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Abstract

Gait recognition has been a hot topic of extensive re-
search in video-based surveillance and forensics. Com-
pared with traditional rectilinear cameras mainly used in
existing studies, fisheye cameras have a wider field of view,
and hence are more suitable for gait recognition applica-
tions in navigation robots, which enables more flexible and
free surveillance scenarios. In this paper, to the best of our
knowledge, we propose the first framework for gait recog-
nition from images captured by fisheye cameras. To deal
with severe image distortion and partial body occlusions
induced by fisheye cameras set at lower heights, we com-
bine a set of preprocessing procedures with a state-of-the-
art model-based gait recognition method. Specifically, an
input fisheye image is first expanded into a panoramic view
before pedestrian detection. A person-dependent gnomonic
projection is then applied to the detected human region for
distortion correction. Next, background regions are atten-
uated to improve human model fitting accuracy in complex
outdoor scenes. The resulting rectified image sequence is fi-
nally fed into the gait recognition network for human model
estimation and gait feature extraction. To validate the per-
formance, we collect a real fisheye image gait dataset with
various views and capture scenarios, including simplified
indoor and challenging outdoor scenes. Various experi-
ments on the collected dataset demonstrate the effectiveness
of the proposed method.

1. Introduction
Gait recognition, which is a biometric technique that

identifies a person based on his/her body shape and pos-
ture while walking, has become increasingly popular nowa-
days. Because of its unique advantages over other biomet-
rics, such as easy capture over a long distance without hu-
man cooperation, gait recognition owns great application
potential in surveillance, criminal investigation, and foren-
sics [8, 27, 43], and has been extensively studied in the past
dozen years [11, 21, 40, 44, 55, 65].

Existing gait recognition studies mainly focus on im-

Figure 1. Gait image examples captured by a fisheye camera. The
person circled in red is the walking subject. Because the cam-
era height is set relatively lower, the occlusion increases as he ap-
proaches the camera. In addition, there are severe distortions in
the fisheye images.

ages captured by traditional rectilinear surveillance cam-
eras, which can only monitor a fixed area with a limited
field of view. In contrast, fisheye cameras have an advan-
tage of a wider field of view, which helps to eliminate blind
spots in surveillance, and hence, fisheye cameras have re-
cently gained growing attraction in many computer vision
tasks, such as person re-identification [4, 14] and pose es-
timation [63, 68]. Gait recognition using fisheye cameras,
which has not been investigated to the best of our knowl-
edge, is also more beneficial for some potential applica-
tions. For example, for a gait recognition system mounted
on a navigation robot, fewer fisheye cameras are needed to
cover a larger space than rectilinear cameras. In this case,
the navigation robot can monitor different places more flex-
ibly and freely, making it easier to surveillance tasks such
as finding lost children in shopping malls.

However, unlike surveillance cameras set at high po-
sitions, the relatively lower height of fisheye cameras
mounted on robots (e.g., one-meter height) can easily lead
to partial observation of a target person in captured gait
video sequences. As shown in Fig. 1, the full body of
a person may be observed when he/she is far away from
the camera, and the unobserved regions (i.e., out of the
image, a kind of partial occlusion) becomes larger and
larger as he/she approaches. Most studies on gait recog-
nition for rectilinear images with partial occlusion extract
features from appearance-based representations, which re-
quire known full-body bounding boxes to keep the input oc-

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1030



cluded gait images still size-normalized and human center-
registered [28, 48, 50, 52, 62]. In contrast, model-based ap-
proaches [37, 39, 66] are believed to have the advantage of
addressing occlusions without such a requirement, since a
full human model can be fitted even on a partially occluded
image with only visible body parts. Therefore, we also deal
with gait recognition from fisheye images with occlusions
using a model-based method.

Another important issue with fisheye images is the se-
vere distortion due to the lens geometry. As shown in Fig. 1,
the distortion of human appearance (e.g., body shape, limb
length, and body proportions) changes significantly with the
spatial position during walking. Additionally, the orienta-
tion of the human body in fisheye images is often inclined,
which is another difference from the usual rectilinear im-
ages. Because of these challenges, conventional gait recog-
nition methods and even person detection algorithms may
easily fail [5, 76] if directly applied to fisheye images.

