
BeCAPTCHA-Type: Biometric Keystroke Data Generation
for Improved Bot Detection

Daniel DeAlcala1, Aythami Morales1, Ruben Tolosana1, Alejandro Acien1, Julian Fierrez1,
Santiago Hernandez1, Miguel A. Ferrer2, Moises Diaz2

1Biometrics and Data Pattern Analytics Lab, Universidad Autonoma de Madrid, Spain
2University Las Palmas Gran Canaria, Spain

Abstract

This work proposes a data driven learning model for the
synthesis of keystroke biometric data. The proposed method
is compared with two statistical approaches based on Uni-
versal and User-dependent models. These approaches are
validated on a bot detection task, using the keystroke syn-
thetic data to improve the training process of keystroke-
based bot detection systems. Our experimental framework
considers a dataset with 136 million keystroke events from
168 thousand subjects. We have analyzed the performance
of the three synthesis approaches through qualitative and
quantitative experiments. Different bot detectors are con-
sidered based on several supervised classifiers (Support
Vector Machine, Random Forest, Gaussian Naive Bayes and
a Long Short-Term Memory network) and a learning frame-
work including human and synthetic samples. The experi-
ments demonstrate the realism of the synthetic samples. The
classification results suggest that in scenarios with large la-
beled data, these synthetic samples can be detected with
high accuracy. However, if the proposed synthetic data is
nor properly modelled using massive data by bot detectors,
then that data will be very difficult to detect even for the
most sophisticate bot detectors. Furthermore, these results
show the great potential of the presented models for improv-
ing the training of bot detection technology.

1. Introduction

The use of Artificial Intelligence (AI) in cyberattacks is
an important concern for our society [16]. Along with the
massive use of the Internet, the usage of bots to access digi-
tal services and platforms has grown, being the detection of
these bots an open challenge with a high worldwide eco-
nomical impact [33]. The rapid development of genera-
tive models during the last decade has allowed to synthe-
size realistic images and videos [32, 38], audio [37], or text
data [9]. These technologies can be integrated in new gen-

erations of bots with realistic human-like behavior. As an
example, the language generation models developed within
the last two years have made almost impossible to distin-
guish between human and bot conversation. In this context,
biometric technologies appear as a solution to distinguish
between human and synthetic behaviors [22].

Biometric recognition is the ability to authenticate a per-
son with the highest possible reliability based on their phys-
ical characteristics or behavioral attributes [19]. This tech-
nology can be used to uniquely recognize one user among
others (e.g., user identification), to recognize groups of sub-
jects (e.g., soft-biometrics classification), or finally to dif-
ferentiate real users from non-real users (e.g., bot detec-
tion). This work focuses on the topic of bot detection,
more precisely in the generation and detection of synthetic
keystroke patterns. Keystroke biometrics play an important
role in bot detection due to its suitability in digital environ-
ments. Keyboards and touchscreens are among the most
common human-machine interfaces nowadays, and their
use in digital platforms and services is almost universal.

In bot detection, a platform/system must detect bot at-
tacks and differentiate them from legitimate user’s inter-
actions. Traditionally, this detection has been carried out
with conventional CAPTCHAs, which ask the user to per-
form some cognitive challenges. Most common conven-
tional CAPTCHAs are: i) Recognize characters in a dis-
torted image; ii) Identify a specific class in a set of images;
and iii) Analyze the interaction and web traffic.

Traditional CAPTCHAs are becoming less effective due
to advances in Computer Vision and the image classifica-
tion approaches based on Deep Learning. As a result, other
less intrusive and more effective CAPTCHAs are being de-
veloped nowadays based on the interaction information be-
tween the human/bot and the platform without actively re-
questing any information [1, 2]. The behavioral biometric
characteristics, and specially the so-called web-biometrics
[15], play an important role in this interaction modelling.
These biometrics characteristics include keystroke dynam-
ics, mouse dynamics, and mobile interaction, among others.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1051



In this work we propose three synthetic keystroke data
generation methods with application to bot detection. The
main contributions of this work can be summarized as fol-
low:

• Three approaches for the synthesis of keystroke dy-
namics data based on Universal, User-dependent, and
Generative Models. The first two proposed approaches
are based on the statistical modelling of the biometric
keystroke dynamics features of 100,000 subjects. The
third approach is based on a Generative Neural Net-
work. In this work we demonstrate that data-driven
learning approaches can be used to generate realistic
keystroke dynamics, opening a new way to synthesize
and detect keystroke samples.

• A bot detection method based on keystroke dynamics
using algorithms trained with human and synthetically
generated samples.

• A comprehensive performance analysis including: i)
amount of data available to train the bot detector; ii)
type of synthetic data used to model the human behav-
ior; iii) input text dependencies.

The rest of the work is organized as follows: Section
2 summarizes the related literature. Section 3 presents the
proposed synthesis approaches. Section 4 describes the bot
detection method. Section 5 presents the experimental re-
sults of the bot/human classification methods trained with
the synthetic and human samples. Finally, in Section 6 we
present the conclusions and limitations.

2. Related Literature
Keystroke dynamics has been widely focused on user

recognition (i.e., differentiate one user from others). In
1980, a pioneer study of this biometric trait was made
demonstrating that it is possible to differentiate subjects ac-
cording to their typing patterns [14]. In general, keystroke
biometrics are commonly divided into two different ap-
proaches [8]: free-text and fixed-text. Fixed-text ap-
proaches usually outperform free-text ones in terms of per-
formance due to its lower intra-class variability. Neverthe-
less, the transparency and no restrictions of free-text ap-
proaches represent a clear advantage in most applications.

