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Abstract
Models that can learn orthogonal representations for

different facial attributes (e.g. pose, lighting, identity, ex-
pressions) have proven to be beneficial for both discrimi-
native and generative tasks. In this work, we propose the
universal facial encoder (UFE) that can simultaneously en-
code different facial attributes as disentangled features from
a single face image. We propose a variety of qualitative and
quantitative metrics to evaluate feature orthogonality of the
UFE and demonstrate superior disentanglement compared
to traditional single-attribute encoding. We also show that
these features can then be used to train lightweight pre-
diction heads for multiple downstream classification tasks.
Moreover, coupling the UFE with a style-based decoder
enables hallucination of new face images composed of at-
tributes taken from different samples. As experimentally
demonstrated, the UFE allows us to pick and choose these
attributes from label-disjoint datasets. A catalog of such
synthetic composites can be used as supplemental training
data or simply as stock photos.

1. Introduction
Training a model to learn meaningful features that are

composed of disentangled representations for different di-
mensions of variations can have several applications. A dis-
entangled feature space can be beneficial for downstream
discriminative (e.g. training feature classifiers) and genera-
tive tasks (e.g. generating synthetic images) as well as im-
prove model interpretability and robustness. Consider the
task of learning disjoint encodings for different facial at-
tributes, such as pose, lighting, identity, expressions [12].
Training a single encoder to learn disentangled encodings
for such attributes can be used to train robust but lightweight
downstream classifiers from a single, shared encoder [7].
The disentangled representations can also be used as input
to generative models that can produce images where the at-
tributes can be implicitly or explicitly controlled [43].

In this work, we build a universal face encoder (UFE)
that can simultaneously encode different facial attributes
like identity, expression and lighting from a single image,

irrespective of its domain association (e.g. facial pose vari-
ation or cross dataset training). Using these encoded fea-
tures, coupled with dedicated lightweight prediction heads,
the class association for each attribute can be predicted for
an image. When deployed for real time inference, such
global encoding can serve as a common backbone for mul-
tiple functionalities, and reduce the computation overhead.

To further reduce any leakage of information between
one subspace to another, we formulate the sampling and
objectives for model training to make the feature spaces or-
thogonal to each other. While the prediction heads (sim-
ple MLPs) are trained on the corresponding generated fea-
tures with a classification loss, to enforce orthogonality we
make use of a metric based contrastive loss. The relation-
ship (positive or negative) between a face image pair, and
consequently their corresponding embeddings, in different
attribute spaces is specifically used for this task. These at-
tribute embeddings are then fed to a style based decoder
[29] for input reconstruction for pixel space interpretability.
The decoder also enables us to utilize unlabeled samples,
by creating new examples directly in the feature space, and
use them for training by virtue of a self-supervised disen-
tanglement loss, described in 5.

To evaluate and quantify the degree of orthogonality be-
tween the attribute sub-spaces we propose multiple metrics:
(a) weak classifiers [16] to learn representations from one
attribute with labels from another, (b) silhouette score be-
tween attribute clusters [1], (c) tSNE visualization [48] of
generated features, and (d) a human rater study to visually
evaluate feature disentanglement in decoded synthetic im-
ages [43]. The experimental results demonstrate significant
subspace separability, both in the representation and pixel
spaces, even when the input images are acquired across dif-
ferent camera positions [4] or belong to different datasets
(e.g. MultiPIE [22] and FFHQ [28]) that have no common
labels. Additionally, we show the sub-spaces in the pro-
posed multi-attribute UFE to possess a higher degree of sep-
arability compared to traditional single attribute encoding
models [5] while maintaining the same level of task accu-
racy when tested on in-the-wild data [27].
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Figure 1. Our UFE framework has a single encoder E and decoder D that can take face images from different domains I1 and I2 and
generate multi-attribute representations F1 and F2 respectively. Each attribute element (e.g. id) in this representation is classified using
prediction heads ph, while smoother, pairwise relationships across attributes can be gleaned from contrastive learning. The representations
also act as the guiding style for reconstructions R1 and R2 using D.

The main contributions of this paper are as follows:
(1) We build a universal face encoder (UFE) that can si-

multaneously and orthogonally encode different facial at-
tributes from a single face image. The UFE can then act
as a common backbone for training lightweight prediction
heads for different downstream tasks.

