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A. Hyperparameter Setting and Additional
Implementation Details

Hyperparameter Setting. For the baseline model, the ini-
tial rate is 2e-3. The training epoch is 50. When using Aug-
Mix, the weight on Jensen divergence term is 0.1. For train-
ing RPF, the probability to apply alignment-related aug-
mentation is 0.6 and the range of translation, rotation, and
scaling is [0, 0.1], [0, 45], and [0.85, 1.15], respectively.
The probability to generate partial fingerprints is 0.5 and the
range of OR is [0.1,0.45]. The augmentation depth is k = 5.
The parameter of the Dirichlet distribution is α = 1, mean-
ing random sampling the weights without preference to a
specific augmentation operation. We initialize the model
weights using the baseline model and train the model using
O-AugMix with 10 epochs and learning rate of 1e-5. Then,
we incorporate occlusion-aware modeling. The images gen-
erate by AugMix are mix of different partial fingerprints and
hence can not be used to train the segmentation branch. We
hence only train the model with the augmented data without
being mixed to the original images. We first train the seg-
mentation branch and then train the whole model 30 epochs
with learning rate of 1e-5 with only the parameters of the
mask prediction module being updated. The models are
trained using four Nvidia V100 GPUs.

Image Pre-processing. The relative fingerprint position
and rotation can vary significantly in the employed data. We
pre-process the original fingerprint data to obtain aligned
finger impression data during training and testing. Specifi-
cally, for a fingerprint, we assume the fingerprint area is an
ellipse. We use OpenCV’s built-in function to obtain the fit-
ted ellipse for each finger impression image, which provides
ellipse center (ccenter, rcenter) and the relative rotation θ to
align the images. We then rectify the principle axes to nor-
mal direction to align the raw fingerprint.

*Work done while as an intern at Amazon.

Figure 1. Evaluation on the image pairs with both partially ob-
served template and query fingerprints. The curves describe FRR
@ FAR=0.1% on different partial fingerprints at 0-25% OR. Eval-
uation in (a) and (b) considers images with only partially observed
query fingerprints and with both partially observed template and
query fingerprints, respectively.

B. Partially Observed Template and Query
Fingerprints

When both the template and query fingerprints are par-
tially observed, matching becomes more challenging as less
correspondences can be constructed. Here we show the
evaluation when both of images with randomly introduced
occlusion in Figure 1. We compare the performance degra-
dation considering both the template and query fingerprints
are partially observed (left) and only the query fingerprints
are partially observed(right), respectively. The performance
degradation becomes more severe when both the template
and query fingerprints are partially observed. To handle
such challenging cases, we may consider matching given
multiple template images.

C. Effect of Missing Information in Different
Fingerprint Regions

We compare the performance degradation due to random
blocking and due to center blocking. Specifically, we block
the center position of fingerprints with a circle at differ-
ent ORs (examples are shown in Figure 2(a)) and evaluate
the recognition performance on these center blocked finger-
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Figure 2. Comparison of the effect of missing information in ran-
dom region with in fingerprint center.

Figure 3. Overview of fingerprint recognition model with data
uncertainty modeling.

prints. We compare the evaluation of center-blocked fin-
gerprints with the evaluation of other blocking patterns that
introduce missing regions randomly at different locations.
As shown in Figure 2(b), the performance degradation due
to center blocking and random blocking are similar when
OR is smaller 25%. We hence use OR to sensibly measure
the information loss.

D. Uncertainty Modeling
In this section, we introduce the implementation details

of DUL and study utilizing the captured data uncertainty to
construct robust matching score. Then, we discuss model
uncertainty modeling for partial fingerprint recognition.

There are two types of uncertainty: data uncertainty and
model uncertainty [2]. Data uncertainty is inherent to the
data itself, such as its low quality or noise level. Model
uncertainty, on the other hand, correlates to the density of
the data. Data that are distinct from the training data are
more likely to result in larger model uncertainty.
Data Uncertainty Modeling. To capture data uncertainty,
the framework we employ is illustrated in Figure 3. The
training loss for training sample i is

Lcls,i + λklLkl−reg,i, (1)

where Lkl−reg,i is the Kullback-Leibler (KL) divergence,
constraining the output feature embedding distribution
N (µ, σ) to be close to a normal distribution, and λkl is the
corresponding weight. Instead of estimating a vector, we

Table 1. Evaluation of using data uncertainty modeling on Prints-
GAN, and NIST. DUL(S) indicates using data uncertainty for
computing robust matching score.

Methods PrintsGAN, FRR@ NIST, FRR@
FAR=0.1% FAR=0.01% FAR=0.1%

DUL 0.018 0.04 16.36
DUL(S) 0.017 0.038 16.27

Figure 4. Samples with large/small model uncertainty in NIST and
PrintsGAN.

only predict a scalar value as the variance of a sample. Dur-
ing training, we add the DUL head to trained RPF and train
the whole model end-to-end. The loss weight on kl regu-
larization term is 0.1. We train the models 25 epochs with
learning rate of 1e-5.

Given the captured data uncertainty can effectively de-
tect the partial fingerprints, we propose to further utilize
the learned uncertainty to construct a robust matching score
function as:

score = − log (σ2
T + σ2

Q)− (eT − eQ)
tΣ(eT − eQ), (2)

where Σ = σ2
T + σ2

Q, {σT , σQ} are the predicted variance,
and {eT , eQ} are the normalized feature vector for the tem-
plate and query fingerprint.

We present the evaluation results of using data uncer-
tainty to construct more robust matching score in Table 1.
Comparing to the model only incorporating the data uncer-
tainty into the feature learning process (DUL), further in-
corporating the data uncertainty to compute robust match-
ing scores provides extra improvements.
Model Uncertainty Modeling. We capture model un-
certainty using MC dropout [1]. The method can be de-
scribed as: During training, we include dropout layers in
the model and follow the same strategy for training. Dur-
ing testing, we do not turn off the dropout layer and run the
model M times from where we obtain M feature predic-
tions F1, ..., FM for an input image. By definition, model
uncertainty is the variance of the predicted feature vector.
We approximate the model uncertainty with sample vari-



ance of F1, ..., FM and obtain a scalar value by calculating
the trace of the sample covariance matrix. Current finger-
print data are mostly complete, while partial fingerprints are
rare cases in the training data. Partial fingerprint data hence
should have larger model uncertainty.

We studied whether the captured model uncertainty can
effectively characterize the complete fingerprints with high
confidence while the partial prints with low confidence.
Sample fingerprints with small and large model uncertainty
are shown in Figure 4. Partial fingerprints should have large
model uncertainty as they typically are rare cases in the
training data. Not as expected, the incomplete fingerprints
have smaller model uncertainty. When doing experiments,
we find using Arcface loss leads to such “inverse” results.
The models are confident on these rare cases.
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