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Abstract

In class incremental learning (CIL) setting, groups of
classes are introduced to a model in each learning phase.
The goal is to learn a unified model performant on all the
classes observed so far. Given the recent popularity of Vi-
sion Transformers (ViTs) in conventional classification set-
tings, an interesting question is to study their continual
learning behaviour. In this work, we develop a Debiased
Dual Distilled Transformer for CIL dubbed D3Former. The
proposed model leverages a hybrid nested ViT design to en-
sure data efficiency and scalability to small as well as large
datasets. In contrast to a recent ViT based CIL approach,
our D3Former does not dynamically expand its architec-
ture when new tasks are learned and remains suitable for
a large number of incremental tasks. The improved CIL be-
haviour of D3Former owes to two fundamental changes to
the ViT design. First, we treat the incremental learning as
a long-tail classification problem where the majority sam-
ples from new classes vastly outnumber the limited exem-
plars available for old classes. To avoid the bias against
the minority old classes, we propose to dynamically adjust
logits to emphasize on retaining the representations rele-
vant to old tasks. Second, we propose to preserve the con-
figuration of spatial attention maps as the learning pro-
gresses across tasks. This helps in reducing catastrophic
forgetting by constraining the model to retain the atten-
tion on the most discriminative regions. D3Former obtains
favorable results on incremental versions of CIFAR-100,
MNIST, SVHN, and ImageNet datasets. Code is available
at https://tinyurl.com/d3former.

1. Introduction
Real world data is ever evolving and new object cate-

gories appear over time. Therefore, it is desired to learn
models that can incrementally update their knowledge when

*Equal contribution

the new data arrives, without forgetting the past concepts.
Existing deep learning models [24, 37] mostly consider a
static world, where the learning happens once and if the
model is trained on a new learning task, it catastrophically
forgets the previously acquired knowledge [20].

The goal of class incremental learning (CIL) is to con-
tinually learn new groups of classes (also referred to as
tasks) without overwriting old task information [17]. The
main challenge is to balance the stability-plasticity trade-
off, i.e., the model should be able to adapt to new tasks
(plastic but not to the point of forgetting) while retaining
past knowledge (stable but not leading to intransigence)
[1]. The previous works mostly concentrate on convolu-
tional neural networks (CNNs) in incremental learning set-
tings [15,27,34,49]. However, self-attention [43] based Vi-
sion Transformers (ViT) [7] have been shown to outperform
CNNs on conventional classification settings [19]. There-
fore, understanding the capabilities of ViTs for CIL is an
interesting and open research question.

In this work, our goal is to develop a ViT model tai-
lored for incremental learning settings. While ViTs have
excelled in large data regimes, their plain versions lack the
necessary inductive biases, thereby perform poorly on small
datasets as compared to CNNs. This problem intensifies in
incremental learning, where the new task dataset is gener-
ally much smaller than a typical full training set. A recent
approach DyTox [9] proposes the first incremental learning
transformer model, however it has a dynamically expand-
able architecture which grows as the new tasks are learned.

We propose a hybrid ViT model for Incremental learning
called D3Former (Debiased Dual Distilled Transformer).
D3Former is data efficient and can be used equally well
for both large and small-scale datasets (Fig. 1). The hy-
brid ViT designs [13, 28, 42, 54] have proved to be more
successful compared to pure self-attention based ViT de-
signs at a lower computational cost. Specifically, our ap-
proach is based on a Nested Vision Transformer [54], that
uses local self-attention within the patches and then hierar-
chically aggregates non-local information via convolution
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Figure 1. D3Former performance on small scale datasets: Plots showing task wise accuracy for different number of incremental tasks
for CIFAR-100. D3Former achieves relatively high accuracy compared to other state-of-the-art methods when adding 2, 5 and 10 classes
per task. We present ImageNet-1K results in Tab. 3, where we see a similar trend. Ours is the first transformer based incremental learning
method, that scales well to small-scale and large-scale datasets alike.

and pooling operations. The benefit manifests via improved
data efficiency which is important for the incremental train-
ing where each task episode has a limited data belonging to
a relatively small group of classes.