(2) By attaching a style based decoder to the UFE, we
hallucinate new images by compositing different encoded
attributes from different images together and learn from
them in an unsupervised manner by virtue of a disentan-
glement loss. We experimentally verify this loss’ efficacy
with training samples belonging to different datasets, even
when their attribute labels are non-uniform or missing.

(3) We propose a set of numeric and visual metrics to
evaluate the degree of feature orthogonality in the UFE rep-
resentation space and demonstrate its embeddings to be bet-
ter disentangled than those of a traditional encoder model.

2. Related Work
Image Translation: While style transfer models [18, 26]
formulate exemplar based layerwise style manipulation in
images, image-to-image translation for content editing took
off with pix2pix [25] and CycleGAN [50]. These archi-
tectures work with encoder-decoder pairs that focus on tar-
get based transformation with a single latent vector [10,11].
The StyleGAN models [28, 29] marry these two concepts
by adaptively fusing style latents [24] from coarse to fine
layers of the decoding generator. Recent papers [30, 33, 36]
still utilize the decoding structure of StyleGAN but com-
partmentalize the encoding space for easy tweaking of ed-

itable features (e.g. facial attributes [8], RGB to anime [30],
garment and body editing [36]).

Disentangled Learning: A common tactic for encoding
space separation is to hallucinate or 3D render synthetic
images varying in different attributes, and then to jointly
learn the attribute differences from these images through
an encoder [12, 32]. Explicit decoder and encoder pairs
for attribute separation can also be learned for shape and
geometry [45], content and motion [46], lighting and ex-
pression [3] disentanglement. By treating one attribute as
static input and others as layerwise style, [39] build an age
translation model while preserving the subject identity. The
other tactic for subspace separation is to add a metric learn-
ing based objective to model training, where the encoder
learns positive and negative relationship between input sam-
ples for different attribute spaces (e.g. color, shape, pose,
identity). In [38], a triplet loss is used for this task while
a pairwise contrastive loss is utilized to understand such
relationships from synthetic image pairs in [43]. Finally,
explicit latent spaces can also be built for labeled and unla-
beled samples using separate encoding spaces [14–16].

Domain Invariance: To learn meaningful representations
across different domains, researchers either build networks
with shared embedding space [19] or introduce domain
confusion for learning agnostic features [47]. This can
be achieved by reversing domain-specific gradients during
back propagation [17] or minimizing inter-domain feature
distance [40]. Alternatively, teacher models can be used to
distill useful information [21] or fine-tune [7,49] for specific
downstream tasks. These guiding models can also be used
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to identify discriminative and challenging training samples
from different domains [41] to further improve model gen-
eralization in a supervised [44] or unsupervised manner [4].

While most of the style based disentanglement mod-
els [39, 43] focus on the visual fidelity in pixel space, we
pay more attention to the encoding aspect instead. Specifi-
cally, we design the UFE to not only produce style tensors
for the generator but also meaningful attribute features on
their own. This design allows the UFE to generate repre-
sentations that can hallucinate visually pleasing results and
be simultaneously used for downstream applications.
3. The Proposed UFE Framework
Architecture: As illustrated in Figure 1, our framework
consists of a single downsampling residual encoder E that
takes in a face image I and generates 1-D feature vec-
tors F = [fa1, fa2, fa3, ..., fan] pertaining to attributes a1
to an. A combination of these features, generated from
face images collected from different domains (e.g. cam-
era type/position or dataset) can be used for multi-domain,
multi-attribute classification. The individual features in the
encoder are separately generated from the residual maps,
normalized to maintain conformity in value range. This is
different from [38], where a single encoded feature F is
adaptively allocated to the participating attributes. Once the
feature vectors are extracted, the classification is done using
individual prediction heads ph for each attribute space (e.g.
phak for the k-th attribute). We design ph as lightweight
dense layers to map the feature f i

ak to the corresponding
label liak for i-th sample in the k-th attribute subspace.