Therefore, we propose a framework combining a set of
preprocessing procedures and a state-of-the-art gait recog-
nition network for gait recognition from fisheye images.
The contributions of this work are three-fold.
1. First attempt at gait recognition from fisheye images
considering distortion and occlusions.

To the best of our knowledge, this is the first work aimed
at gait recognition from images captured by fisheye cam-
eras, taking into account image distortion and partial oc-
clusions, which are easy to occur in real applications, but
have been neglected in existing omnidirectional camera-
based gait recognition works [56, 57]. Compared with rec-
tilinear cameras, gait recognition using fisheye cameras is
more favorable for flexible surveillance applications such
as navigation robots owing to the advantage of wider field
of views.
2. A baseline framework for a reasonable combination
of preprocessing and a gait recognition network.

To mitigate differences between fisheye and normal rec-
tilinear images, we sequentially apply a set of preprocess-
ing procedures for distortion correction and background ef-
fect attenuation. In particular, instead of a global distor-
tion correction often used in other computer vision tasks
with fisheye lenses [3,7,14], we employ a person-dependent
projection for the detected human bounding box regions to
minimize residual distortion in the corrected human body.
The rectified images are then used for gait feature learn-
ing through a state-of-the-art occlusion-aware model-based
gait recognition network [66], which is properly fine-tuned
on the rectified fisheye data.
3. Effectiveness validated on real fisheye data.

We collected the first gait dataset using real fisheye
cameras. Multiple cameras were used to capture the sub-
jects’ walking sequences from different observation views,
such as front and side views. Different capture scenarios

were also considered, including indoor scenes with simpli-
fied backgrounds, and outdoor scenes with complex back-
grounds and illumination conditions. The effectiveness of
the proposed method is validated on the collected dataset
through a variety of experimental analyses.

2. Related Work

2.1. Gait recognition

While a few works use omnidirectional cameras with-
out considering distortion and occlusion [56, 57], most gait
recognition studies use rectilinear cameras, which can be
roughly divided into two categories, appearance-based and
model-based methods. Appearance-based methods typi-
cally extract features from silhouette-based gait represen-
tations, such as gait energy image (GEI) [21] and fre-
quency domain features [44]. Various metric learning tech-
niques [19, 34,42, 45, 46,49] and deep networks [22,36, 55,
60, 65, 67, 71] are further applied to improve feature invari-
ance against various covariates (e.g., views and clothing).
Recent CNN-based works explore inputting silhouette se-
quences by regarding input as an unordered set [11, 12, 24],
or incorporating part-based features [18, 25] and 3D CNNs
to model gait temporal information [26, 40], which achieve
superior performance over GEI-based methods. A few stud-
ies directly handle RGB images, excluding useless color in-
formation through disentangled representation learning [74,
75] or trainable synthetic silhouettes generation [38].

Model-based approaches often exploit pose features by
fitting a human model on the input RGB image. By ap-
plying pose estimation models such as OpenPose [10] and
HRNet [58], skeletal joint locations are obtained for further
feature extraction via CNN [2, 39] or graph convolutional
networks [61, 64]. A model-based method was proposed
in [37], using both shape and pose features obtained from
the skinned multi-person linear (SMPL) [41] model esti-
mated by human mesh recovery (HMR) network [30].

To address occlusion in captured gait videos, existing
works mainly use appearance-based methods, which di-
rectly learn relatively invariant features from occluded se-
quences [9, 13, 28, 50, 52, 72], or reconstruct non-occluded
silhouettes prior to feature extraction [23, 48, 54, 62]. As
a prerequisite, a full-body bounding box including unob-
served parts needs to be known to maintain the consistency
of human body scales and positions in the input occluded
image sequence. A recent occlusion-aware model-based
method (OA-ModelGait) [66] works without the above re-
quirement by directly fitting an SMPL model on the oc-
cluded image, achieving state-of-the-art recognition perfor-
mance. Therefore, we employ OA-ModelGait [66] as the
gait feature extractor by fine-tuning it on the rectilinear-like
images obtained after preprocessing the raw fisheye images.
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Figure 2. Overview of the proposed method. Given a fisheye image sequence, a set of preprocessing procedures are first applied to
rectify distortions and reduce background effects. The resulting images are finally fed into a state-of-the-art gait recognition network,
OA-ModelGait, for feature extraction. Only the walking course area is shown in the expanded panorama image.