In order to render the ViT amenable to incremental set-
ting, we propose two key components to minimize catas-
trophic forgetting. (a) Debiasing via Logit Adjustment: In
the incremental phases, usually a small exemplar set of old
task data is maintained due to memory constraints [34].
Since the classes in exemplar set are heavily imbalanced
w.r.t the new task data, it bias the model against the previ-
ously observed classes. We propose a simple logit adjust-
ment strategy to put appropriate emphasis on the previous
task classes to avoid representational and classifier biasness.
(b) Dual Distillation: In addition to the regular distillation
loss applied on the logits / features [15, 34], we propose to
maintain the attention cast on the input image by the teacher
model and the student model to be consistent as the incre-
mental learning progresses. To this end, we leverage the vi-
sual interpretability properties of Nested Transformer [54]
to obtain salient regions using simple methods such as gra-
dient based class activation maps, that are enforced to be
consistent during incremental learning.
In summary, the main highlights of our approach are:

• We develop the first hybrid Transformer model for in-
cremental settings, that can adaptively learn new task
distributions. In comparison to state of the art meth-
ods [9, 33, 49], our approach performs favorably well,
as shown in Fig. 1, even without dynamically expand-
ing its parameters as the number of tasks grow, making
it scale easily.

• Owing to the inherent long tail distribution in CIL, our
debiased loss formulation allocates high emphasis to
the imbalanced data from old tasks, thereby minimiz-
ing loss of information relevant to previous tasks.

• We show that maintaining the attention on regions that
are most crucial for predicting a particular class helps
avoid overwriting the important features during incre-
mental learning.

• Our extensive results on CIFAR-100, MNIST, SVHN
and ImageNet datasets demonstrate considerable gains
over the recent top performing incremental learning
methods in terms of average and final task accuracies,
as well as minimizing the forgetness measure.

2. Related Work
2.1. Incremental Learning

We focus on class-incremental learning, where new
classes are introduced to the model in distinct training
phases. The methods are usually grouped into the following
heads -
Regularization based: Knowledge distillation [14] has
been extensively used as a regularizer to minimise the
changes to the decision boundaries of previous classes while
learning incrementally. The model trained until the earlier
phases of learning is treated as a teacher network, whose
penultimate features or the logits are distilled into the in-
cremental model. This was introduced in LwF [25] and has
been widely adopted by later methods. iCaRL [34] uses
KL Divergence loss for knowledge distillation. LUCIR [15]
uses cosine similarity based loss for knowledge distillation
and margin ranking loss for the hard examples. PODNet [8]
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uses pooling as a means of restricting change. LwM [6] and
RRR [10] encourages the model to remember by making
use of explanability techniques.

Replay based: In memory replay based methods, a small
subset of data from the older classes are retained and re-
played while learning the later incremental phases. This
helps to alleviate the distributional shift caused while learn-
ing the new classes [15, 26, 34]. Examples to be stored
in the replay buffer may be randomly selected across all
tasks [35, 47], randomly selected per task [18, 22], by se-
lecting an optimal coreset based on gradient statistics [40]
or even by solving a submodular objective [3]. An alterna-
tive to storing exemplars would be to learn the distribution
of the data using generative models and replaying the gen-
erated pseudo images [39]. We refer reader to [44] for a
more detailed treatment on replay-based continual learning
methods. Replay based methods undesirably introduce bias
towards new classes due to class imbalance. BiC [48] learns
an MLP explicitly to correct the bias, while SS-IL [2] uses
task-wise distillation along with separate heads for the cur-
rent and previous tasks. [16] proposes balancing softmax
outputs to reduce bias.

Structure based: Structure based methods usually allocate
additional parameters for every new incremental phase. RP-
SNet [33], learns different paths for different tasks, ensuring
weight sharing among tasks. DER [49] adds a new feature
extractor for every task and uses pruning to reduce model
size. A recent ViT based method DyTox [9], proposes to
use a dynamic task-token expansion based method to facil-
itate incremental learning.

