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Abstract

While the existing deep learning-based room layout esti-
mation techniques demonstrate good overall accuracy [17],
they are less effective for distant floor-wall boundary. To
tackle this problem, we propose a novel uncertainty-guided
approach for layout boundary estimation introducing new
two-stage CNN architecture termed U2RLE. The initial
stage predicts both floor-wall boundary and its uncertainty
and is followed by the refinement of boundaries with high
positional uncertainty using a different, distance-aware
loss. Finally, outputs from the two stages are merged to
produce the room layout. Experiments using ZInD [4] and
Structure3D [25] datasets show that U2RLE improves over
current state-of-the-art, being able to handle both near and
far walls better. In particular, U2RLE outperforms current
state-of-the-art techniques for the most distant walls.

1. Introduction

A lot of progress has been made in image-based room
layout estimation (RLE). While deep learning techniques
applied to RLE have been very effective, they are evaluated
using datasets of rooms that are mostly small and cuboid-
shaped [1,23]. However, ZInD [4], which is a large-scale
dataset of real homes, shows that real rooms are large and
have more complex layouts.

The challenge of distant wall depth estimation can be
seen clearly from the relationship between pixel and depth
errors in Fig. 1. We simulate a perturbed layout by shifting
the vertical position of each room corner of the GT layout
by 3 pixels. With an image height of 512 pixels, 3 pixels
corresponds to 0.59% relative error in image-space, for both
near and distant walls, alike; however, this results in signifi-
cantly larger depth error for distant walls. For the room with
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Figure 1. The same pixel error from a floor point maps to a larger
depth error when the point is further away from the camera. GT
layout is in Red while the simulated perturbed layout is in Blue.
(b) and (d) share aligned coordinate system.

only close walls (Fig. 1b), the area of the GT layout and the
perturbed layout are 12.4m? and 11.4m?, respectively, re-
sulting in just 1m? error. For a room with distant walls, the
area of the GT layout and the perturbed layout are 45.1m?
and 38.6m?, respectively, an error of 6.5m2. As we can see,
distant walls have a big impact on estimating the area of a
room. For real-world applications such as real estate, where
the floorplan size is a major factor in pricing, this magnitude
of the absolute error is undesirable, pointing to the need for
new methods to address this challenge.

While recent large-scale datasets [4,25] provide large an-
notated spaces with more distant walls, dataset imbalance
challenges accurate estimation. For example, in ZInD [4],
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nearly 90% of the walls are within 4 meters of the cam-
era while the remaining walls can extend out to 10+ meters.
Many current models are trained to minimize the loss av-
eraged across all image columns; imbalance may lead to
a model that does not prioritize the feature resolution and
granularity necessary to accurately estimate distant walls.

To address these challenges, we propose a novel two-
stage architecture. The first (initial) stage is designed to pre-
dict the wall position, alongside a measure of uncertainty.
The second (refine) stage focuses on distant regions using
distance-aware loss. Finally, guided by the predicted uncer-
tainty score, the outputs of these two stages are merged to
generate the room layout. This two-stage architecture al-
lows us to design specific loss functions and data augmen-
tation for close vs. distant walls; it handles the imbalance
in the wall depth distribution.

Our contributions are:

* Uncertainty-guided two-stage (initial and refine) room
layout estimation model, achieving SOTA perfor-
mance on multiple datasets.

* Novel loss function to predict floor-wall boundary un-
certainty in the initial stage.

e New Channel-Preserving Height Compression
(CPHC) module that compresses features along its
height.

* New distance-aware loss to re-weight the influence of
distant walls in the refinement stage.

