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Abstract

Face anti-spoofing (FAS) is indispensable for a face
recognition system. Many texture-driven countermeasures
were developed against presentation attacks (PAs), but the
performance against unseen domains or unseen spoofing
types is still unsatisfactory. Instead of exhaustively collect-
ing all the spoofing variations and making binary decisions
of live/spoof, we offer a new perspective on the FAS task
to distinguish between normal and abnormal movements of
live and spoof presentations. We propose Geometry-Aware
Interaction Network (GAIN), which exploits dense facial
landmarks with spatio-temporal graph convolutional net-
work (ST-GCN) to establish a more interpretable and mod-
ularized FAS model. Additionally, with our cross-attention
feature interaction mechanism, GAIN can be easily inte-
grated with other existing methods to significantly boost
performance. Our approach achieves state-of-the-art per-
formance in the standard intra- and cross-dataset evalu-
ations. Moreover, our model outperforms state-of-the-art
methods by a large margin in the cross-dataset cross-type
protocol on CASIA-SURF 3DMask (+10.26 higher AUC
score), exhibiting strong robustness against domain shifts
and unseen spoofing types.

1. Introduction

Face anti-spoofing (FAS) has played a critical role in se-
curing face recognition systems from presentation attacks
(e.g., print, video-replay, and 3D-mask attacks). Most pop-
ular FAS approaches extract fine-grained texture to spot
spoofing cues [1, 5,44, 46,48,49]. These methods mainly
adopt frame-level spoof detection, which aggregates the
prediction of one or multiple frames to determine the live-
ness of a video instance. However, the extracted spoofing
cues based on single-frame information might be insuffi-
cient to represent the characteristics of spoof faces.

One common way to address the above issue is to ex-
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Figure 1. Instead of only focusing on photometric information by
common CNN-based FAS methods, our proposed GAIN exploits
geometric temporal dynamics based on dense facial landmarks to
capture detailed facial motions, which is holistic and discrimina-
tive to enhance spoof detection. The motion trajectories corre-
spond to the example facial landmarks, showing useful cues to
distinguish live/spoof faces.

ploit the temporal information of videos. Live subjects
differ from spoof attacks in motion (i.e., facial move-
ments), indicating that dynamics in consecutive frames are
beneficial to discriminating presentation attacks from live
faces. CNN-LSTM/GRU networks [22,26,38,45] and 3D-
CNNs [37,42] have been used to extract temporal features
from RGB frames. Despite the promising performance,
focusing on RGB information may lead to overfitting to
photometric properties of live/spoof instances (e.g., mate-
rial patterns) and under-exploring geometric information
(e.g., motion trajectories), which is important for robust
temporal features (Fig. 1). Compared to a live subject’s
micro-movement, a paper-based attack commonly gener-
ates global motions such as translation or rotation, or ab-
normal transition movements of paper getting bent; for a
3D-mask attack, regardless of how realistic it appears, the
movements introduced can be mostly treated as translation
or rotation. All these motions appear relatively constrained
in the geometric temporal modality, and some types of mo-
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tions are even common across different attack types, indi-
cating that geometric temporal information is the key to fur-
ther improving the model robustness against domain varia-
tions and unseen spoofing types. Therefore, the question
becomes: How can we effectively exploit geometric tempo-
ral dynamics to benefit face anti-spoofing? Inspired by the
success of skeleton-based action recognition [6,24,29,43]),
which shows robustness to unseen domains by exploiting
body joints, the use of landmarks is motivated to effec-
tively extract geometric temporal dynamics on faces. In
this work, we propose to improve the robustness of the tem-
poral FAS features by extracting dynamic information on
top of facial landmarks. Taking landmarks as inputs in-
stead of raw RGB frames can explicitly extract geometric
information that generalizes well to unseen attacking ma-
terials and is invariant under changes in cameras, lighting,
and backgrounds. More specifically, we adopt dense facial
landmark prediction [41] to better capture the detailed dis-
criminative motion from live faces and spoof attacks. In
addition, we adopt a Graph Convolutional Network (GCN)
to extract spatio-temporal features from dense facial land-
marks, providing robust and representative dynamic infor-
mation and reducing the computational complexity com-
pared to the commonly used CNN-based temporal FAS
methods. Finally, we design a cross-attention feature inter-
action strategy to integrate our geometric temporal features
with photometric features from other FAS methods. The
overall framework is dubbed Geometry-Aware Interaction
Network (GAIN). Extensive experimental results on intra-
and cross-dataset benchmarks demonstrate that the geomet-
ric feature of GAIN is robust to unseen domains and pro-
vides liveness information complementary to current FAS
methods, significantly boosting the performance.