During the last decades, the performance of keystroke
biometric user recognition approaches has improved to
reach the actual state of the art. Some classic approaches
(before the deep learning revolution) include non-elastic
sample alignment (e.g., Dynamic Time Warping [30]),
scaled Manhattan distances [26], and statistical models
(e.g., Hidden Markov Models [6]). The performance of
these approaches varies depending on the characteristics
of the database and experimental protocol, but in general,
Equal Error Rates (EER) over 5% were consistently re-
ported. During those years, the performance of free-text ap-

proaches was far from the performance achieved by fixed-
text methods [7, 31]. More recently, the release of new
large-scale datasets and the use of Deep Neural Networks
have boosted the performance of free-text keystroke bio-
metrics with EERs under 5% [3, 28, 35].

The improvement of keystroke biometric technologies
opens the doors to new applications apart from the tradi-
tional user recognition. One of these applications is bot
detection. Bot detection presents some differences with re-
spect to user authentication. While user authentication ap-
proaches are developed to model user-specific characteris-
tics, bot detection approaches model the general population
characteristics. The final aim is to extract the characteris-
tics of human’s keystrokes dynamics and differentiate them
from bots.

Before getting into bot detection, we must talk about the
synthesis of keystroke data generated by bots. One of the
first studies was presented more than 10 years ago in [34]
creating a synthetic database with 20 subjects using first-
order Markov chains. An improved keystroke biometric
attack generator was presented in [27], using a Linguis-
tic Buffer and Motor Control model. The use of synthetic
keystroke samples to study the vulnerability of keystroke
biometric systems was also studied in [17, 23–25]. Those
studies have proposed methods using higher-order contexts
and empirical distributions to generate impersonation at-
tacks (i.e., samples generated to confuse the identity of a
specific user). The conclusions from previous studies sug-
gest that it is possible to generate realistic keystroke data.

Regarding keystroke bot detection itself, there is a pio-
neer work involving the use of function calls analysis [4].
The system proposed in [4] was based on communication
protocol analysis (frequency of keyboard logs) rather than
keystroke dynamics modelling. Our work explores novel
synthesis approaches based on keystroke dynamics for
the development of new bot detection methods.

A lot of research is currently being done in statis-
tical synthesis of keystrokes, creating synthetic samples
used both for attacking systems and training bot detectors
[5, 17, 23–25, 34]. In this work we specially focus on pa-
pers [5] and [34] for the comparison with our proposed
methods as they cover the topic of bot detection whereas
the rest are more focused on the creation of synthetic sam-
ples and not that much in competitive bot detection. In [5]
the authors classified bots using Euclidean distance between
human and bot features. In [34] they used a Support Vec-
tor Machine (SVM) classifier trained with real and synthetic
samples.

As our last connection with related works, in this pa-
per we will exploit recent technology for statistical synthe-
sis of functions (applicable in general beyond keystroking
and other biometrics) using Generative Neural Networks
[18,21,36], and based on that we will develop a novel Gen-

1052



Figure 1. 4 left images: Original human data (bars) and Kernel Density Estimator fitting model (continuous line) for the whole Dhakal
dataset. 4 right images: the same for two independent subjects.

erative Neural Network to improve the detection of syn-
thetic keystroke data.

2.1. Keystroke Dynamics Dataset

The Dhakal Dataset [10] is considered in this study to
develop the models able to synthesize large-scale keystroke
biometric data. There are 168,000 subjects and 136 million
keystrokes in the database. Regarding the acquisition pro-
cedure, each subject had to learn a sentence and then write it
as fast as possible (semi-fixed text scenario) using their own
keyboard. Each subject has 15 sentences with a minimum
of 3 words and a maximum of 70 characters.

Following the traditional keystroke dynamics modelling,
the dataset is processed to extract 4 time features derived
from the two main typing events (key press and key release)
and the ASCII code for each key pressed [3]:

1. Hold Latency (f1
j ): Time between the key j is pressed

and released.

2. Press Latency (f2
j ): Time between two consecutive

keys are pressed, j and j + 1.

3. Release Latency (f3
j ): Time between two consecutive

keys are released, j and j + 1.

4. Inter-Key Latency (f4
j ): Time between a key j is re-

leased and the next key j + 1 is pressed.

5. Key Code (f5
j ): ASCII code normalized between 0 and

1 for each key j.

Figure 1 (4 left subfigures) presents the distribution of
the 4 initial (time) features for the complete dataset. As

can be seen, the Hold Latency feature is close to a nor-
mal distribution. The rest of the features presents tails re-
lated to the characteristics of the typist and the key pressed
(some combinations of keys usually present larger timing
than others). Note that the Inter-Key Latency presents neg-
ative times, i.e., the next key is pressed before the currently
one is released. This effect is called rollover-typing and it
is common in keystroke recognition systems.