2.2. Vision Transformers

Self-attention based Transformer architecture [43] has
revolutionized NLP. Vision Transformer (ViT) [7] has
helped to carry-over the successes from the NLP commu-
nity to computer vision. Some of the notable ViT architec-
ture include DeiT [41] which uses knowledge distillation
from a convolutional neural network through a distillation
token, T2T ViT [51] which tries to preserve local structure
and reduce number of tokens by aggregating neighbouring
tokens, XCiT [11] which performs self-attention across fea-
ture channels to counter the quadratic complexity associ-
ated with self-attention between tokens. Recently, several
hybrid ViTs – which use convolution layers along with self-
attention – have been introduced. CvT [46] , CCT [13],
Swin [28] and Nested Transformer (NesT) [54] are among
the popular hybrid ViTs. To the best of our knowledge, ours
is the first method that makes use of a hybrid ViT architec-
ture for continual learning.

3. D3Former: Debiased Dual Distilled Trans-
former

Incrementally learning a classifier to expand its knowl-
edge, without hampering its performance on the earlier set
of classes is an arduous task for deep learning models. In
our work, D3Former, we propose to make use of a hy-
brid model – that utilises the complementary advantages of
transformer architectures and convolutional network – for
class incremental learning. We detail about the model archi-
tecture in Sec. 3.1. Exemplar replay has emerged as a sim-
ple yet effective method to alleviate forgetting. Due to stor-
age limitations, we store only few examples (close to 20 ex-
amples per task) in the exemplar memory. While learning a
new task, we combine the data from exemplar memory with
the incoming data. This skews the training data towards the
latest task. We propose to address this imbalance by treat-
ing this setting as a long-tailed recognition problem, as ex-
plained in Sec. 3.2. Further, in Sec. 3.3, we propose to retain
the spatial attention of exemplar images across tasks. This
has a two fold effect: firstly, it improves the spatial aware-
ness of the model; secondly, it helps to reduce forgetting by
reminding the model on how it needs to attend to the more
discriminative parts of the images during incremental learn-
ing. Concretely, let us consider learning a model Θ across a
total of N +1 training phases, where the first phase (t = 0)
involves learning a set of B base classes, followed by N in-
cremental phases. Each phase (1 ≤ t ≤ N ) involves learn-
ing a fixed number of C new classes. Consider the number
of exemplars retained for each class in the previous tasks
(0 . . . t − 1) is M , thereby forming a set E = {E0, ..Et−1}.
Thus, in the incremental phases, the model Θ is trained us-
ing the replayed old class exemplars E and all new input
classes data D. Figure 2 illustrates the overall setup and the
different loss functions used in D3Former. Lcam and Ldis

enforces the current model to not deviate much from the
previous model, while a cross entropy loss on the adjusted
logits (Ladj) helps to learn the new task. We explain more
on these in the following sub-sections.

3.1. The Hybrid ViT Model

D3Former builds upon the hybrid ViT NesT [54] which
makes use of 2 basic operations - blockify and aggregation.
The blockify operation combines spatially adjacent embed-
dings into a group. It captures intra-block information or
local attention using several stacked transformer encoders.
Each transformer encoder consists of Layer Normaliza-
tion (LN) and Multi-head self-attention (MSA) followed by
Feed-Forward network (FFN). On the other hand, the aggre-
gation operation (AGG) combines neighboring blocks with
the help of a simple convolution and pooling layer. It cap-
tures inter-block relationships and helps gain global under-
standing of an image. The local and global processing steps
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Figure 2. (a) Dual distillation: (left) In each learning phase t, the previous phase model Θt−1 is used to extract the features and Grad-
CAMs of exemplars E . Later, these attention maps are compared with the current model Θt attention maps and Lcam loss is calculated
between them. It discourages changes to the spatial attention response of Θt w.r.t old classes. Knowledge distillation loss (Ldis) is
computed as the cosine similarity between the features of E from Θt−1 and Θt. This maintains the orientation of the feature vectors for
the old classes. (b) Debiasing block: (right) To compensate for bias towards new classes, in addition to cosine normalization of the logits,
adjustments are added to the logits before applying cross-entropy. The adjusted logits result in stronger updates for the old (rare) classes to
avoid their misclassification, thereby minimizing forgetting old task knowledge.

help learn discriminative features.
The above operations are repeated alternately to eventually
create the hierarchical structure of NesT (Fig. 3), where
each hierarchy shares the same set of parameters. The fi-
nal class prediction is performed through a global average
pooling (GAP) layer followed by a fully connected (FC)
layer. NesT is characterized by two parameters, patch size,
S and number of block hierarchies, Td. To render NesT
suitable for CIL, we propose two principal modifications -
Debiasing via Logit Adjustment and Dual Distillation.