2.2. Other vision tasks using fisheye images

Fisheye cameras have been widely explored in many
computer vision tasks, such as surveillance [1, 31, 32], se-
mantic segmentation [17,53,59], pose estimation [3,47,63,
68, 73], and person re-identification [4, 7, 14, 15, 35, 76].
To cope with the distortion in fisheye images, panoramic
images are generated for simple correction in surveil-
lance works [31, 32]. Camera calibration-based correc-
tion [3, 7, 14] and image transformation networks [35, 47]
are also often used to obtain rectilinear images prior to the
main tasks. Some recent studies work directly on fisheye
images, such as segmentation using deformable convolu-
tions [17,53], and 3D pose estimation combined with back-
projection [63,68,73], which all require the ground-truth on
original fisheye images.

3. Proposed method
3.1. Overview

Figure 2 shows the overview of the proposed method,
which includes a set of preprocessing procedures and a
gait feature learning network. Given a raw fisheye image,
panoramic expansion is first applied to roughly normalize
the body orientations of walking subjects. Next, pedes-
trian detection is performed on the panorama image, fol-
lowed by instance segmentation for the detected subject.
A person-dependent gnomonic projection is then applied to
both the obtained RGB and the corresponding silhouette of
the bounding box for distortion correction. Finally, back-
ground regions are attenuated in RGB to mitigate the ef-
fects on subsequent human model fitting. The processed
image sequence is input into OA-ModelGait [66] to esti-
mate the SMPL model and extract the gait feature used for
final recognition.

3.2. Preprocessing

3.2.1 Panoramic expansion

Since existing pedestrian detectors cannot detect subjects
with large distortions and inclined bodies from raw fisheye

images, we first apply panoramic expansion based on the
longitude-latitude mapping to roughly mitigate image dis-
tortion and normalize body orientations to normal upright
poses. Let P (φ, ω) be a point in the longitude-latitude rep-
resentation on the hemispherical surface and p(ρ, α) be a
point in polar coordinate representation on the fisheye im-
age projected from point P (see Fig. 3). Assuming that the
fisheye lens uses an equidistant mapping function [6], its
maximum angle of view is π, and the radius of the fish-
eye image is R, we can get the focal length f = 2R

π ,
and the distance from point p to the fisheye image center
ρ = fθ, where θ is the angle between point P and the op-
tical axis. Because we have the relationship between the
longitude-latitude representation and the polar coordinate
as θ = π

2 − ω and α = φ + π, the point p(u, v) on the
image plane can be represented as

u = u0 + ρ cosα = u0 +R

(
1− 2ω

π

)
cos(φ+ π)

v = v0 + ρ sinα = v0 +R

(
1− 2ω

π

)
sin(φ+ π),

(1)

where (u0, v0) is the image coordinate of the center of the
fisheye circle. Finally, given ω ∈ [0, π

2 ] and φ ∈ [0, 2π], the
panoramic expansion image is easily obtained by interpola-
tion from the fisheye image as shown in Fig. 3 (b).

3.2.2 Pedestrian detection and background segmenta-
tion

We then apply a well-established pedestrian detector, i.e.,
YOLOv5 [29] to the expanded panorama images, because
it is one of the fastest detectors. After localizing the tar-
get subject, we apply the instance segmentation method
PointRend [33] to obtain the silhouettes for the purpose of
the background attenuation described later. Because tight
bounding boxes often lead to worse segmentation results for
the subjects, we add a margin area of 50% of the bounding
box both horizontally and vertically to include a little more
background. The loose bounding box area is cropped as in-
put to PointRend, and after segmentation is complete, only
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Figure 3. Illustration of panoramic expansion: a) projection from
hemispherical surface to image plane; (b) longitude-latitude ex-
pansion.

the tight bounding box area is re-cropped for the following
processes.