Finally, a combination of these features
[fa1, fa2, ..., fak, ..., fan] is fed to a style-based [29]
upsampling decoder D to reconstruct I. While an ensemble
of decoders could be trained for this task [37], where each
decoder is assigned to a particular domain (e.g. camera po-
sition, facial pose, subject identity or dataset association),
our goal is to make E domain agnostic. Therefore, we use
a single D and utilize the gradient for domain invariance.
Loss Functions: The objectives used to train our frame-
work are described below:

1. Classification: For each input I in a training itera-
tion, we apply a classification objective to teach E and ph
class association of the image within each of the different
attribute spaces [a1, a2, ..., an]. This loss is applied sepa-
rately for each attribute ak with separate one-hot vectors
for each class association. The loss Lcls is computed as:

Lcls = − 1

N

N∑
i=1

n∑
k=1

C∑
j

(liak)j log(phak(f
i
ak)j), (1)

where f i
ak denotes the k-th attribute based feature from i-

th sample Ii (i.e. F = E(Ii)), and N , n, C are the batch
size, number of attributes and classes for an attribute respec-
tively. For each I, the gradient is backpropagated through
the corresponding phak and finally to E. Thus, E’s weights

get updated from the propagated gradients for all the at-
tributes and domains during each training iteration.

2. Contrastive: Since the Lcls does not handle interac-
tions between sample pairs that come from similar or differ-
ent domains, we add a contrastive loss Lcon to teach the en-
coder such relationships without requiring additional labels.
To implement the objective, a pair of images Ii and Ij are
taken as input and fed to E to extract the corresponding fea-
tures F i = [f i

a1, f
i
a2, ..., f

i
an] and F j = [f j

a1, f
j
a2, ..., f

j
an]

respectively. Based on the class association liak and ljak of Ii

and Ij for the attribute ak respectively, it is computed as:

Lcon =
1

Np

N∑
i=1

N∑
j=1,j ̸=i

n∑
k=1

y · dist(f i
ak, f

j
ak)+

(1− y) ·max(m− dist(f i
ak, f

j
ak), 0), (2)

where Np denotes the number of valid (i, j) pairs from the
batch with size N . y is an indicator function set to 1 if
liak = ljak, otherwise 0. The dist(x, y) function computes
the L2 distance between x and y, and m is a margin we set
empirically. Lcon pushes f i

ak and f j
ak away beyond m when

y = 0 (i.e. different attribute labels) while they are pushed
towards each other otherwise. Thus, Lcon helps establish
explicit pairwise relationships between batch samples irre-
spective of their domain.

As negative hard mining is not required for this partic-
ular version of the contrastive metric, we found it to be
significantly faster than the triplet loss [38, 42], and more
memory-efficient (i.e. controlled Np range) compared to the
harder-to-train temperature-normalized contrastive loss [9].

3. Reconstruction: To enable E to learn representations
at a spatial level, we additionally include a reconstruction
loss Lrec. The loss is fairly simple and computed as:

Lrec =
1

N

N∑
i=1

∣∣Ii −D(E(Ii))
∣∣ , (3)

The loss is simply a pixelwise L1 distance measure between
the input and its reconstruction, and regularizes the encoder
output by introducing a secondary task [4].

4. Other unlabeled attributes: Although the UFE can
tackle multiple feature spaces at the same time, it is still lim-
ited by the number of attributes actually labeled in a dataset.
Any unlabeled attribute can get distributed to one or more
proximal feature spaces, depending on the data and model
architecture, and hamper subspace separation.

To explicitly target such muddying of the fea-
ture spaces, we add an additional output feature
foth [43] from E and add separate prediction heads
photh = [photh1, photh2, ..., phothn] for all labeled at-
tributes [a1, a2, ..., an]. However, when backpropagating
from photh, we reverse the gradient to push foth away from
the other subspaces, similar to [17], as shown below:

Loth =
1

N

N∑
i=1

n∑
k=1

GR(CE(liak, phothk(foth))), (4)
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Figure 2. Results on the MultiPIE test set [22]. Using both frontal and posed (yaw=30◦) images from 6 subjects, we show the (a) UFE based
identity features (x=identity) cluster compactly for identity labels (y=identity), (b) expression features are not discriminative of identity, (c)
lighting features are disentangled from identity, and (d) other unlabeled attributed are uncorrelated with identity. Interestingly, the features
implicitly cluster (e.g. (c) (x=lighting, y=identity) into the corresponding # of classes (20 lighting classes in [22]) signifying well separated
representations. The weak classification and silhouette score based confusion matrices on the right panel quantify this separability.

where CE denotes cross entropy, similar to 1, and GR de-
notes gradient reversal, i.e. shifting the gradient sign and
pushes foth away from other subspaces by essentially pe-
nalizing any correct prediction.