Our contributions are three-fold:

* To the best of our knowledge, we are the first to learn
robust geometric temporal dynamics with the dense fa-
cial topology that captures fine-grained facial move-
ments, which is critical to FAS but missing in previous
works.

* In the proposed GAIN, our learned geometric tempo-
ral features can smoothly cooperate with photometric
features from other existing FAS methods by our pro-
posed cross-attention feature interaction strategy.

* The proposed GAIN has been evaluated on intra-
dataset, cross-dataset, and domain generalization
benchmarks, achieving state-of-the-art performance
and outperforming other FAS methods on all proto-
cols. This demonstrates the efficacy of our proposed
usage of geometric temporal dynamics.

2. Related Works

Face Anti-Spoofing: Most of the recent FAS methods
aim at frame-level spoofing detection. They extract fine-
grained information to identify spoofing patterns (e.g., lat-
tice artifacts), using binary supervision [5,44] or leveraging
auxiliary tasks [1,46,48,49]. In spite of promising results
in intra-domain scenarios, these methods encounter degra-
dation when evaluated in unseen domains, which motivates
recent domain adaptation [17, 34] and domain generaliza-
tion [14, 28, 33, 36] approaches. Another group of FAS
works can be viewed as temporal-based methods, which
make use of temporal information in consecutive frames to
extract liveness cues. These methods generally adopt CNN-
LSTM/GRU networks [22,26,38,45] or 3D-CNNs [37,42]
to integrate spatial and temporal information. Nonethe-
less, by considering RGB information as input, such meth-
ods might run the risk of overfitting to photometric proper-
ties and neglecting geometric information that reveals facial
motion patterns. In this work, we aim to extract robust geo-
metric temporal features that focus on human facial dynam-
ics to improve FAS performance.

Node-Based Action Recognition: In human action
recognition, extracting dynamic information from key
nodes (i.e., skeleton, and joint) trajectories has attracted
much attention due to its robustness to scene variation. For
example, sequences of human joints are fed into temporal
CNNs [15, 16,30] or RNNs [19, 27,50, 54] to predict hu-
man actions. However, these methods might overlook the
inherent correlations of joints, thus having the limited capa-
bility of describing human dynamics. More recently, GCNs
have demonstrated the power of leveraging graph topology
to model joint correlations [6,24,29,43]. ST-GCN [43] ap-
plies GCNs along with temporal convolutions to learn both
spatial and temporal information from landmark sequences,
achieving impressive results in action recognition. Inspired
by such success, we use GCN in this paper to extract ge-
ometric information on top of human facial landmarks and
model facial movements.

Facial Landmark Prediction: Landmarks are instru-
mental in several face-related computer vision tasks. While
sparse landmark prediction [3, 10, 55] has been the main-
stream approach, it fails to capture detailed facial charac-
teristics and expressions since such information cannot be
represented by a sparse set of landmarks. Recently, using
dense landmarks has achieved remarkable results for 3D
face reconstruction [41]. By training with synthetic data,
which guarantees dense yet consistent landmark annota-
tions, [40] shows their dense landmark prediction model can
produce accurate and expressive facial performance cap-
ture. The rich information provided by dense landmarks
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would be helpful to identifying fine-grained facial move-
ments for spoof detection.