3.2. Reducing the Bias in the Logits

In incremental phases, a small set of exemplars are usu-
ally stored for old tasks data due to memory constraints.
However, current task samples outnumber old tasks exem-
plars in each phase leading to a strong bias towards new
classes.
An intuitive approach to reduce bias involves placing more
emphasis on rare classes during the learning process. This
can be easily implemented using a simple logit adjustment
strategy [32]. Logit adjustment adds an appropriate offset
to the output logits thereby increasing the margin between
rare and frequent classes. The offset can be calculated as
τ log πy , where τ is a hyperparameter that controls the ad-

justment strength, πy is the estimated prior for class y. Class
priors are approximated as the frequency of each class in the
dataset. However, in our case, since the number of exem-
plars from the old classes are equal and the number of sam-
ples from each new classes samples are also equal, there
needs to be only two class priors {πo, πn}. The class priors
for old and new classes are calculated as follows:

πo =
|Eco |

|E|+ |D|
,∀co ∈ E , πn =

|Dcn |
|E|+ |D|

,∀cn ∈ D (1)

Where co are the old classes, and cn are the new classes.
Thus, the cross-entropy loss can be modified by including
the logit adjustment offsets as:

Ladj(x) = − log
efy(x)+τ log πy∑

y′∈T
efy′ (x)+τ log πy′

,

s.t., πy, πy′ ∈ {πo, πn},

(2)

where T is the class labels set, and fy(x) is the cosine
normalized logits for an input sample x. Cosine normal-
ization helps in further reducing bias towards new classes
samples [15, 31], and computed as:

fy(x) = η⟨θ̄(x), w̄⟩, (3)
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Figure 3. Nested Transformer (NesT) architecture illustrating blockify and aggregation operations.

where η is a learnable scaling parameter to control the
peakness of the logits for softmax, as the values after nor-
malization are between [−1, 1], θ̄(x) is the L2-normalized
extracted features, and w̄ denotes the final layer L2-
normalized weights.

3.3. Dual-distillation Framework

Knowledge distillation was introduced to CIL as a means
of reducing forgetting by transferring knowledge about old
tasks from the teacher model Θt−1 to the student model
Θt [25, 34]. First, we incorporate knowledge distillation
at feature-level [15] using a cosine similarity loss based on
feature vectors computed as follows :

Ldis = 1− ⟨θ̄t−1(x), θ̄t(x)⟩, (4)

where θ̄t−1(x), θ̄t(x) denote the normalized feature vectors
extracted from models Θt−1 and Θt, respectively.
In addition to Eq. 4 which preserves the orientation of fea-
ture vectors as incremental learning progresses, preserving
the model response on regions that are critical for predict-
ing a particular class can help further reduce catastrophic
forgetting [6, 10]. In contrast to pure self-attention based
ViTs, the enhanced visual interpretability of hybrid ViTs
[28, 54] allows us to extract these salient regions utiliz-
ing general methods such as gradient based class activation
maps (Grad-CAM) [4, 38]. Grad-CAMs are essentially the
heatmaps which localize the most discriminative regions for
a particular class in a given image. We enforce that the at-
tention response of Θt on the old tasks must be maintained
similar to that of Θt−1 through a Grad-CAM based L1 dis-
tillation loss:

Lcam(x) =∥ CAM(Θt,x)− CAM(Θt−1,x) ∥1 (5)

We obtain Grad-CAMs from the feature maps of the final
hierarchy in NesT, since it contains global information of
the whole image. The total loss can thus be written as:

Ltotal =
1

|T |
∑
y∈T

Ladj(x) +
λ

|No|
∑
y∈No

Ldis(x)