2. Related Work

Single-view Room Layout Estimation. Single-view
room layout estimation has been an active area of research
for the past decade [11]. A good amount of work has been
done to generate partial room layouts from a single per-
spective image. Learning-based approaches [9, 14,2 1] have
been proven more effective compared to geometry-based
ones [5,6]. PanoContext [23] is the first method to demon-
strate the effectiveness of room layout estimation using a
single 360° equirectangular panorama image. It generates
the room layout by estimating per-pixel normals of overlap-
ping perspective images converted from a single panorama.
LayoutNet [26] demonstrated the benefits of using encoder-
decoder CNN-based architecture to directly operate on the
panoramic image; layouts are predicted by estimating the
probability maps of room boundary map and corners, fol-
lowed by a 3D layout optimization.

HorizonNet [17] simplified layout estimation tasks by
generating a 1D representation of the floor-wall, ceiling-
wall, and wall-wall boundary positions per image column;
it uses a bidirectional LSTM (Bi-LSTM) module to regress
across the panorama. Since then, many approaches are

based on the HorizonNet architecture. HoHoNet [18] re-
designed the feature extractor with the Efficient Height
Compression (EHC) module followed by multi-head self-
attention (MSA) to generate Latent Horizontal Feature (LH-
Feat). They demonstrated good performance using LHFeat
to model per-column modality for room layout reconstruc-
tion as well as dense predictions such as depth estimation
and semantic segmentation. LED2Net [19] adopted Hori-
zonNet’s backbone and applied differentiable depth render-
ing to incorporate the room polygon geometry information
into their end-to-end model. LGT-Net [7] used a novel
transformer architecture as their sequence processor to im-
prove the spatial identification ability for the panorama.
LED2Net and LGT-Net both achieve state-of-the-art per-
formance overall; the recent focus of layout estimation
study has placed more emphasis on solving complex, non-
Manhattan room shapes, which are found more frequently
in real-life, large-scale datasets such as ZinD [4] and CG
datasets such as Structure3D [25].

While using equirectangular panorama images as inputs,
DuLaNet [22], AtlantaNet [13], and PSMNet [20] also
leverage the Equirectangular-to-Perspective (E2P) trans-
form to generate a binary segmentation map as the floor
plan. AtlantaNet demonstrated an advantage of model-
ing non-Manhattan and complex room layouts. DMHT
[24] alternatively applied a learnable Hough Transforma-
tion Block on cubemap tiles from panoramic images and
claimed SOTA performance.

Multi-view Room Layout Estimation. Additional view-
points can be used to improve layout estimation for com-
plex, large rooms [16,20]. Furthermore, recent work [15]
has used multi-view consistency, in a self-supervised ap-
proach, to improve single-room layout estimation.

Uncertainty Estimation. Several approaches for depth
estimation in the past used iterative techniques to improve
the depth estimates either using additional cues, such as
plane normals [2]. General framework for uncertainty es-
timation in Deep Learning has also been adopted in the
past for geometric regression problems [10]. These class of
methods uses Monte-Carlo (MC) sampling to estimate un-
certainty, where the samples are generally computed using
an ensemble of neural networks. The application of uncer-
tainty to the problem of estimating room layouts is however
new. Here we use simpler yet effective approach where both
the mean and the variance are directly predicted from data.

3. System Overview

We present U2RLE, a novel two-stage approach to esti-
mate the layout of a room using a single 360° equirectan-
gular panorama. Figure 2 shows the overall architecture of
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Figure 2. Overview of U2RLE. It has three main components: initial stage, refinement stage, and merging module. In the initial stage,
the model predicts the boundary and estimates its positional uncertainty. In the initial stage, the gap between the green boundary and red
boundary represents the uncertainty score. The refinement stage focuses on distant regions using distance-aware loss. Finally, the merging
module combines the predictions from both stages using the uncertainty score. In the merging module, the uncertain parts indicating by
red will be replaced by the floor-wall boundary prediction from the refinement stage.

our method. We describe the initial stage in section 4. The
goal of the initial stage is to provide initial boundary and
uncertainty predictions. The goal of the refinement stage,
which we describe in section 5, is to improve the far away
region using a novel distance-aware loss function. Finally,
in section 6, we discuss how to utilize the predicted uncer-
tainty score to combine predictions from both stages to get
the best of both worlds, i.e. close and distant regions.

