 8% and
0.5%, respectively. We also found that for a temporal scale
of 0 (i.e., no frame difference is used), the boost in spatial
scale is less than that for a temporal scale of 1. Therefore,
the temporal and spatial scales are correlated, and boosting
the temporal scale can also make spatial perception more
effective.

4.3. Qualitative Evaluation

Fig. 8 shows the detection results of different meth-
ods in two complex cases, including small objects and
background noise.  Fusing the temporal and spatial
scales can detect more small objects. Moreover, in-
creasing the temporal scale is very effective for scenes
with complex backgrounds. In particular, for the scene,
wg2022_ir_048_split 03, the model without frame differ-
ence tends to falsely detect other locations as drones, while
the model with frame difference will detect the moving
drones.
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Experiment Method Accuracy

Training

Frame+Frame+Frame 0.679
Frame+Diff1+Canny 0.759
Frame+Diff1+Diff2 0.748

Temporal Scale

. No 0.690

Spatial Scale Yes 0.759
Inferencing

0.1 0.759

IoU Thres. 0.2 0.756

0.3 0.755

0.4 0.755

0.1 0.758

0.2 0.759

Conf. Thres. 0.3 0.750

0.4 0.734

Table 3. Ablations on alternative settings. Bold texts indicate the
best result.

4.4. Ablation Study

Tab. 3 shows the ablation experiments with alterna-
tive hyperparameters and settings other than the multiple
spatial-temporal scales. First is the temporal scales used for
training. Our Frame+Diff1+Canny input is better than both
single frame input and three frame difference input because
the edges of small objects can provide more easily identifi-
able information. Secondly, the multi-scale training can im-
prove the robustness for detecting different size targets and
achieve higher accuracy. Finally, the thresholds in NMS and
the score (confidence) thresholds for detection also have an
impact on the detection performance, and adjusting these
thresholds is also a crucial step to improve the accuracy.

5. Discussion
5.1. Limitations

Fig. 9 shows our failure cases. The hard cases usually
have a complex background with noise and similar objects,
like windows, towers and birds. The detector will be misled
if the counterpart is more significant in the view than target
UAVs. This can be partly solved with a tracking algorithm
to find the most time-consistent target rather than the most
significant object.

Fig. 1 and Tab. 2 demonstrate that the time consump-
tion grows linearly with time and spatial scale. Running the
model with 3x the temporal scale and 5x times the spatial
scale takes 268 ms per frame. To address this drawback,
we can increase the parallelism to improve the GPU usage
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Figure 9. Failure cases of our model. Complex background will
affect the detector with noise and similar objects.

or optimize the execution by introducing techniques such
as model compilation to increase the speed. When deploy-
ing, we can replace the backbone with a more lightweight
model, such as YOLOvVS5 small or MobileNet [14].

5.2. Future Work

Recent works [27, 38] propose unified models to solve
detection and tracking tasks, breaking the routine of
detection-by-tracking or tracking-by-detection. Detection
can achieve better performance with template prior, motion
information, and background estimation by tracking, while
tracking relies on the results of detection. How to integrate
our robust detector into a unified detection-tracking system
is a question worth exploring. Exploiting the history infor-
mation by combining the detector with a tracking algorithm
may give better results for detection.

6. Conclusion

In this paper, we propose a novel learning framework
for robust UAV detectors, which we call Difference-based
Multi-scale Learning (DML). Our method utilizes the frame
difference of multiple previous frames, extracting motion
information and blocking background noise. We also fuse
multiple spatial-temporal scales for training and inferenc-
ing. In addition, we propose Multi-Scale Average Preci-
sion (MSAP) metric to evaluate the performance of UAV
detection in different scales better. Through extensive ex-
periments, we demonstrate that our proposed approach im-
proves the detection accuracy of baseline models.
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