+
γ

|No|
∑
y∈No

Lcam(x),
(6)

where y is the class label of sample x, No denotes the set
of old classes, T is the set of all classes, λ is a scaling fac-
tor controlling cosine similarity based knowledge distilla-
tion and γ is a scaling factor controlling the magnitude of
Grad-CAM based distillation. Note that unlike [6], Eq. 6
employs Grad-CAM distillation only on exemplars rather
than all training samples. This led to improved training sta-
bility as it directs the model’s attention to regions relevant
to old classes rather than potentially distracting regions en-
countered when learning new classes. Related results are
also shown in Table 7.

4. Experiments
We analyze the performance of D3Former on large scale

datasets such as ImageNet-1K [36], ImageNet Subset-100
and small scale datasets like MNIST [5], SVHN [12] and
CIFAR-100 [23]. MNIST contains 28× 28 pixel grayscale
images of handwritten single digits between 0 and 9, SVHN
is a house numbers digit dataset with 32× 32 images of 10
classes and CIFAR-100 has 32×32 images with 100 classes.
We follow a setting where we initially train the model for
half the number of classes [8, 15, 34] and then incremen-
tally add 2, 5 and 10 classes in each task for ImageNet and
CIFAR-100 experiments. A strict memory budget is con-
sidered where only 20 exemplars per class are stored. For
MNIST and SVHN experiments, we always add 2 classes
per task with a fixed exemplar memory of 4.4k as followed
in [33].

4.1. Implementation Details

Small-scale Datasets: NesT-tiny architecture with a con-
figuration of S = 1 is used for CIFAR-100 experiments,
while for SVHN and MNIST we use S = 2. The embed-
ding dimension is set to 192, the number of hierarchy levels
is 3, the number of transformer encoder blocks per level is
4 and the number of heads in each level is 6. Augmenta-
tions such as random erasing, cutmix, mixup and random
augment are used as suggested in [54]. However, mixup is
not used in the incremental phases. The suitable choices of
hyper-parameters found empirically are λ = 7, τ = 1 and γ =
0.1. We use a batch size of 128 and observe that performing
distillation only over memory samples is more favorable.
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Method
N=5 N=10 N=25

Avg ↑ Last ↑ F ↓ Avg ↑ Last ↑ F ↓ Avg ↑ Last ↑ F ↓

LwF [25] 49.59 40.40 43.36 46.98 40.19 43.58 45.51 38.25 41.66
BiC [48] 59.36 - 31.42 54.20 - 32.50 50.00 - 34.60
iCaRL [34] 57.12± 0.50 47.20 31.88 52.66± 0.89 44.80 34.10 48.22± 0.76 39.39 36.48
LUCIR [15] 63.17± 0.87 54.30 18.70 60.14± 0.73 50.30 21.34 57.54± 0.43 48.35 26.46
Mnemonics [27] 63.34± 0.34 54.32 10.91 62.28± 0.61 51.53 13.38 60.96± 0.72 50.78 19.80
PODNet-CNN [8] 64.83± 1.11 54.60 - 63.19± 1.31 53.00 - 60.72± 1.54 51.40 -

DyTox∗ [9] 70.28 63.02 24.54 66.72 59.62 29.86 62.83 53.95 33.72
D3Former (ours) 72.23±0.08 66.24±0.1 12.09 70.94±0.43 63.10±0.54 16.12 68.68±0.4 59.79±0.44 21.23
D3Former-NCM (ours) 71.38±0.32 64.26±0.47 16.52 69.35±0.47 61.46±0.58 19.36 67.03±0.59 58.12±0.80 22.84

Table 1. Results of CIFAR-100 with Average accuracy (%), last phase accuracy (%) and forgetting rate F(%) of different methods in
5,10 and 25 tasks settings. The top group of methods are based on CNN while the last three approaches (including ours) are based on
transformer models. ∗ indicates results reproduced by us using author’s official codebase.