3. Proposed Method

With the aim of extracting robust temporal features to
enhance FAS performance, we propose Geometry-Aware
Interaction Network (GAIN), which is designed to extract
detailed facial dynamics from the geometric information,
as illustrated in Fig. 2. More specifically, we utilize GCN
to extract features on top of dense facial landmarks and
learn geometric information for fine-grained facial move-
ments (Sec. 3.1). We then integrate our learned geometric
features with photometric features by the proposed cross-
attention mechanism, further boosting the performance of
SOTA FAS methods (Sec. 3.2).

3.1. Dense Geometric Liveness Feature Learning

Facial movement is a discriminative component in de-
scribing live subjects. Formed by complex combinations of
muscles, the detailed facial movements of live subjects are
difficult to be produced by spoof attacks, such as print and
multiple 3D-mask attacks, which usually produce abnormal
movements instead of normal movements from live sub-
jects. With the aim of robustly capturing such fine-grained
movements, we propose to utilize GCN to learn geometric
facial dynamics on top of dense facial landmarks.

3.1.1 Dense Landmarks Detection

In order to invariantly describe motion patterns in different
domains, we exploit landmarks as representative geomet-
ric features. More specifically, we adopt dense landmark
prediction [41] to capture the fine-grained details of facial
dynamics. As in [41], each facial landmark is predicted as
a random variable {v;, o; }, where v; = (z;, y;) represents
the expected position of a landmark, and o; is a measure
of uncertainty. The landmark prediction network is trained
with synthetic data of densely annotated facial landmarks
using a Gaussian negative log-likelihood (GNLL) loss:

N ~ 12
Vi — Vg
LGNLL(U;U) = Z)\l <10g(0i2) + ”0_”> , (1)
=1

where N is the total number of facial landmarks, ¢; is the
training label for v;, and )\; is the loss weighting.

We then utilize the trained network to predict dense fa-
cial landmarks for live and spoof subjects. Concretely,
given an input RGB sequence I = {I;}1 ; of length T,
we predict N facial landmarks {v; }7¥, for each frame I;,
where v;; = (244, yt;) represents the expected position of a
landmark. To even better spot the micro-movements on a
face, we align the landmarks in each frame using simple yet

effective frame-wise min-max normalization. Namely, we
obtain aligned landmarks v}, = (z};,v};) by:

/ Tti — Ttmi
Xy = —Tm"’ 2)

Ttmazr — Ltmin

where %, and T, ., denote

i=1,...N =1,

respectively, and y;; can be obtained likewise. The visual-
ization of facial landmarks is shown in Fig. 3.

3.1.2 Geometric Liveness Feature Learning

With a rich set of facial landmarks obtained, we can learn
the fine-grained motion of facial movements. Inspired by
the success of GCN-based methods in skeleton-based hu-
man action recognition, we adopt the spatio-temporal graph
convolution operator in ST-GCN [43] to model the geomet-
rical relationships of facial landmarks across the frames.

We first sub-sample S frames out of 7" aligned facial
landmarks as the input of GCN. At each graph convolu-
tional layer, a graph with V x S nodes is constructed, where
each node is an input feature of size C;,. The input fea-
ture map can thus be represented by f;,, € RN*S%Cin The
edges of the graph are defined as the combination of: (1) the
facial connectivity at each frame (Fig. 3), and (2) the same
facial landmark in consecutive frames. We represent the fa-
cial connectivity by the adjacency matrix A € R¥*N  and
additionally construct a learnable weight mask M € RY*V
for A to adaptively learn edge weighting that helps capture
detailed facial movements. We formulate the higher-level
feature map f,,; that integrates both spatial and temporal
information as:

fout = com}(Afé (A+D) o M)Aféme), 3)

where I € RV*N represents the identity matrix, A" =
> M% (A" 1) is for normalization, W € RCin*Cout jg
the weight for feature transformation, and ® and conv(-)
denotes the element-wise product and a 1-D convolution
along the temporal axis, respectively.