3. Keystroke Synthesis: General Outlook
This section presents our three keystroke dynamic data

synthesis methods. There are two different approaches: the
first one is based on the statistical modelling of the feature
distribution of the keystroke time series, while the second is
based on a data-driven learning approach with a Generative
Neural Network. As described in the previous section, the
keystroke dynamic features model the biometric patterns
during a typing task as differences of times (i.e., time gaps
between key press and key release events). We propose to
model the probability distribution of the 5 biometrics fea-
tures i defined before based on a training sequence of con-
secutive keystrokes fi = [f i

0, ..., f
i
N ], where N is the total

number of samples used for training the model. To train the
following methods, the N samples used are from 100,000
subjects out of the 168,000 in the database.

3.1. Statistical Generative Models

For the statistical approach we use the Kernel Density
Estimator algorithm (KDE) [20]. KDE is a nonparametric
algorithm that estimates univariate or multivariate densities.
KDE allows to compute the density of keystroke biometrics
features as a set of functions F = {F1,F2,F3,F4}, here the

1053



KDE approximates the probability that the feature i takes
the value x as:

Fi(x) =
1

N

N∑
j=1

K(x− f i
j ;σ) (1)

where K is the kernel function (Gaussian in our experi-
ments) and σ is the bandwidth (σ = 1.0 in our experi-
ments). We use this method to model the probability distri-
butions F of the keystroke biometric features in the Dhakal
Dataset (see Figure 1 continuous lines). The synthesis of
keystroke dynamic samples is then divided into: 1) gen-
eration of a sequence of K keys representing the typed
text: k = [k0, ..., kK ]; 2) generation of the corresponding
keystroke biometric features fi as random samples from the
the learned models F (random sampling serves to introduce
human-like variability between samples); and 3) the calcu-
lation of a sequence of timestamps: t′ = [t′0, ..., t

′
2×K ] as-

sociated to the key press and key release events. The times-
tamp vector t′ can be easily obtained from the time features
f1 and f4. The following equations show the calculation of
timestamps for the first two keys:

t′0 = 0, t′1 = t′0 + f1
1 → (key 1) (2)

t′2 = t′1 + f4
1 , t

′
3 = t′2 + f1

2 → (key 2) (3)

We propose two synthesis approaches depending on the in-
formation used to model the feature distributions: Universal
Model or User-dependent Model.

3.1.1 Statistical Approach 1: Universal Model

The Universal Model is based on the estimation of a unique
set of KDE functions F representing the behavior of all
subjects in the Dhakal dataset. As a result, only 4 KDEs
are necessary to model the human typing behavior distribu-
tions. Figure 1 shows the set of trained functions (contin-
uous lines in the four images on the left). In general, this
approach could approximate in a good way the human fea-
tures as a group. However, it could also generate unnatural
samples due to the combination of timing across different
subjects. It is important to highlight that this universal syn-
thesis approach is not able to model: the intra-user depen-
dencies (i.e., each user has certain biometric features and
a correlation between them [13]) or the key-dependent fea-
tures (i.e., each key has a typing pattern depending on it-
self and also to a certain extent on the previous and follow-
ing keys). First, the keystrokes from real human samples
are parameterized according to the proposed time features.
Second, the probability function Fi of each time feature is
independently modeled according to a KDE function (see
Eq. 1). The four trained KDEs are then used to generate
new keystroke dynamic features f′ from which the synthetic
keystroke timestamps t′ are obtained (see Eqs. 2 and 3).

3.1.2 Statistical Approach 2: User-dependent Model

The fundamental principle of keystroke biometric recogni-
tion systems is that typing patterns vary from one user to an-
other. The User-dependent generation method tries to incor-
porate these intra-user characteristics [29] into the synthesis
process. However, the data available for each user is usu-
ally very limited [12], therefore, depending on the amount
of data available to model each user [11], User-dependent
Models could be less accurate than the previous Universal
Model. The user-dependent synthesis approach is aimed to
model the statistics of each feature i for every subject u.
Even so, with this model we are still not able to model the
key-dependent features. First, keystroke samples from the
Dhakal dataset data are divided by subjects. Second, the
keystroke timestamps tu from user u are parameterized to
obtain the four time feature sequences fu,i. Then, the prob-
ability distribution of each time feature from each training
user (Fu,i) is independently modeled according to a KDE
function (i.e., four Fu,i per user). This process is repeated
for U different human subjects in the database. Finally, the
4×U models are used to generate synthetic feature vectors
and their corresponding synthetic keystroke timestamps.

3.2. Generative Neural Network Model

We propose a novel Generative Neural Network (GNN)
for the synthesis of keystroke time series. The synthesis of
time series with specific statistical distributions using Gen-
erative Neural Networks is an open challenge in the liter-
ature [18, 21, 36]. If we want the GNN to learn a specific
distribution then we can not use a standard loss function
because standard losses are not optimized to learn distribu-
tions [28]. For example, if we use the regression function
Mean Square Error (MSE) for each different key-code, the
network will learn to give always the same value (determin-
istic output), the one that appears more in the distribution to
minimize losses (e.g., in a Gaussian distribution the output
will be the mean).