4. Initial Boundary and Uncertainty Prediction

The initial stage follows the approach of HorizonNet
[17]. The input image of size 512 x 1024 x 3 is passed
through ResNet-50 to extract features. Then, we propose
a new Channel-Preserving Height Compression Module
(CPHC) to compress the information along height dimen-
sion, so as to obtain per column features that can be used
for boundary prediction. The compressed features in the
column order are then passed through bi-directional LSTM
and fully-connected layers to predict the boundary and the
uncertainty score for each column of the panorama, along
with corners and depth.

4.1. Channel-preserving Height Compression

HorizonNet [ 7] proposed the height compression mod-
ule (HCM) to effectively squeeze features with 2D spatial
support from the backbone along the height dimension to
produce a 1D horizontal feature. Many recent room lay-
out approaches [3, 7, 19] adopt HCM yielding good re-
sults. The features from block 1 ~ 4 of ResNet-50 are
compressed to dimensions (channel x height x width)
32 x 8 x 256,64 x 4 x 256,128 x 2 x 256,256 x 1 x 256.
As we can see, the height dimension of block 1 ~ 3 has not
been compressed to 1. In HCM, the first two dimensions
(channel and height) will be reshaped into one dimension.
We argue this is not the most effective way to compress the
height information. Since we predict one value for each im-
age column, it is better not to mix the height and channel di-
mensions. To address this issue, we propose a new Channel-
Preserving Height Compression (CPHC) Module that com-
presses the height dimension into 1 and avoids mixing the
information from feature channels and height dimension.
The architecture of the proposed CPHC is shown in supple-
mentary material. The ablation study in Tab. 4 demonstrates
CPHC module’s ability to enhance the performance of both
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initial and refinement stage.
4.2. Uncertainty Prediction

Unlike the existing models, the initial stage not only pre-
dicts the floor-wall boundary but also the uncertainty of the
prediction. Specifically, the model predicts two quantities
per each column namely floor-wall boundary mean p, and
floor-wall boundary standard deviation o.

The model is optimized by minimizing the negative log
likelihood loss function for each image column ¢ with p;
and o;:

.- 1 (s — )°
,NL E log — BN w7 1
floor — 0og Ui\/ﬂ exp ( 2(0i)2 ) ( )

where y; is the ground truth floor-wall boundary, and W
is the image width. During the inference, the column-wise
predicted mean p; vector will be used as the predicted floor-
wall boundary. Since the predicted uncertainty vector o; is
in the image-space, we need to project it to the depth-space.
We begin by calculating the upper bound % of the floor-
wall boundary by adding the predicted mean vector u to
predicted standard deviation vector o

J=p+o @)

The predicted floor-wall boundary (1) and the upper bound
y are projected into the depth-space omitting the index ¢
for clarity. We define the uncertainty score as the distance
between the projected floor-wall boundary and the upper
bound.

Uftoor = [Proj(y) — Proj(u)| 3)
where Proj(.) is the projection function to depth. Details
about this projection function can be found in [7].

4.3. Loss Function
The total loss is calculated as

L= E?Ill(;or + Leeit + ['depth + ALcorner 4

where the negative likelihood loss L}, of floor-wall

boundary is described in Eq. 1; L. is 1 loss of ceiling-
wall boundary; Lgcp¢n represents the £; loss of wall depth;
L corner 18 the corner loss.

Unlike HorizonNet where Binary Cross-Entropy Loss is
used as corner loss, we propose to replace it with a ¢; loss.
This is because the ground truth is a continuous value in-
stead of a binary value.

5. Fine-grained Distance-focused Prediction

Similar to the initial stage, ResNet-50 is used to extract
features and the proposed CPHC compresses the extracted
features. Then, bi-directional LSTM and fully-connected
layers are used to predict the floor-wall boundary, the depth,
the ceiling-wall boundary, and the corners.