After the last spatio-temporal convolutional layer, we ap-
ply global pooling across all N x S nodes to obtain the final
feature f,. To learn f, that discriminates between live facial
dynamics and abnormal motions, we distinctly define the
class of normal and abnormal movements: We group live
faces and video-replay attacks together to form the class
of normal facial movements, denoted as G,,,,, and define
the class of abnormal movements G, as attacks that can-
not produce realistic motions (e.g., printed/displayed photos
and plastic/plaster/resin masks). The objective of our geo-
metric liveness learning L, is then formulated as:

Ly = BCE(ly,Wf,), 4)
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Figure 2. The proposed Geometry-Aware Interaction Network. Aiming at exploiting robust temporal dynamics that benefit spoof detection,
we learn geometric features f, (blue) by utilizing ST-GCN on top of dense landmark predictions. To integrate the learned f, with

photometric features f,, from common FAS methods (

), we adopt a cross-attention mechanism (orange) that explores the interaction

between geometric and photometric information, producing more discriminative features fg;, and f,4 for FAS.

where BCE(-) denotes the binary cross-entropy loss, W
represents a linear projection for classification, and [ is the
label of the input sequence I, defined by:

1
l,=<"
=t

3.2. Cross-Attention Feature Interaction

if 1€ G,

5
ifI € Gom- ©)

Learned with the objective of identifying facial move-
ments, the geometric feature obtained in Sec. 3.1 provides
information complementary to common photometrics-
based methods. To integrate the learned geometric features
with these methods, it is important that the relationship be-
tween geometric and photometric features is highlighted
and exploited. Fig. 2 illustrates our designed cross-attention
strategy that fuses the learned geometric feature f, with fea-
ture extracted by common photometrics-based methods, fp,.

Given a chosen photometrics-based FAS network, we
obtain the photometric feature f,, by extracting the repre-
sentation before the network’s task-specific projection head.
We then perform cross-attention on our geometric feature
fq and the extracted f,. Generally, the attention opera-
tion [32] is computed as:

T

Attn(Q, K, V) = Softmaur:(Qj{a

where (), K, V represent the input query, key, and value,
and d is the feature dimension. The interaction of f, and f,

WV, (6)

can thus be modeled by:

fop = Attn(WE fo, WE £, WY £),

)
frg = Attn(WS f,, Wi £, W/ f),

, where each of the Ws is a linear projection.

Finally, f,, and f,q are concatenated and fed into a lin-
ear classifier to predict the liveness probability. We train the
cross-attention module using the cross-entropy loss, where
live and spoof types are divided into 3 (instead of 2) classes:
live faces, spoof attacks with normal facial movements, and
spoof attacks with abnormal motions. This encourages the
geometric information of f; to be further exploited in the
final decision and leads to more accurate spoof detection,
as later verified in Sec. 4.4.

4. Experiments
4.1. Datasets and Evaluation Metrics

We evaluate the proposed GAIN on five major
public datasets: OULU-NPU [2], CASIA-FASD [51],
Replay-Attack [7], MSU-MFSD [39], and CASIA-SURF
3DMask [47]. We utilize OULU-NPU for intra-dataset
evaluation, and all five datasets for cross-dataset experi-
ments. The performance is measured by the following
evaluation metrics: Attack Presentation Classification Er-
ror Rate (APCER), Bona-fide Presentation Classification
Error Rate (BPCER), Average Classification Error Rate
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Figure 3. Visualization of dense landmark prediction. The pre-
diction consists of 550 landmarks, in which 246 landmarks around
eyes and mouth region (visualized by the blue dots) are used in our
proposed framework.

(ACER), Half Total Error Rate (HTER), and Area Under
Curve (AUC). APCER, BPCER, and ACER are utilized for
intra-dataset protocols, and HTER and AUC are used for
cross-dataset evaluation.