5. Disentanglement: While some datasets might have
a lot of samples with multi-labeled attributes, most do not.
To learn from any unlabeled or semi-labeled samples (e.g.
when few attribute labels are missing), we include a self-
supervision based disentanglement loss Ldis in our training.
Ldis enables learning from additional feature combinations
and can further disentangle attribute spaces.

In order to compute such a loss, we take attribute fea-
tures [f i

a1, ..., f
i
an] and [f j

a1, ..., f
j
an] from two samples Ii

and Ij respectively, that may or may not belong to the same
domain. We generate two random combinations of such
features f i

dis and f j
dis, by mixing and matching attributes

across i and j, and synthesize their decoded images Iidis and
Ijdis. They are again passed through E to generate E(Iidis)
and E(Ijdis) respectively. Ldis is then computed as:

Ldis =
1

Np

N∑
i=1

N∑
j=1

(
∣∣f i

dis − E(Iidis)
∣∣+ ∣∣∣f j

dis − E(Ijdis)
∣∣∣),
(5)

where Np are the total number of valid (i, j) pairs in
the batch.The loss being an L1 distance measure not only
pushes E features to be consistent but also stabilizes D’s

weights to produce feasible combinations.
The final loss a weighted sum of these objectives:

Lfull = λclsLcls + λconLcon+

λrecLrec + λothLoth + λdisLdis, (6)

4. Experiments & Results
4.1. Training Data

MultiPIE [22]: We utilize the labels for six facial expres-
sion (Neutral, Smile, Sadness, Surprise, Anger, Disgust),
337 subject identities, and 20 directional lighting condi-
tions presented in the dataset. For facial pose variation, we
choose images from the 0◦and 30◦yaw buckets. Around
37k face images are extracted from the dataset in this way.
FFHQ [28]: We gauge the self-supervision ability of the
UFE by using the 70k high resolution images from the
FFHQ dataset. The dataset contains plenty of identity, ex-
pression and pose variations but the images were originally
released unlabeled. Annotations for certain attributes (e.g.
age, pose, gender, eyeglasses) were later shared in [39]. We
use this dataset, along with MultiPIE [22], to test the capa-
bility of the disentanglement loss 5 in Section 4.7.
In-house: To test the UFE on in-the-wild data, we prepare
an in-house dataset, consisting of driver videos captured
using both RGB and near infra-red (NIR) cameras placed
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Figure 3. tSNE visualization of the feature space distribution using representations from the proposed UFE and the well-established
AFFDEX 2.0 toolkit [5]. In the top row when identity labels are taken as basis for clustering (y=identity), the expression features
(x=expression) from the UFE (b) are shown to be disentangled from the identity (a), while the expression features from AFFDEX 2.0
can separate identities well (c). In the bottom row, when y is set to expression labels, UFE based expression features are shown to have
higher separability (e) compared to the AFFDEX 2.0 features (f) while maintaining orthogonality from the identity space (d). The test
samples are taken from the In-house dataset.

Table 1. Silhouette score based quantitative comparison of UFE with the AFFDEX 2.0 [5] for different (x=feature, y=label) combination.

Model (Camera) x=id, y=id ↑ x=emo, y=id ↓ x=id, y=emo ↓ x=emo, y=emo ↑
AFFDEX 2.0 [5] (CC) - 0.122 - 0.011

AFFDEX 2.0 [5] (RVM) - 0.127 - 0.005
UFE (CC) 0.176 -0.22 -0.029 0.052

UFE (RVM) 0.212 -0.104 -0.028 0.138

at rear view mirror (RVM) and center console (CC) loca-
tions inside an automotive vehicle. While lighting condi-
tions and other attributes (e.g. gender, ethnicity and age) are
unlabeled in the dataset, subject identity (121 in total) and
expression (6 positive + Neutral class) labels are available.
The dataset is especially challenging due to non-uniform
image quality, noisy annotations and missing labels. Exam-
ple frames can be seen in Figure 4.
Pre-processing: We extract facial landmarks from each im-
age using the pre-trained FAN from [6], and crop the im-
ages to a 128×128 square after aligning the eye centers to
the horizontal. For all datasets we randomly pick 90% for
training, the rest for testing.