3.2.3 Gnomonic projection

Although the panoramic expansion corrects the body ori-
entation, making the detection and segmentation success-
ful, some detailed parts still have large distortion, espe-
cially the legs near the bottom of the panorama (see Fig.
2). There are some deep learning-based studies [69, 70]
to rectify distortion by training with pre-prepared undis-
torted ground-truths. To avoid the high cost of the ground-
truth preparation, we therefore choose a traditional geo-
metric projection for further distortion correction. Unlike
the global projections often used in other works [3, 7],
we apply a person-dependent gnomonic projection [16] to
detected bounding box area and its corresponding silhou-
ette image to specifically rectify distortions in the human
body. Gnomonic projection is a nonconformal map pro-
jection that projects points on the surface of a sphere from
the sphere’s center onto a tangent plane. As shown in
Fig. 4, a point P (φ, ω) in the longitude-latitude represen-
tation on the unit hemispherical surface is projected to a
point Q(u, v) on the image plane, which is parallel to the
tangent plane whose tangent point is S(π2 , 0). In a 3D
Cartesian coordinate system, let Q = [u0 − u, d, v0 − v]T ,
we have P = [(u0 − u)/D, d/D, (v0 − v)/D]T , where
D =

√
(u0 − u)2 + d2 + (v0 − v)2, d is the distance be-

tween the projected image plane and the z-axis, and (u0, v0)
is the image coordinate of the center of the projected image
plane. As P = [cosω cosφ, cosω sinφ, sinω]T , the longi-
tude and latitude can be computed as

φ = arctan
d

u0 − u
, ω = arcsin

v0 − v

D
. (2)

Therefore, given d and (u0, v0) computed based on the
target bounding box, the projected image can be easily
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Figure 4. Illustration of gnomonic projection.

obtained by interpolation from the longitude-latitude ex-
panded image.

The projection above is based on the tangent point
S(π2 , 0). In our implementation, we set the tangent point
S′(φ′, ω′) at the center of the subjects’ bounding box; there-
fore, we first rotate the point P around the z-axis by the an-
gle φ′ − π

2 , and then rotate around the x-axis by the angle
ω′.

3.2.4 Background attenuation

Due to the complex background and illumination conditions
in captured images, especially in outdoor scenes, it becomes
very difficult to fit human body models directly on RGB im-
ages, and hence, we apply background attenuation to reduce
the effect. Given the cropped RGB and corresponding sil-
houettes after gnomonic projection, we keep the foreground
pixels and fill the background pixels with green (see Fig.
2). The obtained images are used as input to the subsequent
recognition network.

3.3. Gait recognition

3.3.1 OA-ModelGait

OA-ModelGait [66] is a state-of-the-art model-based gait
recognition method that handles occlusions by directly fit-
ting SMPL models on input images with only visible body
parts, unlike other methods that require full-body bound-
ing boxes. OA-ModelGait contains three modules: se-
quence encoder, occlusion attenuation module, and recog-
nition module. The sequence encoder first estimates 85D
SMPL parameters from each input image, which consist of
10D shape, 69D pose, 3D global rotation, and 3D camera
parameters. The occlusion attenuation module then reduces
the dependence of the estimated SMPL parameters on the
input occlusion patterns.

Specifically, the gait phase is first estimated for each in-
put image, and then the phases are synchronized between
different input sequences by interpolating the estimated
SMPL parameters into the phases of a canonical gait cy-
cle. The synchronized SMPL body parameters are finally
transformed into occlusion-independent parameters by us-
ing the camera parameters as cues for the input occlusion
pattern. The transformed SMPL parameters are then fed
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into the recognition module to extract gait features: a shape
feature is a shape parameter averaged over a sequence; and
a pose feature is learned from the 3D joint locations com-
puted from the SMPL meshes using a CNN.

3.3.2 Finetune from pre-trained model

The original OA-ModelGait [66] was pre-trained on syn-
thetic occlusion images from OU-MVLP dataset [51],
which was captured by common rectilinear cameras. Con-
sidering the difference from rectified fisheye images with
real occlusions, we fine-tune the pre-trained model on our
data to boost the performance. As for the loss functions
used for SMPL estimation, we modify one defined in the
original paper [66] by excluding the ground-truth supervi-
sion, which is unavailable for our dataset as described be-
low, and re-define the sum of the remaining loss functions
as Lother.