4.2. Implementation Details

Given an input RGB sequence, we first detect and crop
the face in each frame using RetinaFace [8], and then resize
it to 256 x 256 before performing dense landmark predic-
tion. A total of N = 246 landmarks around the eyes and
mouth region (as shown in Fig. 3) are chosen as the input
of GCN. The sequence sub-sampling length S is set to 64.
Random sub-sampling is adopted during training. At the
inference stage, we choose the 64 frames by selecting the
landmarks with the highest variances of position from the
input sequence. Mirror padding along the temporal axis is
applied to any sequence of length less than 64.

The GCN is composed of 6 spatio-temporal graph convo-
lutional units followed by a linear layer. We train the GCN
for 65 epochs with a batch size of 16. The optimizer is SGD
with a momentum of 0.9 and a weight decay of 0.0001. The
initial learning rate is set to 0.1, and it is decayed with a
factor of 0.1 after the 50-th epoch. We apply random ro-
tation and horizontal flip to each landmark sequence for
augmentation. For cross-attention feature interaction, we
obtain f,, using a chosen single-frame photometrics-based
method by averaging features extracted from the frames in
an input sequence. We specify the adopted photometrics-
based method in each experiment in Sec. 4.3. The cross-
attention module is trained for a maximum of 200 epochs
with a batch size of 64. The optimizer is SGD with a mo-
mentum of 0.9, a learning rate of 0.1, and a weight decay of
0.0005.

4.3. Comparison to SOTA Methods
4.3.1 Intra-Dataset Evaluation

For intra-dataset evaluation, we follow the protocols in
OULU-NPU [2] to validate GAIN’s generalization ca-
pacity under varied environments and presentation medi-
ums. We adopt CDCN++ [48] as our baseline single-

Prot. Method APCER(%) BPCER(%)  ACER(%)
Auxiliary [22] 1.6 1.6 1.6
ICLM [42] 0.4 0.0 0.2

1 NAS-FAS [47] 04 0.0 0.2
MTSS [13] 2.0 1.0 1.5
CDCN++* [48] 0.0 0.8 0.4
CDCN++* + GAIN (Ours) 0.0 0.0 0.0
Auxiliary [22] 2.7 2.7 2.7
ICLM [42] 2.5 1.9 1.6

2 NAS-FAS [47] 1.5 0.8 1.2
MTSS [13] 14 0.3 0.9
CDCN++* [48] 1.9 0.6 1.3
CDCN++* + GAIN (Ours) 0.8 0.8 0.8
Auxiliary [22] 2.7+1.3 3.1+1.7 29+1.5
ICLM [42] 1.1+£0.9 2.5+2.6 1.8+1.3

3 NAS-FAS [47] 2.1+1.3 14+1.1 1.7£0.6
MTSS [13] 2.1+1.3 0.5+0.4 1.3£0.8
CDCN++* [48] 0.6+£0.5 2.8+4.2 1.7+£2.0
CDCN++* + GAIN (Ours) 0.9+0.8 0.84+0.8 0.9+0.8
Auxiliary [22] 9.3+5.6 10.4+6.0 9.5+6.0
ICLM [42] 3.3+3.9 4.1+4.4 3.742.8

4 NAS-FAS [47] 4.245.3 1.7+2.6 2.9+2.8
MTSS [13] 6.6+3.3 24+2.8 45422
CDCN++* [48] 5.8£59 4.246.1 5.0£2.4
CDCN++* + GAIN (Ours) 4.6+2.2 42+19 4.4£2.0

Table 1. The results of the intra-dataset evaluation on OULU-
NPU. We reproduce CDCN++ as our baseline method (noted as
CDCN++%*). The best results in each protocol are in bold, and the
second-best ones are underlined.
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Figure 4. t-SNE visualization of the extracted geometric features
by GAIN under the cross-dataset (O&C&I to M) setting. The dis-
tributions are well aligned between the testing dataset (M) and the
training dataset (O&C&I).