The aim of our GNN model is to learn the required pa-
rameters to synthesize realistic keystroke biometrics fea-
tures with realistic intra-class and inter-class variability.
The input of the model is a key-code and the GNN gen-
erates different human-like times for this specific key-code.
We train a specific GNN model for each time feature (fi)
thus obtaining a set of 4 functions G = {G0,G1,G2,G3}
of the following form:

Gi(k) = GNN(k;W i) (4)

where k is the key code and GNN is a neural network with
its weights (W i). During the training process the key-codes
are introduced as input, and the network learns the time dis-
tributions for each fi from the real data. During the infer-
ence process, the code is introduced as input and the net-

1054



Keycodes

4 Sa
m

pl
in

g 
L

ay
er

3

DB

Sa
m

pl
in

g 
L

ay
er

Sa
m

pl
in

g 
L

ay
er

2
0

1
0

Sa
m

pl
in

g
L

ay
er

2

𝐷 𝑥|𝑝 ,𝑝1 2
𝑖 𝑖

𝑖 𝑖

2
3

1
3

−
2 𝜎
1 𝑥−𝜇 2

3

0

1
1

1
2

2
1

2
2

1

0

2

1

𝑖 𝑖, 𝑖 𝑖

1 2

0, 1, 2, 3

Only during training 

Fully Connected

Layer (100 units)

Fully Connected 
Layer (1 unit)

Figure 2. Proposed Generative Neural Network learning frame-
work. Example based on a Gaussian distribution defined by µ and
σ parameters.

works generate the 4 time features. The proposed GNN
computes the required parameters for the distribution of
each key-code and then randomly samples this distribution.
Figure 2 shows an example of our proposed GNN learning
framework based on a Gaussian distribution with parame-
ters µ and σ. The proposed architecture is based on: two
fully-connected layers with 100 units each (tanh activation
function), one fully-connected layer with 1 unit (linear ac-
tivation function) and one sampling layer (this layer creates
the probability density function with the output of the pre-
vious layer and samples it).

The training process of the GNN is designed to learn
the parameters of the statistical distributions of the fea-
tures fi. In our experiments, each time feature (fi) is mod-
elled by a parametric function defined by q parameters
(Pi = [pi1, ..., p

i
q]). For example, a Gaussian distribution

can be modelled by two parameters: mean and variance
(Pi = [µi, σi]). The loss function used computes the prob-
ability that feature i (i.e. Xi) takes a specific real value xi

from the training pool of data according to the distribution
(D) generated with the parameters Pi = [pi1, ..., p

i
q] learned

up to that training moment:

Loss = − log (ProbD(x| Pi)(X
i = xi)) (5)

This loss function acts as the Likelihood Function of the
distribution we want to learn.

For the proposed Generative Neural Network we only
consider a Universal Method since for a User-dependent
one we would need a large number of samples from each
subject (the Dhakal database is large in number of subjects
but not in samples per subject). Finally, to generate the

time series associated to a specific sequence of key-codes,
we employed the learned functions G and the strategy pre-
sented in Eqs. 2 and 3.

4. Bot Detection Exploiting Synthetic Data

Most bots are not developed to generate realistic
keystroke time series. They are usually developed to in-
teract with a web service/platforms and this interaction usu-
ally includes introducing text as input (e.g., searching infor-
mation) [33]. The code of a traditional bot is exclusively
focused on the generation of the sequence of keys k nec-
essary to produce a desired result. This work explores a
more challenging scenario where the bot is developed to
spoof a keystroke bot detection system, generating human-
like keystroke time sequences t′.

We propose the use of synthetic keystroke samples to
train improved bot detection systems (see Figure 3) ro-
bust even against sophisticate human-like bots. We use the
Dhakal Dataset [10] to model the real human keystroke pat-
terns in our experiments (see Section 2.1 for details about
the dataset). First, the synthetic samples are generated us-
ing the same text from the real ones, i.e., the human and bot
key sequences are exactly the sames so that the classifier
cannot differentiate them by the key codes. Note that the
Dhakal Dataset was captured according to a semi-fixed text
protocol. This protocol implies that the text varies for each
human sample in most of the cases. Second, the human
and synthetic keystroke sequences are truncated to L (L is
equal to 30 in our experiments) or if smaller they are dis-
carded. The reason for truncating these sequences is to be
able to use the different classifiers that are presented below,
under the same conditions. Third, each keystroke sequence
is parameterized according to the features f i presented in
Section 2.1. Finally, we evaluate four different classifica-
tion algorithms: Support Vector Machine (SVM), Recur-
rent Neural Network based on Long Short-Term Memory
(LSTM), Random Forest (RF), and Gaussian Naive Bayes
(GNB). These algorithms are trained using both human and
bot feature vectors. We describe in Section 5.1 the exper-
imental protocol details. These four classifiers have been
chosen since they are some of the most relevant in related
literature.

There could be a question whether the use of synthetic
samples to train the classifiers is really useful and improves
their performance or not. To shed some light on this, we in-
troduced a One-Class Classifier (One-Class SVM) trained
exclusively with human samples. With this result it is pos-
sible to compare whether, at least in this type of classifier
(although it can certainly be extrapolated to the rest), it is
being useful to include these samples.

1055



Keystroke Feature 
Extractor

Feature 
Extractor

Generator

Human Keystroke DB 

Synthetic Keystroke DB
Bot/Human 
Classifier

Bot

Human

Synthesis Approach 2

Synthesis Approach 1

Synthesis Approach 3

Keystroke Feature 
Extractor

Input 
Keystroking

Inference

Learning

Figure 3. Application of the three proposed keystroke data synthesis approaches to bot detection.