Method
N=5 N=10 N=25

Avg ↑ Last ↑ F ↓ Avg ↑ Last ↑ F ↓ Avg ↑ Last ↑ F ↓

DyTox Joint - 79.82 - - 79.82 - - 79.82 -
D3Former Joint - 82.14 - - 82.14 - - 82.14 -
LwF [25] 53.62 40.10 55.32 47.64 36.10 57.00 44.32 34.12 55.12
BiC [48] 70.07 - 27.04 64.96 - 31.04 57.73 - 37.88
iCaRL [34] 65.44± 0.35 53.60 43.40 59.88± 0.83 49.10 45.84 52.97± 1.02 43.34 47.60
LUCIR [15] 70.84± 0.69 60.00 31.88 68.32± 0.81 57.10 33.48 61.44± 0.91 49.26 35.40
Mnemonics [27] 75.54± 0.85 61.36 17.40 74.33± 0.56 59.56 17.08 68.31± 0.39 59.22 20.83
PODNet-CNN [8] 76.96± 0.29 67.60 - 73.70± 1.05 65.00 - 71.78± 2.77 54.30 -

DyTox∗ [9] 77.08 70.24 21.21 74.06 65.44 27.16 68.76 61.54 30.04
D3Former (ours) 77.31± 0.41 67.82± 0.36 25.92 75.01± 0.63 63.46± 0.32 27.41 72.43± 0.76 59.91± 1.1 30.80
D3Former-NCM (ours) 77.21± 0.22 69.89± 0.18 17.98 75.26± 0.28 65.11± 0.25 20.21 72.31± 0.24 60.01± 0.85 27.20

Table 2. Results of Imagenet-100 with Average accuracy (%), last phase accuracy (%) and forgetting rate F (%) of different methods in
5,10 and 25 task settings. ∗ indicates results reproduced by us using author’s official codebase.

ImageNet: We use NesT-tiny architecture for ImageNet
experiments too. We set S = 4, embedding dimensions
is set to (96, 192, 384), the number of hierarchy levels are
3, the number of transformer encoder blocks per level are
(3, 6, 12) and the number of heads per level are (2, 2, 8).
Augmentations such as random erasing, cutmix, mixup and
random augment are used as suggested in [54]. Mixup is
also used in the incremental phases. Empirically, we find
that the hyper-parameters when set to λ = 4, τ = 0.3 and γ
= 0.05 yield the best results. We observe that performing
feature distillation over all samples provides more stability
when training NesT on ImageNet. We use a batch size of
384 for ImageNet-100 and 1024 for ImageNet-1K.
For both small and large scale datasets, the model is trained
for 250 epochs, 150 epochs in case of 2 classes per phase.
Weighted Adam [30] is used as the optimizer. The learn-
ing rate starts from 2.5e − 4 and decays following cosine
annealing scheduler. We make use of PyTorch implemen-
tation of NesT from timm library [45] and train on an RTX
A6000 GPU.

4.2. Results

We conduct exhaustive experimental analysis to test the
mettle of our approach. We use three metrics to quantify
the performance: 1) average accuracy across all phases, 2)
accuracy of the last phase and 3) forgetting rate F defined
as the difference between accuracy of Θ0 and ΘN on the
same test data Dtest

0 following [27]. Further, following [26],
we either use the softmax predictions from the final classi-
fier or use a nearest class mean based classifier [34] during
inference. We refer to these as D3Former and D3Former-
NCM respectively in the results. Note that the bold and
underlined values in the tables indicate the best and second
best metrics respectively.

CIFAR-100: Tab. 1 and Fig. 1 summarizes the results
on CIFAR-100 dataset when we add incrementally add 10,
5 and 2 classes respectively to a model trained on the first
50 classes. We observe that as the number of phases in-
creases, the gap between D3Former and the compared meth-
ods progressively increases – thanks to our dual-distillation
and logit-correction mechanisms. Specifically, for 25 task
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Method
N=5 N=10