frame photometrics-based method. Table 1 compares our
CDCN++-GAIN fusion results with other FAS approaches,
including those that also exploit temporal information.
Combining learned geometric and extracted photometric
features, GAIN significantly improves the performance of
CDCN++ in all the four protocols of OULU-NPU. More-
over, our results outperform other FAS methods in most
settings, demonstrating the efficacy of learning geometric
facial dynamics for FAS.
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0&C&lLto M 0&M&I to C O&C&M to I I&C&M to O
Method HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)
Auxiliary (Depth) [22 22.72 85.88 33.52 73.15 29.14 71.69 30.17 77.61
NAS-FAS [47] 19.53 88.63 16.54 90.18 14.51 93.84 13.80 93.43
ANRL [20] 10.83 96.75 17.85 89.26 16.03 91.04 15.67 91.90
DRDG [21] 12.43 95.81 19.05 88.79 15.56 91.79 15.63 91.75
SDFANet [52] 4.28 97.59 12.56 93.63 6.14 97.30 12.26 94.29
HEN+MP [4] 5.4 97.28 9.11 96.09 15.35 90.67 12.40 94.26
VLAD-VSA (R) [35] 429 98.25 8.76 95.89 7.79 97.79 12.64 94.00
SSAN-R [36] 6.67 98.75 10.00 96.67 3.88 96.79 13.72 93.63
AMEL [53] 10.23 96.62 11.88 94.39 18.60 88.79 11.31 93.96
LMFD-PAD [9] 10.48 94.55 12.50 94.17 18.49 84.72 12.41 94.95
SSDG-R* [14] 7.38 96.97 9.89 95.28 12.29 94.49 14.03 93.07
SSDG-R* + GAIN (Ours) 4.05 98.92 8.52 96.02 8.50 97.27 12.50 95.12
PatchNet* [33] 7.10 98.46 11.33 94.58 13.40 95.67 11.82 95.07
PatchNet* + GAIN (Ours) 4.29 99.45 10.67 95.13 7.29 98.01 9.74 96.75

Table 2. The results of the cross-dataset evaluation. We reproduce SSDG-R and PatchNet as our baseline methods (noted as SSDG-R* and
PatchNet*). The best results in each protocol are in bold, and the second-best ones are underlined.

4.3.2 Cross-Dataset Evaluation

For cross-dataset evaluation, the following four datasets are
used: OULU-NPU (denoted as O), CASIA-FASD (denoted
as C), Replay-Attack (denoted as I), and MSU-MFSD (de-
noted as M). We follow the leave-one-out testing protocol
in which one of the four datasets is selected for testing,
and the remaining three are used for training (O&C&I to
M, O&M&I to C, O&C&M to I, and I&C&M to O). The
four datasets contain the same spoof types (live, print at-
tack, and video-replay attack) while being collected under
the variation of cameras, lighting conditions, resolutions,
etc. This protocol indicates the models’ generalization ca-
pability against unseen domains.

We adopt two baseline single-frame methods, SSDG-
R [14] and PatchNet [33], and show the results in Ta-
ble 2. GAIN leads to the substantial performance boost
over both of the baseline methods and reaches state-of-
the-art results in the four settings. This verifies that facial
motion patterns provide information complementary to the
RGB-photometric modality, contributing to performance
improvement. The results also demonstrate the strong gen-
eralization capability of our geometric features. As shown
as well in Fig. 4 by the t-SNE visualization [31], a close
match can be observed between the distributions of fea-
tures extracted from the training (O&C&lI) and testing (M)
datasets.