5. Experiments and Results

5.1. Experimental Protocol

We divide the Dhakal database in two sets with 100,000
subjects for training and the remaining 68,000 subjects for
testing. Including or not the key-codes in the classifier can
have great relevance in the detection of bots since one of our
synthesis approaches takes into account the key for the cre-
ation of times whereas the others not. As a result, we con-
sider experiments with and without the key-codes to better
understand its impact in the performance. In addition, the
use of key-codes may be prevented to protect the privacy of
subjects. It is therefore interesting to see the performance
of the classifiers when this information is available or not.

The scarcity of labeled bot samples is a common chal-
lenge in bot detection [33]. For this reason, the experi-
ments are divided into different scenarios depending on the
data available to train the bot detector (from 20 subjects to
500). Each subject contains 15 real and 15 synthetic sam-
ples. Therefore, training with 20 subjects results in 300 syn-
thetic samples and 300 human samples. All the models are
evaluated using the same 500 bot and 500 human samples
(15,000 samples in total).

Two main objectives are considered in the analysis. First,
the quantitative evaluation of the synthesis methods (O1).
Second, the evaluation of the keystroke bot detection (O2).
Previous objectives (O1, O2) are analyzed depending on the
multiple variables mentioned: i) the number of bot samples
available to train the classifier; ii) the classification algo-
rithm (LSTM, SVM, RF, and GNB) and iii) the availability
of key-codes to train the classifiers.

The experimental protocol comprises two scenarios as-
suming the availability or not of synthetic data: i) Closed
Set (Table 1); and ii) Open Set (Table 2). In the Closed Set
scenario we trained the bot detector with samples generated
with the same synthesizer used in test (different samples but
same generation method). In the Open Set scenario we train
the detector using samples generated with a synthesizer dif-
ferent to the one used for the test samples. This scenario al-
lows to evaluate the generalization capacity of the bot detec-

tors. Everything is evaluated according to the classification
accuracy of the model (i.e., human/real vs synthetic/bot).

It is important to note that the aim of the experiments is
not to confront the different generation approaches but to
analyze how they can be used to detect bots generated with
different synthesis approaches. The final aim is to gener-
ate synthetic databases that can be used to train these bot
detectors.

5.2. Results

The first experiments aim to analyze the capacity of
the generation methods to synthesize human-like data (O1)
and also to solve the question whether including synthetic
data in training can improve the classification results and
is therefore useful. For this, we focus on the performances
obtained by the one-class classifier (OC SVM) and binary
SVM classifier (SVM). The OC SVM is trained using only
human samples while the binary SVM is trained using both
human and synthetic samples. Both classifiers are evaluated
using the same bot and human samples. The results are pre-
sented in Table 1 (first 4 columns). The OC SVM classifier
shows a much lower bot detection accuracy (around 50%)
than the binary SVM (between 77% and 100%). On the
one hand, the low performance of the OC SVM suggests
that synthetic samples present realistic patterns similar to
those obtained from real data (using a one-class classifica-
tion algorithm). On the other hand, the high bot detection
accuracy obtained for the binary SVM classifier answers the
question about the usefulness of including synthetic sam-
ples in training.

The rest of the columns of the Table 1 show the classi-
fication accuracy values of the RBF SVM, LSTM, RF, and
GNB classifiers trained using the Key-Codes (f5

j ) together
with the rest of features (f i

j , i ∈ [1, 4]) (K=1) and without
the key-codes (K=0).

Analyzing again the realism of the synthetic samples
(O1) comparing the different synthesis methods, the clas-
sification accuracy of the models trained with the synthetic
samples generated with the user-dependent model are lower
than those generated with the GNN model (Table 1). Fur-

1056



Classification Model
OC SVM SVM GNB RF LSTM

Gen Model # Train Subjects K=0 K=1 K=0 K=1 K=0 K=1 K=0 K=1 K=0 K=1

User-dep
20 0.43 0.44 0.79 0.77 0.65 0.65 0.87 0.88 0.50 0.50
100 0.54 0.54 0.83 0.79 0.63 0.63 0.92 0.92 0.51 0.51
500 0.53 0.54 0.93 0.90 0.64 0.64 0.94 0.95 0.93 0.99

Univ
20 0.43 0.44 0.89 0.82 0.68 0.68 0.94 0.94 0.53 0.53
100 0.55 0.56 0.97 0.98 0.67 0.67 0.98 0.98 0.76 0.79
500 0.53 0.54 1.00 1.00 0.70 0.70 1.00 1.00 1.00 1.00

GNN
20 0.49 0.47 0.88 0.80 0.68 0.68 0.95 0.95 0.53 0.52
100 0.52 0.51 0.97 0.97 0.64 0.64 0.98 0.98 0.69 0.60
500 0.53 0.53 0.99 0.99 0.68 0.68 0.99 0.99 1.00 1.00

Table 1. Bot detection classification accuracy for the different detectors and synthesis methods using a Closed Set. K=0 implies no use of
key-codes when training the classifier and K=1 implies the use of key-codes. The detectors are: One-Class Support Vector Machine (OC
SVM), Support Vector Machine (SVM), Gaussian Naive Bayes (GNB), Random Forest (RF), and Long Short-Term Memory (LSTM).
Accuracy results for evaluation users.

thermore, the GNN model presents in general lower re-
sults than the universal one. A conclusion can be drawn
from here: from the way in which the synthetic samples
are generated and the models trained, it is more relevant
a coherence between the different keystroke time features
f i, i ∈ [0, 4] than the coherence between each keystroke
time feature f i, i ∈ [0, 4] and the key-code f i, i = 5.