5.1. Data Augmentation

In the refinement stage, we intend to focus on distant
boundaries. Since these regions are located far from the
camera, they are usually low resolution and blurry. The
top-down view further magnifies prediction errors for these
regions in comparison to close walls, as shown in Figure 1.
Furthermore, in all current datasets the distant boundaries
are among the least representative samples.

To enable the model to train on more of these samples,
we first perform pano-stretch data augmentation [17] and
stretch each sample’s layout to a greater distance during
training. As opposed to the initial stage, which pushes the
boundary points to both the close and far regions, we only
use the data augmentation to stretch the layout to represent
the far regions. In addition, different parameters were used
to magnify the stretch. As with [7, 17, 19], we also only
augment the data on the x and z axes only:

' =ky x=ky-d-cos(v) - cos(u) 5

2=k, 2=k, d-cos(v)-sin(u)

where x, z is the 3D coordinate projected on top down-view
from panorama image coordinate u,v. d is the depth. k,
and k, is arandom value picked from a uniform distribution
of range [1,2.5].

5.2. Distance-aware Loss Function

To force the model to focus more on the distant walls,
we propose a distance-aware loss which contains two sepa-
rate loss functions. The first loss function emphasizes depth
prediction on projected top-down view as follows:

w

Ldepth = Z

i=1

d; — d; (6)

where d is the predicted depth and d is the ground truth
depth.

To focus more on the distant regions we also re-weight
the floor boundary loss based on the distance as follow:

w
£ﬂoor = Z |g\l - yz‘ * di (7)
=1

where 7 represents the predicted floor-wall boundary while
y is the ground truth floor-wall boundary.

For the refinement stage, the total loss function is calcu-
lated as follows:

L= £ﬁoor + Z/‘Cdepth + /\L:corner + Lceil (8)

where \,v € R are hyper-parameters designed to balance
the effect of each components. Similar to the initial stage,
ceiling loss L.¢;; and corner 10ss Leomer use ¢1 loss.
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GT Depth (m) 1 2 3 4 5 6 7 8 9 10 2DIoU
Model
HorizonNet [17] 0.035 0.048 0.073 0.136 0.256 0.367 0.540 0.757 0.964 1267  89.80%
LED2-Net [19] 0.036 0.049 0.070 0.125 0.222 0.343 0.526 0.800 0.903 1156 89.95%
LGT-Net [7] 0.035 0.051 0.067 0.123 0.233 0.326 0.501 0.693 0.858 1145 90.82%
Ours(U2RLE) 0.034 0.047 0.072 0.127 0.229 0.313 0.437 0.614 0.776 0942  91.39%

Table 1. Mean depth error (m) | on ZinD dataset.

GT Depth (m) 1 2 3 4 5 6 7 8 9 10 2DIoU
Model
HorizonNet [17] 0.028 0.036 0.073 0.148 0.245 0.344 0.688 0.891 1.423 1443 92.63%
LED2-Net [19] 0.038 0.045 0.086 0.158 0.233 0.298 0.485 0.527 1.152 1053 92.15%
LGT-Net [7] 0.034 0.039 0.074 0.142 0.232 0.257 0.516 0.558 1.073 1155 92.81%
Ours(U2RLE) 0.027 0.031 0.059 0.128 0.217 0.268 0.505 0.575 0.992 0877  93.73%

Table 2. Mean depth error (m) | on Structure3D dataset.