In the pre-training of OA-ModelGait, phase estimation
is supervised by the ground-truth phase labels, and con-
strained by a smoothness loss and a penalty loss to keep the
temporal continuity of the estimated phases in a sequence.
However, the ground-truth phase labels are difficult to ob-
tain for real fisheye images. Given that the estimation error
of the pre-trained model is small for key gait phases (e.g.,
single-support and double-support phases) of fisheye image
sequences, we only use smoothness and penalty losses as
the phase loss Lphase to alleviate the phase estimation er-
rors of other intermediate phases in the fine-tuning stage.

The final estimated SMPL parameters and 3D body joint
locations are supervised by the corresponding ground-truth
in the pre-training. However, unlike occlusion images syn-
thesized from OU-MVLP’s full-body images, the ground-
truth SMPL models are unavailable for our data. Therefore,
we use the SMPL body parameters obtained from the pre-
trained model as the pseudo ground-truth to compute the
estimation loss Lgt for coarse supervision, and refine the
estimation through other losses and subsequent recognition
loss. As for the camera parameters (i.e., scale and trans-
lation parameters for 2D projection on the original image),
we use constraints on the foot joint locations for implicit su-
pervision because we assume the foot bottom is visible and
located at the bottom of the cropped image unlike the head
top is sometimes unobserved. Specifically, the location of a
joint projected onto the image plane can be computed using
the camera parameters as [30]

cy = ((py + ty)s+ 1)H/2, (3)

where cy is the vertical image coordinate of a joint, H is the
image height, py is the projected coordinate of the 3D joint
on the template 2D image via orthographic projection, and
s and ty are the scale and vertical translation parameters, re-
spectively. Ideally, at least one foot should be at the bottom

Session1-IC1 Session1-IC2 Session2-IC3

Session1-OC2 Session2-OC3Session1-OC1 Session2-OC4

Figure 5. Examples images from the fisheye gait dataset. The
text above each image is the label of the camera. “I” indicates in-
door, “O” indicates outdoor, and “C” indicates camera. The indoor
images have simplified green backgrounds, while the outdoor im-
ages have more complex backgrounds and illumination changes.
The same camera label between two sessions indicates a similar
capture background, but not the same camera/lens model. More
examples are shown in the supplementary.

of the image, i.e., cfooty = H , where cfooty is the larger ver-
tical coordinate between the two foot joints. Therefore, the
constraint to minimize the distance between the foot joint
location and the image bottom can be defined as

Lfoot = ∥(pfooty + ty)s− 1∥22, (4)

which implicitly constrains the scale and translation param-
eters.

For the final recognition module, considering the con-
trastive loss [20] is more suitable for verification tasks of-
ten used in real applications [27], we use it to optimize the
recognition performance, which is computed as

Lrecog =
1

Npair

Npair∑
n=1

(γnd
2
n + (1− γn)max(m− d2n, 0)),

(5)
where Npair is the number of sample pairs in a mini-batch,
dn is the dissimilarity of the n-th pair, m is the margin, and
γn is the flag of the n-th pair, defined as 1 for the same
subject pairs and 0 for different subject pairs.

Finally, the overall loss function is defined as the combi-
nation of the above losses as

Lall = wotherLother + wphaseLphase + wgtLgt

+ wfootLfoot + wrecogLrecog,
(6)

where wphase, wsim, wseq, wgt, wfoot, and wrecog are the
weights for each loss.

4. Data collection
4.1. Capture setup

To validate the performance of the proposed method, we
collected a real fisheye gait dataset containing images cap-
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Figure 6. Examples of the preprocessing results and the corresponding SMPL models estimated by the proposed method. The fisheye
image samples from the top to bottom are captured by the cameras IC1, OC2, and OC4, respectively.

tured in different scenes. Gait videos at 30 fps were cap-
tured by ground-facing fisheye cameras placed on carts ap-
proximately one meter high, which simulated the height of
cameras mounted on robots. Different cameras (e.g., Point
Grey 2.8MP USB camera and HDMABEL Super 2.3Meg
camera) and Fujinon FE185 fisheye lenses with different
focal lengths (e.g., 1.4 and 2.7 millimeters) were used, thus
capturing images at different resolutions (e.g., 1280×1024
and 1920×1200). Each subject walked twice from the start
to the end of the 10-meter-walking course, and hence, two
gait videos can be obtained for each subject. A walking
course was set up indoors and outdoors, respectively. The
former course was simplified with green walls and carpets
as the background, and the latter with the campus natural
environment as different backgrounds (see Fig. 5). While
the subject was walking, multiple cameras captured gait
videos from different views, such as front and side views
(i.e., angles between the optical axis of the camera and the
walking course).