4.2. Implementation Details
We design the encoder E as a sequence of 5 down-

sampling residual blocks [23] to extract meaningful feature
maps from an image. This set of downsampled (flattened)
feature maps is split into one dimensional attribute spaces

by using the corresponding number of dense layers (+1 for
Others). Each dense layer has 128 neurons and preserves
a uniform range of scale across different subspaces with
a sigmoid activation. The decoder D is based on Style-
GAN2 [29], consisting of 6 upsampling blocks. The con-
catenation of the extracted features is fed to each decoder
block, serving as the style. The prediction heads ph are 3
dense layers each, with softmax activation in the final layer.

For training the framework on Tensorflow 2 [2], we use
a single NVIDIA T4 card with 16GB of memory, and set
a batch size of 8. The model is trained for a total of 100
epochs, using the Adam optimizer [31] and initial learn-
ing rate of 0.0001. The α (in inverted residuals) and m
parameters are both empirically set to 0.9 and 1.0 respec-
tively; the [λcls, λcon, λrec, λoth, λdis] coefficients to [1, 1,
100, 1, 0.1] respectively. While training, we slowly intro-
duce the disentanglement loss 5 after a few epochs of UFE
training. This allows the E’s features to mature in a super-
vised manner before smoothly transitioning to an additional
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Figure 4. UFE based composite generation: (a) 0◦and 30◦MultiPIE and (b) CC and RVM camera angle In-house image synthesis. For each
row, specific attribute features are extracted from the sample in that column (e.g. identity under ‘id’ column in (a)) and the decoded output
can be seen in the last two columns. As the features are invariant to (a) pose and (b) camera angle, the decoder also serves as an implicit
reposing function. Compared to MultiPIE, the In-house samples are noisy and low-res, hence the relative decrease in visual fidelity.

self-supervision mode. Post training, only E can be used to
extract disentangled features, (E, ph) for any classification
task, and (E, D) for new image synthesis.

4.3. Measuring Feature Disentanglement
Weak Classifiers: Since the encoded features should ide-
ally be orthogonal to each other, by virtue of the contrastive
objective 2, using features from one attribute as data x (e.g.
expression) to predict another attribute label y (e.g. identity)
should not generate strong results for E’s representations to
be deemed disentangled. Models like CNNs can memorize
directly from the training data and project the non-linear re-
lationships directly to generate above-chance scores. Weak
classifiers on the other hand (e.g. regression) project semi-
linear boundaries that do not memorize. Thus, they can be
beneficial in quantifying feature disentanglement.
Silhouette Score: To quantitatively estimate the tightness
of clusters in each attribute space, we use the silhouette
score metric from [1]. It is calculated as (b−a)/max(a, b),
where a and b are the mean intra-cluster distance and the
mean nearest-cluster distance for each sample respectively.
For the same attribute features (e.g. expression), a score of
1 suggests perfect tightness while a score of -1 between dif-
ferent attribute features (e.g. expression & identity) signifies
perfect separation; 0 indicates overlapping clusters.
tSNE: A more visual mode of evaluating E is to take the
attribute features and project them into a low dimensional
space using tSNE [48]. The spatial positioning of the fea-
tures in the low dimensional embedding can reveal the ex-
tent of disentanglement – similar features (e.g. expression)
should be clustered together in the same attribute space
while mismatching features (e.g. expression & identity) and

attribute labels should result in imperfect clustering.

4.4. Results on MultiPIE
Using the metrics described in 4.3, we evaluate the effi-

cacy of E trained on the MultiPIE [22] on the testing split
of 34 subjects not used in training. For the weak classifi-
cation task, we utilize logistic regression to the perform the
weak classification on the 128-D encoded representations
from E. The results are presented in Figure 2 (panel top).
As can be seen, the features are quite predictive of their
own attribute space and produce the best results (e.g. iden-
tity data-identity labels = 1.0). In most cases, the features
are well-disentangled and mixing data and labels typically
result in below chance accuracy, e.g. lighting data-identity
label < chance labeling for identity (1/34). However, in
certain cases the features are not as separated as they can
ideally be. Although not strong, the identity features seem
to have some relationship of emotion labels with a 0.58 clas-
sification accuracy (chance = 1/6).

Using the same snapshot of the trained E and the same
test data, we generate the table of silhouette scores as shown
in Figure 2 (panel bottom). The intra-attribute numbers (di-
agonal) are generally in the [0.3, 0.76] range which sug-
gests tight clusters. Additionally, the inter-attribute silhou-
ette scores are all < 0 and therefore suggest relatively looser
clustering in such situations. Although the ideal case would
be the intra-scores (inter-scores) to be 1 (-1), this can be
used as proof of disentanglement in encoded features even
in sub-spaces that are correlated from acquisition.