4.4. Ablation Studies
4.4.1 Benefit of Dense Landmark Prediction

In our GAIN, dense landmark prediction is adopted to pre-
cisely capture fine-grained facial movements. In Fig. 5 we

Figure 5. Comparison of sparse and dense landmark predictions.
The sparse landmarks (68 on each face) are predicted by 3DDFA-
V2 [10]. Details such as pursing lips (left) and rolling eyes (right)
are better captured by the dense landmarks.

compare dense landmark predictions with sparse sets of 68
landmarks predicted by 3DDFA-V2 [10]. Dense landmarks
show the superior ability to represent detailed movements
such as pursing lips and rolling eyes. To quantitatively as-
sess how using sparse and dense facial landmarks affect the
learned geometric features, we integrate the features with
the baseline photometrics-based method and report the per-
formance in Table 3 (e - ). Geometric features learned from
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O&Cé&ItoM

Photometric GCN Input Attn  # of Cls HTER(%) AUC(%)
(a) v X X 2 7.38 96.97
(b) X dense X 2 35.95 65.92
(©) v dense X 2 7.14 97.47
(d) v dense X 3 4.29 98.76
(e) v dense v 3 4.05 98.92
® v sparse v 3 5.71 98.12

Table 3. Ablation study under the cross-dataset (O&C&I to M) setting. Note: Photometric indicates whether the baseline photometrics-
based method (SSDG-R) is adopted; GCN Input specifies if the geometric features are learned from sparse or dense landmarks. Attn
indicates whether cross-attention is adopted in the method; # of Cls indicates if common live/spoof binary classification or the proposed

3-class classification is performed.

CASIA-SURF 3DMask

Method HTER(%)  AUC(%)
ResNet50 [12] 48.34 52.16
Auxiliary [22] 32.54 60.44
DTN [23] 38.97 69.24
NAS-FAS [47] 16.46 83.91
NAS-FAS w/ T(Mask)-Meta [47] 15.00 85.78
GAIN (ours) 6.23 96.04

Table 4. The results of the cross-dataset cross-type evaluation. All
methods are first trained on OULU-NPU with live, paper attacks,
and replay attacks, and then evaluated on 3DMask dataset with
unseen 3D-mask attacks.

dense landmarks lead to higher performance in spoof detec-
tion.

4.4.2 Analysis of Geometric Features

It is important to note that the geometric features learned in
our approach are not intended to address all possible live-
ness properties. Rather, their primary goal is to complement
the common photometrics-based methods by providing crit-
ical temporal information. In Table 3 (b), we present the
results obtained by using geometric features alone for de-
tecting spoof attacks. A significant drop in performance can
be observed as the geometric features alone are insufficient
to identify certain types of spoof attacks that can produce
realistic facial movements, such as video-replay attacks. In
Table 3 (c), we combine geometric features with photomet-
ric features, enabling the model to leverage both sources of
information for detecting spoof attacks. The result outper-
forms the photometrics-based baseline method (a).

While our learned geometric features alone may not be
able to detect all types of spoof attacks, they are specif-
ically suitable for spotting attacks that lack authentic fa-

cial dynamics and are quite robust. The CASIA-SURF
3DMask [47] (or 3DMask) dataset, which does not include
any attacks featuring realistic facial movements, is particu-
larly well-suited for evaluating the performance of our pro-
posed geometric features. 3DMask consists of realistic 3D
mask attacks produced with 3D printing and is collected un-
der various challenging lighting conditions (indoor/outdoor,
with back/front/side-light). The realistic presenting mate-
rials and complex environments make it hard for conven-
tional FAS solutions to discriminate between live and spoof
subjects based on single-frame information. We thus con-
duct the cross-dataset cross-type testing protocol proposed
by the dataset to assess the ability of our geometric feature
to detect unseen attacks with abnormal facial movements.
Following the protocol, we first train GAIN using OULU-
NPU dataset with live, paper attacks, and replay attacks, and
then evaluate the model on the unseen dataset (3DMask)
with unseen 3D-mask attacks. As shown in Table 4, our
method significantly outperforms other photometrics-based
FAS approaches. From this experiment, the robustness of
our geometric feature learning is further justified.