6. Uncertainty-guided Merging

In order to determine the final floor-wall boundary, we
considered the model predictions as prior information for
the merging module. The predicted uncertainty score o and
estimated distance (from initial floor boundary) are used to
determine the output of the merging module. As described
in section 4.2, the initial stage uncertainty scores can be pro-
jected into the top-down view. Projected uncertainty scores
indicate the level of uncertainty in each column. There-
fore, the refinement stage results can be merged based on
the score. According to our empirical analysis, we used
0.2 as the threshold for uncertainty U f;,,, across all the ex-
periments. Also, to further refine the predictions we only
combine the results if the predicted wall is distant. Conse-
quently, fewer outliers (close walls) will be merged from the
refinement stage into the final prediction. We therefore use
the estimated distance as a second parameter, which will be
merged if the distance is greater than 5 meters. The module
finally outputs the final prediction with size of W.

7. Experiments

We report results of our approach on Zillow Indoor
Dataset (ZInD) [4] and Structure3D [25] dataset. We also
provide information regarding the training schema, used
datasets, and our baselines.

7.1. Traning

We implement U2RLE-Net using PyTorch [12]. The
Adam optimizer [8] is employed to train our network with
B1 = 0.9,85 = 0.999. The network is trained on four
NVIDIA Tesla V100 GPUs for 60 epochs on ZInD dataset
and 50 epochs on Structure3D dataset, with a batch size of
40. In addition, we set hyper-parameters in Eq. (4 and 8) as
A=10,v =5.

mm Number of Boundary Points on ZInD(*10K)

Number of Boundary Points on S3D(*10K)
80

60 -

40 A
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1 2 3 4 5 6 7 8 9 10
Depth(meters)

Figure 3. Depth distribution of the GT boundary points on ZInD
[4] and Structure3D [25].

Apart from the pano-stretching data augmentation de-
scribed in section 5 for the refinement stage, we use the
same data augmentation methods proposed in Horizon-Net
[17], including left-right flipping, horizontal rotation, lumi-
nance changes, and pano-stretching during training.

7.2. Datasets

Zillow indoor dataset (ZInD) [4] contains 71474 panora-
mas of 1524 unfurnished homes. It’s currently the largest
real world dataset with room layout annotations. It contains
a close-to real world distribution of room complexities,
which include a good amount of non-Manhattan walls,
a wide ranges of room sizes and wall-wall corners per
room. We split the dataset for training, validation, test at
20077, 2458, 2458 unique panoramas. The split is based
on Horizon-Net [ | 7] pre-processing.
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Figure 4. Qualitative comparison on ZInD [4] dataset.

Horizon Net
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Figure 5. Qualitative comparison on Structure3D [25] dataset. GT layout is in blue while predicted layout is in green.

Structure3D [25] contains more than 20K synthetic im-
ages from different rooms with 3D room layout annotations.
Structure3D contains a good range of room complexity and
it is furnished. The full dataset was used. The first 3000
scenes will be used for training, 250 scenes for validation
and the remaining 250 scenes for testing.

To better understand the imbalanced issue of the dataset,
we plot the depth distribution of the boundary points on
ZInD and Structure3D. The boundary point is obtained by
projecting the floor-wall boundary point from image-space
onto depth-space. Details about this projection can be found
at section 4.2. As we can see from Fig. 3, ZInD and
Structure3D are highly imbalanced. For example, in ZInD,
around 90% of the boundary points are within 4 meters
of the camera while the depth of the remaining boundary
points can extend to 10+ meters.

7.3. Baselines

Currently, none of the models have been trained on the
“visible geometry” of ZInD. Therefore, we retrained all the
models based on their repository on the ZinD dataset. Ad-
ditionally, if needed, baselines are also trained on Struc-
ture3D. We compare our U2RLE with baselines built upon
recent state-of-the-art (SOTA) layout estimation methods:
HorizonNet [17], LED2-Net [19] and, LGT-Net [7]. Also,
due to the complexity of the structures in “visible geome-
try”, post processing techniques introduced in [17,22] do
not perform effectively and can significantly drop the per-
formance. Therefore, for evaluation purposes, we evaluate
all the models without the post-processing techniques.