Using samples from 6 test subjects, and their identity as
clustering labels, we get the tSNE visualizations, as shown
in Figure 2, using the same trained E as before. As can be
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Figure 5. Disentanglement user study: for each manipulated at-
tribute in MultiPIE [22], the mean rater accuracy is shown.

Figure 6. Mixing multi-dataset features: we transfer (a) expression
features from MultiPIE [22] target to FFHQ [28] source, (b) age,
gender and eyeglasses features from FFHQ [28] to MultiPIE [22]
source (1st, 2nd & 3rd rows respectively).

seen, the identity features are tightly clustered with uniform
colors across all blobs. However, when embeddings from
other attributes are used the clusters are all heterogeneous
suggesting that they are not tied to identity. Moreover, the
embeddings cluster implicitly based on their spatial location
in the embedding space e.g. you still get 6 clusters for the 6
emotions and roughly 20 for the 20 lighting conditions.

4.5. Comparison with Traditional Encoding
To gauge the range of the UFE’s representation capac-

ity, we compare E with the newly released AFFDEX 2.0
toolkit [5] for expression estimation. While Affdex [35] is
an established SDK, used in many downstream applications
[20, 34], AFFDEX 2.0 is its enhanced version capable of
recognizing facial expressions and emotional states in chal-
lenging conditions. The model is specifically trained to es-
timate facial expressions, and therefore a competitive base-
line to measure against for the UFE. To enable an apples-
to-apples comparison, we set UFE’s E architecture same as
that of AFFDEX 2.0 while keeping the sampling and learn-
ing strategy same as described in Section 3. We use the
In-house dataset for this experiment, and unlike AFFDEX
2.0, the UFE is also trained to learn both the subject identity

and facial expressions from the samples. Post training, we
analyze emotion estimation and identity-emotion subspace
separation from both model’s penultimate layer representa-
tions in terms of tSNE figures and silhouette scores in Fig-
ure 3 and Table 1 respectively.

As expected, the AFFDEX 2.0 features are indeed pre-
dictive of the expression classes (Figure 3.f) but not as
tightly as the UFE model (Figure 3.e). The AFFDEX 2.0
features are also found to be tightly coupled with identity
labels (Figure 3.c) while the same expression features from
the UFE are shown to be uncorrelated with any identity
(Figure 3.b). The UFE features are shown to be equally
effective across the CC & RVM camera angles as well.
4.6. Compositing Features: User Study

Similar to mixing features across domains for tuning the
model for self-supervision, we can also generate new sam-
ples in the image space by mixing representations in the
feature space. By simply upsampling the mixed features
gathered from images across different domains, novel views
of existing samples can be synthesized by our decoder D.
As shown in Figure 4.a, each row represents MultiPIE im-
ages from the frontal domain that we take attribute features
from and then output the corresponding hallucinations in
0◦(frontal) and 30◦facial yaw. In the first row, every at-
tribute comes from the same image while the identity fea-
tures are extracted for a (presumed) Caucasian man. As can
be seen in the results, the identity traits (gender, age, eth-
nicity) are preserved while the lighting and expression is
mirrored from the dark skinned subject. Additionally, we
composite a reposed face (‘gen 30’) from the same features
by simply switching the pose information in D. In this way,
we can generate more data. Corresponding results for the
In-house samples and attributes are shared in Figure 4.b.

By leveraging these composites, we conduct a user study
to evaluate the quality of the perceived feature disentangle-
ment in UFE. For a MultiPIE image in a randomly sampled
collection, we pass it through E to get its attribute features.
We randomly select an attribute (e.g. lighting) and pass a
second image with a different label for the selected attribute
through E. D is then fed with the selected attribute feature
from the second image, while keeping all other attribute fea-
tures from the first image intact. For a small percent of im-
ages, we changed no attributes. For each input-output im-
age pair, we asked users to select the attribute that they per-
ceived to have changed the most. In total, 30 users evaluated
100 image pairs. Figure 5 shows that for all attributes, users
are able to identify the correct feature that changed, with a
mean accuracy much higher than chance, highlighting the
fact that the UFE features are perceivably disentangled.