4.4.3 Comparison with Standard Temporal-Based
Methods

To exploit temporal information and focus on the geomet-
ric instead of photometric properties, GAIN utilizes GCN to
extract geometric features on top of facial landmarks. In Ta-
ble 5 we conduct two other experiments of abnormal move-
ment detection, in which 3D-CNN (3D-ResNet-18 [11])
is adopted as the backbone, as a comparison to showcase
the strength of extracting geometric information from fa-
cial landmarks. The first row shows the method using 64
raw RGB frames of aligned faces. The input is of shape
(S,C,H,WW) = (64, 3,64,64), where S is the sequence
sub-sampling length, C' is the number of input channels,
and H and W are the height and the width of a frame. The
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O&C&Mto 1
Abnormal Movement Detection

Method AUC(%)
RGB + 3D-CNN 65.66
Flow + 3D-CNN 92.28
GAIN (ours) 95.01

Table 5. Comparison with standard temporal-based methods un-
der the cross-dataset (O&C&M to ]) setting. The performance is
evaluated in terms of abnormal movement detection. RGB and
Flow refer to using raw RGB frames and optical flow as the input,
respectively.

second row utilizes the frame-wise information extracted
by the standard optical flow algorithm [18] to generate the
input of shape (64, 2,64, 64). Specifically, the two chan-
nels represent the orientation and magnitude of the calcu-
lated flow field. The experiment shows that Flow 3D-CNN
and GAIN provide significant improvements over the RGB
3D-CNN method, and GAIN reaches the best performance.
This indicates that pre-defined dense landmarks dedicated
to a face can be more suitable for the FAS task compared
to the generic-purpose optical flow. Moreover, the geomet-
rical relationships of GAIN bring stronger connectivity on
the geometric and temporal domain.

4.4.4 Feature Interaction Strategies

We examine the effectiveness of each design in our feature
interaction strategy in Table 3 (c - e). The first row (c)
shows the result of naively feeding concatenated features
through linear layers and performing binary live/spoof clas-
sification. On the second row (d), by simply switching to
the movement-aware 3-class classification (as described in
Sec. 3.2), the performance improves remarkably (-3.09%
in HTER and +1.26% in AUC). It shows that facial dy-
namic information plays a critical role in FAS, and exploit-
ing such information during feature integration results in
improved spoof detection. Replacing linear layers with a
cross-attention module (e) further encourages the model to
explore the relationship between geometric and photometric
features, leading to the full performance of GAIN.

4.4.5 GCN Visualization

Taking landmarks as inputs and training with the objec-
tive of movement classification, our GCN disentangles ge-
ometric temporal dynamics from texture information. In
Fig. 6, GradCAM for GCN [25] is implemented to inter-
pret the geometric feature learned by the GCN. We visu-
alize the feature-node activations along the temporal axis
from the last graph convolutional layer. In live subjects,

(b)

Figure 6. GradCAM Visualization for GCN. The feature-node ac-
tivations are derived from the last layer of the GCN along the tem-
poral axis from (a) a live subject, and (b) a print attack. The acti-
vation intensities are indicated by the tones of red color.

nodes tend to be more activated around the eye and mouth
regions where facial motion can be observed at frames. No-
tably, activation intensities increase during movement tran-
sitions, such as raising eyebrows, moving eyeballs, and an
open mouth. In contrast, similar intensities of attention on
eye and mouth regions can be observed in the case of the
print attack, in which the main motion is paper translation.
The visualization once again verifies our proposed GAIN is
capable of capturing facial movements discriminatively.

5. Conclusion

In this work, we aim to learn geometric temporal dynam-
ics that capture discriminative facial movements for face
anti-spoofing. To achieve this goal, we propose Geometry-
Aware Interaction Network (GAIN), which adopts ST-
GCN to extract fine-grained geometric facial dynamics
from dense landmark predictions. The geometric fea-
tures learned by GAIN can be easily integrated with other
photometrics-based methods using our designed cross-
attention feature interaction strategy. Extensive experi-
ments on diverse testing protocols (intra-, cross-dataset, and
cross-type evaluations) demonstrate that the geometric fea-
tures of GAIN provide robust liveness information comple-
mentary to photometrics-based FAS methods, leading to a
significant boost in performance.
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