The dataset contains data collected in two sessions con-
ducted in September and December 2021, respectively. In
the first session, each of the 176 subjects walked along both
the indoor and outdoor walking courses. Two cameras were
set up for the indoor course to capture from the front view
and the side view near the starting point, respectively. Four
cameras were set up for the outdoor course, and the cap-
turing views included front view and side views from both
sides of the course. The subjects were separated into two
groups, one group participated in the capture in the morn-
ing and the other group in the afternoon to include videos
under different illumination conditions (see bottom images
in Fig. 5). In the second session, walking videos of another
34 subjects were all collected in the afternoon. The cameras
were set up in similar positions to the first session, with a
slight shift, and an additional camera was added to capture

the indoor course from another side view near the ending
point (see the image ”Session2-IC3” in Fig. 5).

4.2. Protocols

We only use video clips of subjects approaching the cam-
eras (i.e., walking from the start to the camera) as gait se-
quences for recognition. As a result, most cameras cap-
ture sequences containing more than 60 frames, while a few
cameras have sequences of less than 20 frames. For each
subject, the sequence of the first walk is used as the gallery
and the second walk as the probe. We consider two evalua-
tion scenarios: the same-session test, and the across-session
test. In the first scenario, 130 subjects from the first session
are used to fine-tune the OA-ModelGait model, and other
disjoint 46 subjects are used for testing. Due to the illumi-
nation difference between images captured in the morning
and afternoon, we equally choose subjects from both groups
to constitute the training and testing sets. In the second eval-
uation scenario, all 34 subjects from the second session are
used for testing to evaluate the effect of slight changes in
camera settings and the natural environment on the perfor-
mance of the model trained on the first session data.

5. Experiments
5.1. Implementation details

During preprocessing, we filtered out other irrelevant
subjects in the captured image by setting a region of in-
terest for the walking course in the panorama image after
applying pedestrian detection. After preprocessing, follow-
ing [66], we resized the preprocessed images to 224 × 224
and randomly chose 25 consecutive frames from a sequence
for training. If a sequence has less than 25 frames, we re-
peated frames from the beginning. For the fine-tuning of
OA-ModelGait, we set the initial learning rate to 10−5 for
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the first 10K iterations and decreased it by 0.1 for the last
10K iterations. Adam was chosen as the optimizer and the
batch size was set to 8× 8, indicating that there were eight
subjects in a mini-batch, and each subject had eight sam-
ples. The margin m in Eq. (5) was set to 0.2. The weight
parameter wfoot in Eq. (6) was set to 1 and the others set
to the same as ones defined in [66]. In the inference phase,
if there were more than 25 frames in a sequence, we first
used the first 25 frames as input and then applied a sliding
window strategy with a step of five frames to iterate over
all frames. The final feature of this sequence was the mean
of features of all the 25-frame input sub-sequences. As for
the evaluation metrics, rank-1 identification rate and equal
error rate (EER) were used.

5.2. Visualization examples

We choose one indoor camera and two outdoor cameras
(i.e., IC1, OC2, and OC4) to visualize the results of pre-
processing and SMPL model estimation in Fig. 6. It is ob-
vious that preprocessing successfully mitigates effects such
as distortion in fisheye images, generating images similar
to normal rectilinear images for both indoor and outdoor
cameras. SMPL model fitting by fine-tuned OA-ModelGait
also works well on preprocessed images, estimating human
models with similar shapes and poses to the input image.
Although the SMPL models estimated from the images of
the front-view camera OC4 are not completely facing for-
ward due to estimation errors in the 3D global rotation pa-
rameters, body shapes and poses are still consistent with the
subjects in the image, which are actually used for recogni-
tion.