4.7. Multi-dataset Training
Since the UFE’s design and proposed batch sampling

enable learning from unseen instances by leveraging Ldis

(5), we put the model to the ultimate test of learning mul-
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Figure 7. Ablation Study: silhouette scores with UFE features after ablating (a) Lcls, (b) Lcon, (c) Lrec, (d) Ldis, (e) Loth.

tiple attributes across datasets that have no labels in com-
mon. Specifically, we design the model to learn [identity,
expression, lighting, pose] labels from MultiPIE [22] and
[age, gender, eyeglasses] labels from FFHQ [28]. Alternate
(supervised) batches from both datasets are iterated during
training, with Ldis bridging the two attribute sets by self-
supervision. For this particular experiment, we found Ldis

to benefit from a more mature encoder and hence assigned
cyclic annealing [13] based weighing of the loss between
[0.0025, 0.1] before stabilizing at 0.1 after three quarters
of training. After training, we examine the model’s com-
posites by transferring expression features from a MultiPIE
target to an FFHQ source and eyeglasses/gender/age from
an FFHQ target to MultiPIE, as shown in Figure 6.

We find expression transfer to be seamless across
datasets, even when the facial pose of the source and tar-
get images are different (Figure 6.a, last row). No other
attributes (e.g. identity, age, eyeglasses) undergo any no-
ticeable alteration as well. The FFHQ based age and gen-
der transfers work more subtly, especially latter (Figure 6.b,
second row), where facial hair and eyebrows are more af-
fected by the transformation. This might be due to the
gender features being somewhat correlated to the identity
subspace learned from MultiPIE. Eyeglasses can also be re-
moved from bespectacled MultiPIE subjects by pairing with
a bare faced FFHQ target (6.b, third row). This validates the
UFE’s efficacy in learning reliable features across disjoint
datasets and its utility as a cross dataset generative tool.
4.8. Ablation Study

Finally, to estimate the contribution of each objective in
UFE’s multi-attribute representation, we remove Lcls (wo/

Classification), Lcon (wo/ Contrastive), Lrec (wo/ Recon-
struction), Ldis (wo/ Disentanglement) and Loth (wo/ Oth-
ers Prediction) one at a time. This essentially provides us
with 5 different ablated models that we evaluate on the Mul-
tiPIE [22] test set. The corresponding confusion matrices
for identity, expression and lighting features can be seen
in Figure 7. As expected, Lcls and Lcon are key to effec-
tive representation learning, with Ldis refining the features.
Both Lrec and Loth further regularize in model training and
help in feature visualization and separation.

4.9. Limitations
While the UFE can disentangle attibute sub-spaces, it is

able to do so only when such attributes are labeled in at
least one dataset used. Additionally, it requires categorical
datasets in its current form for training. We plan to scale the
model to work with multi-hot attribute vectors in the future.

5. Conclusion
We propose a universal face encoder that simultaneously

encodes different facial attributes like identity, expression,
lighting from a single image, irrespective of its domain as-
sociation (e.g. facial pose variation or cross dataset train-
ing). We evaluate the degree of feature orthogonality in the
UFE representation space and show that the encoded fea-
tures, coupled with dedicated lightweight prediction heads,
can be used to predict the class association for each at-
tribute and image. By attaching a style based decoder to
the UFE, we hallucinate new images by compositing dif-
ferent encoded attributes from different images, including
when sampling from different datasets with disjoint labels.

1078



References
[1] Silhouette score. https : / / scikit - learn .

org / stable / modules / generated / sklearn .
metrics.silhouette_score.html. 1, 6

[2] M. Abadi and et al. Tensorflow: A system for large-scale
machine learning. In USENIX Symposium on Operating Sys-
tems Design and Implementation, 2016. 5

[3] S. Banerjee, A. Joshi, P. Mahajan, S. Bhattacharya, S. Kyal,
and T. Mishra. Legan: Disentangled manipulation of direc-
tional lighting and facial expressions whilst leveraging hu-
man perceptual judgements. In CVPR Workshops, 2021. 2

[4] S. Banerjee, A. Joshi, J. Turcot, B. Reimer, and T. Mishra.
Driver glance classification in-the-wild: Towards generaliza-
tion across domains and subjects. In FG, 2021. 1, 3

[5] M. Bishay, K. Preston, M. Strafuss, G. Page, J. Turcot, and
M. Mavadati. Affdex 2.0: A real-time facial expression anal-
ysis toolkit. In FG, 2023. 1, 5, 7