7.4. Evaluation Metrics

In order to show the effectiveness of our model, we re-
ported our error using two metrics, mean depth error and
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GT Depth (m)

m 1 2 3 4 5 6 7 8 9 10
Initial Stage 0034 0045 0067 0118 0223 0330 0514 079 0999 1430
Refinement Stage 0073 0063 0080 0124 0215 0278 0397 0540 0705 0854
Two-stage (U2RLE) 0034 0047 0072 0127 0229 0313 0437 0614 0776 0942

Table 3. Ablation study: two-stage vs single-stage.

GT Depth (m)
m 1 2 3

4 5 6 7 8 9 10

0.118 0.223 0.330 0.514 0.790 0.999 1.430
0.153 0.291 0.474 0.724 1.121 1.151 2.086

Initial Stage 0.034 0.045 0.067
Initial Stage Without CPHC module 0.042 0.055 0.080
Refinement Stage 0.073 0.063 0.080

Refinement Stage Without CPHC module 0.067 0.066 0.078

0.124 0.215 0.278 0.397 0.540 0.705 0.854
0.128 0.227 0.315 0.458 0.622 0.785 1.056

Table 4. Ablation study: proposed CPHC module.

2D IoU. 2D IoU shows the overall performance of the mod-
els, but it does not explicitly show the effectiveness of pre-
dictions based on distance. As shown in Figure 1, the er-
ror on the distant regions will be amplified and can degrade
2D IoU significantly. To better study the prediction errors,
we evaluate all of the models based on the mean depth er-
ror. To calculate the error, first the predicted and ground
truth boundary are projected to top-down view. The dis-
tance from the projected ground truth boundary to the ori-
gin is used to calculate the error. The difference between
the predicted and ground truth boundary is defined as the
depth error. To show the overall model’s performance, we
also report 2D IoU.

7.5. Quantitative Evaluation

Our evaluation on ZInD [4], is shown in Table 1. All the
errors are reported in meters. Our approach has lower mean
depth error on distant regions in comparison to all other
approaches. Also, the model can outperform the available
models in the overall 2D IoU. To show the effectiveness of
our model in furnished settings, we compare our approach
to other baselines. Table 2 shows the introduced metrics
on Structure3D [25] dataset. Our approach can outperform
significantly on almost all close and distant regions.

7.6. Qualitative Evaluation

Figure 4 shows some examples on ZInD dataset [4] and
the predicted boundary both on panorama and top-down
view. The color represents the predicted floor bound-
ary and blue indicates the Ground Truth. The first image is
an example where our model is capable of capturing both
distant and close regions appropriately. The second im-
age illustrates the effectiveness of our model in large open
spaces. Finally, the last image represents a complex struc-
ture that our model is able to predict more accurately.

Figure 5 shows the results on Structure3D [25] dataset.

Compared to ZinD [4], Structure3D is furnished. First im-
age shows the results of our model compared to other base-
lines when occlusions occur in close regions, where our
model is able to handle the occlusion more effectively. Ad-
ditionally, we provided examples of large open areas in the
second and third images.

8. Ablation Study

We conduct experiments to determine how individual
components affect the U2RLE architecture. All the abla-
tion studies are conducted on ZInD dataset. In particular,
we examine the following variants:

e Compare the proposed two-stage model with single-
stage model.

* Replace the proposed Channel-Preserving Height
Compression (CPHC) Module (Section 4.1) with the
original height compression module proposed by [17].

* Replace the uncertainty prediction in the initial stage
with ¢; loss function to predict the boundaries directly.

* Finally, we do experiments on the effect of our
distance-aware loss (Section 5.2) in the refinement
stage.