The following analysis of the bot detection performance
(O2), is divided according to the number of samples avail-
able to train the classifiers (Table 1).

Large (500 subjects): Universal and GNN methods: the
results suggest that with enough subjects, perfect classifica-
tion is achieved using SVM, LSTM, and RF. GNB does not
achieve high accuracy because this algorithm does not take
into account correlations between the different keystroke
time features. This also explains why the result is the
same with or without the use of key-codes. User-dependent
method: perfect classification is only achieved with the
LSTM classifier and using the key-codes. The LSTM clas-
sifier is the one with the highest accuracy when there is
enough information to train it. Also, using the key-code
information allows to identify better. The SVM and RF
methods achieve similar performances while the GNB has
the lowest accuracy. This is again due to the fact that this
method does not take into account correlations between the
different keystroke time features. For the same reason it
also has a performance similar to the universal and GNN
methods.

Medium (100 subjects): Universal and GNN methods:
The performance of the LSTM classifier plummets (an av-
erage 30 %), the top results are achieved with SVM and
RF classifiers. This is because these classifiers do not need
as much training as LSTM. User-dependent method: The
classifier with the best accuracy in this case is RF over
SVM (1% to 5% better). The synthetic and real samples

are closer together in the multidimensional space used by
SVM as they are more similar to each other, so it needs
more training to correctly tune the hyperplane that separates
them. In this case also the LSTM classifier performs worse
than GNB also because the synthesis is more complex and
the classifier needs more training.

Limited (20 subjects): For both universal and user-
dependent methods, RF offers the highest performance
when there is a high sample sparsity. The RF algorithm
based on tree decision favors detection with sparse samples.

The use or not of key-codes does not affect the RF and
GNB classifiers at all. The SVM classifier perform worse
when the key-codes are included in the feature vector. Note
that the text used to generate the bot samples was directly
extracted from human samples, therefore, the inclusion of
the key-codes did not result in an advantage during the bot
detection for this classifier. Nevertheless, the LSTM classi-
fier is capable of associating each key with a time and for
this reason it detects impostor samples better in Universal
and User-dependent models. In the case of the GNN model,
these times have been taken into account to create the syn-
thetic samples and therefore it is more difficult for the clas-
sifier to detect them.

The generalization ability of the bot detector was pre-
sented in Table 2 with a cross database experiment. We
focus on the Universal and GNN methods (both methods
are user independent so their comparison is fair). In this
case, the samples used to train the bot detectors were gener-
ated with a method different of the one used to generate the
test samples. The results demonstrate that, in general, train-
ing with samples synthesized with the GNN model allows
to better generalize against unseen synthetic samples of the
counter model.

In the last experiment (Table 3) we compare our classi-
fiers with previous state-of-the-art keystroke bot detection

1057



Classification Model
Gen Model OC SVM SVM GNB RF LSTM
Train Test # Train Subjects K=0 K=1 K=0 K=1 K=0 K=1 K=0 K=1 K=0 K=1

Univ GNN
20 0.49 0.48 0.70 0.72 0.63 0.63 0.84 0.82 0.48 0.47
100 0.54 0.55 0.67 0.70 0.63 0.63 0.68 0.74 0.66 0.65
500 0.53 0.54 0.59 0.62 0.64 0.64 0.51 0.54 0.99 0.99

GNN Univ
20 0.49 0.48 0.78 0.68 0.65 0.65 0.88 0.89 0.56 0.58
100 0.53 0.53 0.94 0.91 0.64 0.64 0.91 0.93 0.69 0.68
500 0.53 0.54 0.97 0.98 0.64 0.64 0.94 0.95 1.00 1.00

Table 2. Bot detection classification accuracy for the different detectors and synthesis methods using an Open Set. K=0 implies no use of
key-codes when training the classifier and K=1 implies the use of key-codes. The detectors are: One-Class Support Vector Machine (OC
SVM), Support Vector Machine (SVM), Gaussian Naive Bayes (GNB), Random Forest (RF), and Long Short-Term Memory (LSTM).
Accuracy results for evaluation users.

Gen Model
Train Test Train Test

Method Univ GNN GNN Univ
[5] (Euclidean) 0.49 0.49
[34] (SVM) 0.62 0.98
Ours (OCSVM) 0.54 0.54
Ours (RF) 0.54 0.95
Ours (GNB) 0.64 0.64
Ours (LSTM) 0.99 1.00

Table 3. Classification accuracy comparison between the proposed
approaches and existing methods. The experiments have been car-
ried out assuming a large number of training subjects (500), the
use of the key-codes (K=1) and Open Set environment.

approaches [5, 34]. The features used in [5, 34] were sim-
ilar to the time features employed in our methods. For a
fair comparison, we train and evaluate the methods pro-
posed in [5, 34] with the same synthetic and real samples
used in our experiments. This comparison has been car-
ried out assuming a large number of training subjects (500),
using key-codes and Open-set environment. The results in
the table show that the GNN synthetic samples represent
a more difficult challenge for the detectors. The detection
performance of these samples varies from 49% to 99%. The
results suggest that GNN samples can be used to detect
synthetic samples generated with a different synthesizer ap-
proach. Our LSTM classifier presents the highest detection
performance, achieving a 100% bot detection accuracy for
both types of synthetic samples.

6. Conclusions and Limitations
In this work we have analyzed the feasibility of using a

behavioral trait (dynamic typing) as a passive CAPTCHA
where the subject does not need to perform any cognitive
challenge in order for the system to determine if this subject
is a bot or a human.