5.3. Comparison with state-of-the-arts

To demonstrate the effectiveness of the proposed method
in gait recognition, we compare with three state-of-the-art
gait recognition methods, i.e., GaitSet [11], GaitGL [40],
and ModelGait [37]. Similar preprocessing procedures are
applied to the comparison methods to generate correspond-
ing inputs. Specifically, since GaitSet and GaitGL are
silhouette-based methods, we use the silhouettes obtained
after gnomonic projection as inputs; ModelGait is also an
SMPL model-based method that works on RGB images,
and thus we use the same inputs as ours. For a fair com-
parison, we also fine-tune the models of the three meth-
ods pre-trained on synthetic occlusion images from OU-
MVLP [51]. Additionally, following [37, 66], we train sep-
arate models for shape and pose features, and apply score-
level fusion to obtain the final results for ModelGait and the
proposed method.

The results of all comparison methods on the fisheye gait
dataset are shown in Table 1. For both the same-session
test and cross-session test, the proposed method achieves
the best rank-1 identification rate and EER, demonstrating

Table 1. Rank-1 identification rate (%) and EER (%) of each com-
parison method in the same-session and cross-session tests on the
fisheye gait dataset. The mean results for all six/seven camera
combinations in the probe and gallery are reported. Bold and bold
italic indicate the best and second-best results.

Methods
Same-session Cross-session

Rank-1 EER Rank-1 EER
GaitSet [11] 70.3 8.11 57.4 12.97
GaitGL [40] 61.8 15.28 50.9 15.59

ModelGait [37] 89.8 2.35 79.3 4.81
Ours 92.6 2.00 83.5 3.37

that the chosen OA-ModelGait, which is designed to handle
occlusion in rectilinear images, is also more effective than
other methods on occluded fisheye images. Compared with
model-based methods (i.e., ModelGait and our method) that
directly fit human models on input images, appearance-
based features are more susceptible to segmentation errors
caused by complex outdoor backgrounds and fisheye lens
distortions that still somewhat exist even after preprocess-
ing, which leads to the worse performance of GaitSet and
GaitGL. For the cross-session test, all methods exhibit per-
formance degradation due to changes in the outdoor natural
environment (e.g., changes in background scenes and illu-
mination) and the subject seasonal clothing changes (i.e.,
late summer vs. winter).

We also report the results of the proposed method for
each individual combination of cameras in the same-session
and cross-session tests in Tables 2 and 3. Essentially,
matching results within the same camera are much better
than across different cameras. However, due to view vari-
ations between two sequences even with the same camera
(e.g., camera OC1)1, and unstable walking including accel-
eration phases in sequences that are too short (e.g., IC1), the
same-camera matching results are also somewhat affected
in some cases.

The cross-camera matching results are worse because
different cameras may contain variations in camera and lens
models, scenes (e.g., indoor vs. outdoor), illumination,
and walking directions (e.g., side vs. front), which have
a greater impact on cross-session test since no correspond-
ing training samples are included. Therefore, matching be-
tween cameras with certain similarities yields relatively bet-
ter performance (e.g., OC2 vs. OC3 in Table 2 with similar
capture scene and walk direction, IC1 vs. OC1 in Table 3
with similar camera model).

5.4. Ablation study

We finally analyze the effect of preprocessing proce-
dures of the proposed method. Because pedestrian detec-
tion does not work without panoramic expansion, we only

1This is because the subjects may walk along both sides of the walk-
ing course during the two walks, and some cameras are very close to the
walking course (e.g., less than 1 meter).
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Table 2. Rank-1 identification rate (%) and EER (%) of the proposed method for each individual combination of six cameras in the
same-session test. Probe and gallery are denoted by P and G, respectively.

P
G

IC1 IC2 OC1 OC2 OC3 OC4

IC1 97.8 / 0.48 82.6 / 3.29 89.1 / 2.17 84.8 / 2.17 89.1 / 2.17 80.4 / 3.19
IC2 93.5 / 2.17 100 / 0.00 91.3 / 2.17 95.7 / 2.17 97.8 / 1.30 95.7 / 3.72
OC1 89.1 / 4.35 84.8 / 2.17 100 / 0.19 95.7 / 2.17 95.7 / 2.17 95.7 / 2.17
OC2 91.3 / 2.27 89.1 / 1.98 97.8 / 1.74 100 / 0.48 97.8 / 0.29 87.0 / 3.04
OC3 91.3 / 2.17 95.7 / 0.87 97.8 / 0.72 95.7 / 2.17 100 / 0.00 97.8 / 3.00
OC4 82.6 / 2.56 87.0 / 2.46 89.1 / 2.17 84.8 / 4.35 91.3 / 3.29 100 / 0.10

Table 3. Rank-1 identification rate (%) and EER (%) of the proposed method for each individual combination of seven cameras in the
cross-session test.