Avg ↑ Last ↑ F ↓ Avg ↑ Last ↑ F ↓

DyTox Joint - 73.58 - - 73.58 -
D3Former Joint - 76.42 - - 76.42 -
LwF [25] 44.35 34.20 48.70 38.90 30.10 47.94
BiC [48] 62.65 - 25.06 58.72 - 28.34
iCaRL [34] 51.50 ± 0.43 34.20 26.03 46.89 ± 0.35 38.91 33.76
LUCIR [15] 64.45 ± 0.32 56.60 24.08 61.57 ± 0.23 51.7 27.29
Mnemonics [27] 64.54 ± 0.49 56.85 13.85 63.01± 0.57 54.99 15.82
PODNet-CNN [8] 66.43 58.90 - 63.21 55.70 -

DyTox∗ [9] 68.96 64.08 18.63 67.12 57.61 31.83
D3Former (ours) 72.73± 0.30 64.58± 0.33 21.41 69.56± 0.29 59.22± 0.32 32.35
D3Former-NCM (ours) 72.61 ± 0.32 64.64 ± 0.29 17.03 70.04± 0.34 59.90± 0.31 27.87

Table 3. Results of ImageNet-1K with Average accuracy (%), last phase accuracy (%) and forgetting rate F (%) of different methods in 5
and 10 tasks setting. ∗ indicates results reproduced by us using author’s official codebase.

experiment, our method improves average accuracy from
62.83% to 68.68% (+5.8%). This was achieved using NesT-
tiny architecture, which has 6.2 million parameters com-
pared to DyTox’s 10.73 million parameters.
ImageNet: We summarize the results of incrementally
learning ImageNet Subset-100 dataset in Tab. 2. We con-
sider 5, 10 and 25 task incremental setting. Our method
achieves the best average accuracy of 77.5% in the 5 phases
settings and 72.43% in 25 phases settings and is compa-
rable to [8, 9] in 10 phases setting. Tab. 3 summarizes
ImageNet-1K results in 5 and 10 phase setting. Unlike
small scale datasets, ImageNet shows relatively better per-
formance while using NCM. The aforementioned behaviour
is not present in previous CNN based methods [8]. This can
be attributed to two factors: first, transformers have bet-
ter generalization compared to CNNs [52], which results in
better class means, second, NesT uses higher embedding
dimension for large scale datasets which can help in NCM
based classification.
MNIST, SVHN: Thanks to the better inductive biases
of our hybrid architecture, D3Former can scale to small
datasets like MNIST and SVHN too. This uniquely differ-
entiates us to recent efforts [9, 50] in utilizing transformer
architecture for incremental learning. Tab. 4 summarizes
the average accuracy results on these datasets by adding two
new classes in every incremental phase. Our method clearly
surpasses other methods by more than 2% for MNIST and
5% for SVHN dataset.

4.3. Discussions and Analysis

4.3.1 Contribution from Each Loss Terms: We analyse
the contribution of each component in our loss formulation
in Fig. 4. We observe that with just cosine distillation, NesT
is able to achieve almost comparable accuracy as the base-

Method MNIST SVHN

EWC [21] 19.80 18.21
LwF [25] 24.17 -
GEM∗ [29] 92.20 75.61
RPS-Net∗ [33] 96.16 90.83

D3Former ∗ (ours) 98.85 95.81

Table 4. Average accuracy (%) for MNIST, SVHN in 5 tasks set-
ting with 2 classes each with 4.4k fixed memory (∗ indicates use
of exemplars

lines [15, 34, 48]. The addition of logit adjustment offset
alone brings about 1.5% - 2% improvement over using co-
sine distillation loss. We observe that Grad-CAM loss alone
is not strong enough to boost the accuracy. This is because
of the model’s inability to handle abrupt changes in model
parameters caused due to class imbalance. However, when
combined with other losses, we observe considerable im-
provement.
4.3.2 Sensitivity Analysis on τ , γ, λ: There is a trade off
between forgetting and learning while doing logit adjust-
ment. As shown in Tab. 5, a high value of τ effectively re-
duces the forgetting, but puts much emphasis on old classes
that hinders new learning. In contrast, a small value of τ
does not have enough impact on retaining old classes. Ta-
ble 6 clearly shows the benefit of using Lcam and Ldis in
improving accuracy. For 5 tasks CIFAR-100 setting, τ=1,
λ=7 and γ=0.1 obtains the best results.
4.3.3 On Data Used for Distillation: We study the ef-
fect of distilling from exemplars verses all the data-points
here. Applying distillation on all data combined with de-
biasing techniques such as logit adjustment, could impede
learning of new tasks. Although it helps in reducing catas-
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Figure 4. We analyze the contribution of each of the constituent
component of our loss here. We use a 5 task CIFAR-100 experi-
ments for this ablation study.