To train and test the classification models, synthetic sam-

ples have been created. We have analyzed three different
synthesis methods (Universal, User-dependent, and GNN).

We then trained multiple bot detectors using the syn-
thetic data generated with the proposed methods. We em-
ployed different classification algorithms including SVM,
RF, GNB, and LSTM network, observing that each one
has different behaviour and performance. Depending on
the classification system, the generation part has a differ-
ent performance but with enough training data the classifi-
cation system is able to perfectly classify between humans
and bots. We therefore conclude that keystroke dynamics
can be used as a passive CAPTCHA.

Another important result of this work is the proposal of
a novel Generative Neural Network. This network allows
learning the distribution followed by the different classes
within a data set. It is a pioneering network both for its
architecture and for the way it learns from the data, with a
loss function that evaluates the distribution.

The utilities of this network are many, whenever you
want to learn a distribution or focus the learning of a net-
work on distributions instead of individual values. The po-
tential of this network lies in using the network as a unit and
creating a network formed by these units, in this way one
could learn complex functions (even non-linear) and have a
non-deterministic network in classification.

The main line of future work is a system that presents
both intra-user dependencies and key dependencies. To this
end, different generative systems can be trained for differ-
ent subjects (Generative user-dependent) or a certain corre-
lation between the different keystroke time features can be
included in the learning of the generative network itself.

Acknowledgment

This work has been supported by project BBforTAI
(PID2021-127641OB-I00 MICINN/FEDER). The work
of D. deAlcala is supported by a FPU Fellowship
(FPU21/05785) from the Spanish MIU.

1058



References
[1] A. Acien, A. Morales, J. Fierrez, and R. Vera-Rodriguez.

BeCAPTCHA-Mouse: Synthetic Mouse Trajectories and
Improved Bot Detection. Pattern Recognition, 127:108643,
2022. 1

[2] A. Acien, A. Morales, J. Fierrez, R. Vera-Rodriguez, and O.
Delgado-Mohatar. BeCAPTCHA: Behavioral Bot Detection
using Touchscreen and Mobile Sensors benchmarked on Hu-
MIdb. Engineering Applications of Artificial Intelligence,
98:104058, 2021. 1

[3] A. Acien, A. Morales, John V. Monaco, R. Vera-Rodrı́guez,
and Julian Fierrez. TypeNet: Deep learning keystroke bio-
metrics. IEEE Transactions on Biometrics, Behavior, and
Identity Science, 4(1):57–70, 2022. 2, 3

[4] Yousof Al-Hammadi and Uwe Aickelin. Detecting bots
based on keylogging activities. In Third International Con-
ference on Availability, Reliability and Security, pages 896–
902, 2008. 2

[5] Emtethal K Alamri, Abdullah M Alnajim, and Suliman A Al-
suhibany. Investigation of using captcha keystroke dynamics
to enhance the prevention of phishing attacks. Future Inter-
net, 14(3):82, 2022. 2, 8

[6] Md Liakat Ali, Kutub Thakur, Charles C Tappert, and
Meikang Qiu. Keystroke biometric user verification using
hidden markov model. In 2016 IEEE 3rd International Con-
ference on Cyber Security and Cloud Computing (CSCloud),
pages 204–209, 2016. 2

[7] Blaine Ayotte, Mahesh Banavar, Daqing Hou, and Stephanie
Schuckers. Fast free-text authentication via instance-based
keystroke dynamics. IEEE Transactions on Biometrics, Be-
havior, and Identity Science, 2(4):377–387, 2020. 2

[8] Francesco Bergadano, Daniele Gunetti, and Claudia Picardi.
User authentication through keystroke dynamics. ACM
Transactions on Information and System Security, 5(4):367–
397, 2002. 2

[9] Vallance Chris. ChatGPT: New AI chatbot has everyone talk-
ing to it. https://www.bbc.com/news/technology-63861322,
BBC, 7 December 2022. 1

[10] Vivek Dhakal, Anna Maria Feit, Per Ola Kristensson, and
Antti Oulasvirta. Observations on typing from 136 million
keystrokes. In Proceedings of CHI Conference on Human
Factors in Computing Systems, pages 1–12, 2018. 3, 5

[11] Julian Fierrez, Aythami Morales, Ruben Vera-Rodriguez,
and David Camacho. Multiple classifiers in biometrics. part
2: Trends and challenges. Information Fusion, 44:103–112,
November 2018. 4

[12] J. Fierrez-Aguilar, D. Garcia-Romero, J. Ortega-Garcia,
and J. Gonzalez-Rodriguez. Bayesian adaptation for user-
dependent multimodal biometric authentication. Pattern
Recognition, 38(8):1317–1319, August 2005. 4

[13] J. Fierrez-Aguilar, J. Ortega-Garcia, and J. Gonzalez-
Rodriguez. Target dependent score normalization techniques
and their application to signature verification. IEEE Trans.
on Systems, Man Cybernetics - Part C, 35(3):418–425, Au-
gust 2005. 4

[14] R. Gaines, S. Press, W. Lisowski, and N. Shapiro. Authenti-
cation by keystroke timing : some preliminary results. RAND
Corporation, 1980. 2

[15] H Gamboa, ALN Fred, and AK Jain. Webbiometrics: User
verification via web interaction. In Biometrics Symposium,
pages 1–6, 2007. 1