P
G

IC1 IC2 IC3 OC1 OC2 OC3 OC4

IC1 100 / 1.43 64.7 / 5.88 79.4 / 3.39 91.2 / 2.94 52.9 / 5.88 70.6 / 5.44 52.9 / 7.13
IC2 70.6 / 4.63 100 / 0.18 91.2 / 1.34 67.6 / 4.81 88.2 / 2.94 88.2 / 2.50 76.5 / 3.65
IC3 82.4 / 4.46 94.1 / 1.34 100 / 0.00 73.5 / 4.19 97.1 / 2.94 100 / 0.62 94.1 / 2.94
OC1 94.1 / 2.14 58.8 / 8.11 70.6 / 6.33 97.1 / 2.14 50.0 / 7.58 64.7 / 6.95 61.8 / 5.88
OC2 70.6 / 4.99 94.1 / 2.32 97.1 / 1.34 76.5 / 5.88 100 / 0.00 100 / 0.18 97.1 / 2.94
OC3 73.5 / 3.39 91.2 / 3.12 97.1 / 1.25 73.5 / 5.88 100 / 0.18 100 / 0.00 94.1 / 2.67
OC4 58.8 / 6.95 82.4 / 3.65 94.1 / 2.94 73.5 / 6.33 91.2 / 1.87 94.1 / 1.16 100 / 0.27

Table 4. Rank-1 identification rate (%) and EER (%) for the same-
session and cross-session tests for ablation study. The mean results
for all six/seven camera combinations in the probe and gallery are
reported. ”w/o Seg.” and ”w/o Proj.” indicate no background at-
tenuation and gnomonic projection, respectively.

Methods
Same-session Cross-session

Rank-1 EER Rank-1 EER
Our w/o Seg. 83.6 3.81 71.4 6.15
Our w/o Proj. 84.7 3.64 79.6 4.89

Ours 92.6 2.00 83.5 3.37

(a) (b) (c) (a) (b) (c)

Frame 1 Frame 2

Figure 7. Results of two example frames after different prepro-
cessing. (a) and (b) are the processed images without background
attenuation and gnomonic projection, respectively. (c) is the image
with the full preprocessing procedures of the proposed methods.

focus on background attenuation and gnomonic projection.
Specifically, we first remove the process of background at-
tenuation, and hence, the input images for the recognition
network retain the original backgrounds, including build-
ings and possibly irrelevant people (see (a) in Fig. 7).
We then remove the gnomonic projection from the prepro-
cessing, which results in still large distortions in the in-
put images, especially for the lower body parts (see (b) in
Fig. 7). According to the recognition results shown in Ta-
ble 4, removing either of these two procedures degrades

the performance, demonstrating their necessity in the pro-
posed method. Compared with removing gnomonic pro-
jection, the method without background attenuation per-
forms worse, because the complex backgrounds affect the
accuracy of model fitting more. Another reason is that the
pre-training of OA-ModelGait is only performed on images
with green backgrounds, which also limits the fine-tuned
performance on complex backgrounds.

6. Conclusion

We propose the first framework for gait recognition from
fisheye images, which is more suitable for flexible gait
recognition applications. Given a fisheye image, a set of
preprocessing procedures are sequentially applied to nor-
malize body orientation, correct distortion, and mitigate
background effects. The processed images are then fed
into a state-of-the-art occlusion-aware gait recognition net-
work to estimate SMPL models and extract gait features
for recognition. Experiments on the collected fisheye gait
dataset validate the effectiveness of the proposed method.

Currently, we have collected fisheye gait data from about
200 subjects. An important future work is to collect data
from more subjects and more diverse capture scenes, which
is especially needed for outdoor cases. Since the current
framework is a combination of separate preprocessing and
gait recognition, another future direction is to investigate
a unified framework that directly handles fisheye images,
which may improve recognition performance thanks to end-
to-end training.
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[59] Álvaro Sáez, Luis M. Bergasa, Elena López-Guillén, Ed-
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