8.1. Two-stage VS Single-stage

The motivation of designing our two-stage model is that
current single stage models cannot achieve optimal perfor-
mance for both close walls and distant walls. As we can
see from Tab. 3, the initial stage model works well for close
walls where depth ranges from 1m to 4m while while the re-
finement stage performs better on distant walls where depth
ranges from Sm to 10m. With our proposed two-stage archi-
tecture (U2RLE), we can merge the results from the initial
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GT Depth (m)
m 1 2 3 4 5 6 7 8 9 10
nitial Stage 0.034 0045 0067 0118 0223 0330 0514 079 0999 1430
Without Uncertainty 0035 0046 0069 0123 0233 0332 0495 0703 0926 1242

Table 5. Ablation study: uncertainty prediction.

GT Depth (m)
m 1 2 3 5 6 7 8 9 10
Refinement Stage 0073 0063 0080 0124 0215 0278 0397 0540 0705 0854
Without Distance-aware Loss ~ 0.073  0.063 0081 0135 0240 0354 0546 0746 0929 1444

Table 6. Ablation study: distance-aware loss.

stage and the refinement stage to achieve good performance
for both close walls and distant walls.

One may argue that we can merge based on a depth
threshold like 4.5m. In reality, we do not know the GT
depth. The predicted depth is pretty noisy. Directly merg-
ing based on the predicted depth will result in sub-optimal
result. In our merging module, we use the predicted uncer-
tainty score to guide the merging and utilize the predicted
depth to reduce outlier, which gives better result.

8.2. Proposed CPHC Module

In our U2RLE, a CPHC module is proposed for the ini-
tial stage and the refinement stage to compress information
along height dimension. As we can see from Tab. 4, the
mean depth error of the initial stage becomes worse for
all depths if we replace the proposed CPHC module with
the original height compression module. Similarly, the pro-
posed CPHC module helps to achieve better depth estima-
tion for the refinement stage, especially for the distant walls.
These results verify the effectiveness of the proposed height
compression module.

8.3. Uncertainty Prediction

The initial stage predicts both the floor-wall boundary
and uncertainty score. The uncertainty prediction is not
only important for the merging step but also can improve
the performance. As we can see from Tab. 5, the uncer-
tainty prediction helps to improve the performance for close
walls. One may also notice that our initial stage with uncer-
tainty prediction has worse results for distant walls. Since
the initial stage is designed to predict close walls, this will
not affect the final result. This also supports our motiva-
tion of the two-stage model where we can use different loss
functions for the initial stage and the refinement stage to
handle close walls and distant walls.

The uncertainty prediction is optimized via negative log
likelihood loss, which can be minimized in two ways for
far away regions, by predicting an accurate boundary (u) or

by increasing the uncertainty (o) for those far away regions.
Our model has decided to minimize the loss by increasing
the uncertainty there, which means that the optimizer do not
need to find an accurate y for far away regions. In this way,
the initial stage can allocate more learning capacity on close
walls.

8.4. Distance-aware Loss

In the refinement stage, a distance-aware loss is proposed
to force the model focus more on the distant walls. As we
can see from Tab. 6, the proposed distance-aware loss sig-
nificantly reduces the mean depth error for distant walls.

9. Conclusions and Future Work

We presented effective improvement of the state-of-
the-art in 1D layout estimation from a single panoramic
view. With similar motivation to traditional depth estima-
tion methods from perspective views, which suffers from
lower quality estimates for far away regions, our approach
focused on improvements for distant boundaries. We pro-
posed a novel CPHC model to improve the overall accu-
racy with floor-wall boundary confidence, introduced a re-
fined stage to produce higher accuracy for distance regions
and apply the uncertainty guided merging module for final
predictions. We presented comprehensive evaluation along
the ablation study showing the effect of different improved
components.

Current generation of high-resolution panoramas can be
easily 8K at full resolution. It is computationally expensive
to use the full resolution for a single stage network and the
reduction of resolution affects more the quality of the es-
timates in far away regions. We believe that the two-stage
approach can provide benefit in this setting; lower resolu-
tion data can be used for initial stage, and the higher resolu-
tion is used only for areas with high uncertainty. Testing the
effectiveness of the proposed model in the multi-resolution
setting can be explored in the future work.
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