[6] A. Bulat and G. Tzimiropoulos. How far are we from solv-
ing the 2d & 3d face alignment problem? (and a dataset of
230,000 3d facial landmarks). In IEEE International Con-
ference on Computer Vision, 2017. 5

[7] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, P. Dhariwal,
D. Luan, and I. Sutskever. Generative pretraining from pix-
els. 2020. 1, 2

[8] S-Y. Chen, F-L. Liu, Y-K. Lai, P.L. Rosin, C. Li, H. Fu, and
L. Gao. DeepFaceEditing: Deep generation of face images
from sketches. In SIGGRAPH, 2021. 2

[9] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple
framework for contrastive learning of visual representations.
arXiv:2002.05709, 2020. 3

[10] Y. Choi, M. Choi, M. Kim, J-W. Ha, S. Kim, and J. Chool.
Stargan: Unified generative adversarial networks for multi-
domain image-to-image translation. In CVPR, 2018. 2

[11] Y. Choi, Y. Uh, J. Yoo, and JW. Ha. Stargan v2: Diverse
image synthesis for multiple domains. In CVPR, 2020. 2

[12] Y. Deng, J. Yang, D. Chen, F. Wen, and X. Tong. Disentan-
gled and controllable face image generation via 3d imitative-
contrastive learning. In CVPR, 2020. 1, 2

[13] H. Fu, C. Li, X. Liu, J. Gao, A. Celikyilmaz, and L. Carin.
Cyclical annealing schedule: A simple approach to mitigat-
ing kl vanishing. In NAACL, 2019. 8

[14] A. Gabbay, N. Cohen, and Y. Hoshen. An image is worth
more than a thousand words: Towards disentanglement in
the wild. In NeurIPS, 2021. 2

[15] A. Gabbay and Y. Hoshen. Demystifying inter-class disen-
tanglement. In ICLR, 2020. 2

[16] A. Gabbay and Y. Hoshen. Scaling-up disentanglement for
image translation. In ICCV, 2021. 1, 2

[17] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,
F. Laviolette, M. March, and V. Lempitsky. Domain-
adversarial training of neural networks. JMLR, 17(59):1–35,
2016. 2, 3

[18] L. Gatys, A.S. Ecker, and M. Bethge. A neural algorithm of
artistic style. arXiv:1508.06576, 2015. 2

[19] T. Gebru, J. Hoffman, and F-F. Li. Fine-grained recognition
in the wild: A multi-task domain adaptation approach. In
ICCV, 2017. 2

[20] G. Gordon, S. Spaulding, JK. Westlund, JJ. Lee, L. Plummer,
M. Martinez, M. Das, and C. Breazeal. Affective personal-
ization of a social robot tutor for children’s second language
skills. In AAAI, 2016. 7

[21] J. Gou, B. Yu, S.J. Maybank, and et al. Knowledge distilla-
tion: A survey. IJCV, 129:1789–1819, 2021. 2

[22] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker.
Multi-pie. IVC, 28(5):807–813, 2010. 1, 4, 6, 7, 8

[23] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. CVPR, 2016. 5

[24] X. Huang and S. Belongie. Arbitrary style transfer in real-
time with adaptive instance normalization. In ICCV, 2017.
2

[25] P. Isola, J-Y. Zhu, T. Zhou, and A.A. Efros. Image-to-image
translation with conditional adversarial nets. In CVPR, 2017.
2

[26] J. Johnson, A. Alahi, and F-F. Li. Perceptual losses for real-
time style transfer and super-resolution. In ECCV, 2016. 2

[27] A. Joshi, S. Kyal, S. Banerjee, and T. Mishra. In-the-wild
drowsiness detection from facial expressions. In IV, 2020. 1

[28] T. Karras, S. Laine, and T. Aila. A style-based gener-
ator architecture for generative adversarial networks. In
arXiv:1812.04948, 2018. 1, 2, 4, 7, 8

[29] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and
T. Aila. Analyzing and improving the image quality of Style-
GAN. In CVPR, 2020. 1, 2, 3, 5

[30] J. Kim, M. Kim, H. Kang, and K.H. Lee. U-gat-it: Unsu-
pervised generative attentional networks with adaptive layer-
instance normalization for image-to-image translation. In
ICLR, 2020. 2

[31] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. In ICLR, 2015. 5

[32] M. Kowalski, S. J. Garbin, V. Estellers, T. Baltrušaitis, M.
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