[16] Radauskas Gintaras. AI-enabled cyberattacks might become
norm in next five years. https://cybernews.com/news/ai-
enabled-cyberattacks-new-norm/, Cybernews, 15 December
2022. 1

[17] Nahuel González, Enrique P Calot, Jorge S Ierache, and
Waldo Hasperué. Towards liveness detection in keystroke
dynamics: Revealing synthetic forgeries. Systems and Soft
Computing, 4:200037, 2022. 2

[18] Aditya Grover, Manik Dhar, and Stefano Ermon. Flow-
GAN: Combining maximum likelihood and adversarial
learning in generative models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018. 2, 4

[19] Anil Jain, Karthik Nandakumar, and Arun Ross. 50 years of
biometric research: Accomplishments, challenges, and op-
portunities. Pattern Recognition Letters, 79:80–105, 2016.
1

[20] JooSeuk Kim and Clayton D Scott. Robust kernel density
estimation. The Journal of Machine Learning Research,
13(1):2529–2565, 2012. 3

[21] Qiao Liu, Jiaze Xu, Rui Jiang, and Wing Hung Wong.
Density estimation using deep generative neural net-
works. Proceedings of the National Academy of Sciences,
118(15):e2101344118, 2021. 2, 4

[22] Sebastien Marcel, Julian Fierrez, and Nicholas Evans. Hand-
book of Biometric Anti-Spoofing: Presentation Attack Detec-
tion and Vulnerability Assessment. Springer, 2023. 1

[23] Abir Mhenni, Denis Migdal, Estelle Cherrier, Christophe
Rosenberger, and Najoua Essoukri Ben Amara. Vulnerabil-
ity of adaptive strategies of keystroke dynamics based au-
thentication against different attack types. In International
Conference on Cyberworlds (CW), pages 274–278, 2019. 2

[24] Denis Migdal and Christophe Rosenberger. Analysis of
keystroke dynamics for the generation of synthetic datasets.
In International Conference on Cyberworlds (CW), pages
339–344, 2018. 2

[25] Denis Migdal and Christophe Rosenberger. Statistical mod-
eling of keystroke dynamics samples for the generation of
synthetic datasets. Future Generation Computer Systems,
100:907–920, 2019. 2

[26] John V Monaco. Robust keystroke biometric anomaly detec-
tion. arXiv preprint arXiv:1606.09075, 2016. 2

[27] John V Monaco, Md Liakat Ali, and Charles C Tappert.
Spoofing key-press latencies with a generative keystroke dy-
namics model. In IEEE 7th International Conference on Bio-
metrics Theory, Applications and Systems (BTAS), pages 1–
8, 2015. 2

[28] Aythami Morales, Julian Fierrez, Alejandro Acien, Ruben
Tolosana, and Ignacio Serna. SetMargin loss applied to deep
keystroke biometrics with circle packing interpretation. Pat-
tern Recognition, 122:108283, 2022. 2, 4

1059



[29] A. Morales, J. Fierrez, and J. Ortega-Garcia. Towards
predicting good users for biometric recognition based on
keystroke dynamics. In Proc. of European Conference on
Computer Vision Workshops, volume 8926 of LNCS, pages
711–724. Springer, September 2014. 4

[30] A. Morales, J. Fierrez, R. Tolosana, J. Ortega-Garcia, J.
Galbally, M. Gomez-Barrero, A. Anjos, and S. Marcel.
Keystroke biometrics ongoing competition. IEEE Access,
page 7736–7746, 2016. 2

[31] Christopher Murphy, Jiaju Huang, Daqing Hou, and
Stephanie Schuckers. Shared dataset on natural human-
computer interaction to support continuous authentication
research. In IEEE International Joint Conference on Bio-
metrics (IJCB), pages 525–530, 2017. 2

[32] Christian Rathgeb, Ruben Tolosana, Ruben Vera-Rodriguez,
and Christoph Busch. Handbook of Digital Face Manipula-
tion and Detection: From DeepFakes to Morphing Attacks.
Springer, 2022. 1

[33] Manmeet Singh, Maninder Singh, and Sanmeet Kaur. Is-
sues and challenges in DNS based botnet detection: A sur-
vey. Computers & Security, 86:28–52, 2019. 1, 5, 6

[34] D. Stefan, S. Xun, and D. Yao. Robustness of keystroke-
dynamics based biometrics against synthetic forgeries. Com-
puters & Security, pages 109–121, 2012. 2, 8

[35] Giuseppe Stragapede, Paula Delgado-Santos, Ruben
Tolosana, Ruben Vera-Rodriguez, Richard Guest, and
Aythami Morales. Mobile keystroke biometrics using
transformers. In Proc. IEEE Intl. Conf. on Automatic Face
and Gesture Recognition (FG), 2023. 2

[36] Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain
Murray, and Hugo Larochelle. Neural autoregressive dis-
tribution estimation. The Journal of Machine Learning Re-
search, 17(1):7184–7220, 2016. 2, 4

[37] Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang,
Long Zhou, Shujie Liu, Zhuo Chen, Yanqing Liu, Huam-
ing Wang, Jinyu Li, et al. Neural codec language models
are zero-shot text to speech synthesizers. arXiv preprint
arXiv:2301.02111, 2023. 1

[38] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2223–
2232, 2017. 1

1060