τ Avg ↑ Last ↑ F ↓

0 60.26 48.51 38.41
0.5 66.93 57.65 28.84
0.75 69.34 60.29 22.67
1 72.21 66.30 12.09
1.25 71.72 65.61 11.32
1.5 71.14 65.07 07.70

Table 5. Effect of varying τ in a 5 task CIFAR-100 setting.

γ Avg ↑ Last ↑ λ Avg ↑ Last ↑

0 67.85 60.16 0 57.34 48.67
0.05 71.97 66.39 5 71.78 66.21
0.10 72.21 66.24 7 72.35 66.36
0.15 72.03 66.25 9 72.17 66.57
0.20 71.81 66.16 12 71.95 66.46

Table 6. Effect of γ and λ in a 5 task CIFAR-100 setting.

trophic forgetting, it adds a lot of constraints on the learning
of new classes. This becomes more prominent in case of
small datasets, due to less number of learnable parameters.
Tab. 7 shows the positive effect of only applying distillation
on exemplars, which is intuitive.
4.3.4 Effect of Mixup: Our method uses mixup augmenta-
tion [53] in the initial phase where half of the classes are
learnt. However, we observe differences in performance
when using mixup in incremental phases. For CIFAR-
100, using mixup in incremental phases proves to be un-
favorable. This is because distillation loss is indeed adding
strong regularization for these small scale datasets. We see
this trend in Tab. 7.
4.3.5 Generality of our Approach: We note that our pro-
posed loss formulation (Ldis, Lcam and Ladj) is agnostic

Mixup Distillation S = 1 S = 2

✓ all samples 62.10 60.80
all samples 71.87 65.45

✓ exemplars 66.71 64.71
exemplars 72.21 67.07

Table 7. Effect of using Mixup and distillation in incremental
phases. Impact of different patch size S is also shown. The av-
erage accuracy for 5 task CIFAR-100 is reported.

to the backbone network being used. To elucidate this, we
swap the NesT backbone with a standard ResNet-18 back-
bone and report the result in Tab. 8 for 5 task Imagenet-100
setting. We borrow the hyper-parameters for the ResNet
backbone from AANet [26] and use τ=0.3, λ=5 and γ=0.01.
This shows that our proposed distillation and logit adjust-
ments helps in reducing forgetting, however forgetting is
much higher when compared to D3Former.

Setting Avg ↑ Last ↑ F ↓

ResNet + Ldis 68.52 55.83 34.81
ResNet + Ldis+Ladj 71.84 61.81 24.25
ResNet + Ldis+Ladj+Lcam 71.97 62.26 23.18

Table 8. Our proposed loss applied to a ResNet-18 backbone on
5 tasks ImageNet-100 setting, improvement in performance is still
observed.

5. Conclusion

We propose D3Former, a hybrid ViT based model that
is tuned for class incremental learning. We propose two
fundamental components to effectively balance the stabil-
ity and plasticity required for a continual learner: First, we
view each incremental phase as a long tail distribution and
show the effectiveness of a simple logit offset in reduc-
ing inherent bias towards new classes. Second, we show
that preserving the spatial attention response of a model via
distillation can help in improving the spatial awareness of
the model and reduce catastrophic forgetting. D3Former
achieves superior performance gains over the state-of-the-
art methods on MNIST, SVHN, CIFAR-100 and ImageNet.
We hope our approach can serve as a simple baseline for
incremental hybrid ViTs.
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Hervé Jegou. Xcit: Cross-covariance image transformers.
In NeurIPS, 2021. 3

[12] Ian J Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha
Arnoud, and Vinay Shet. Multi-digit number recognition
from street view imagery using deep convolutional neural
networks. arXiv preprint arXiv:1312.6082, 2013. 5

[13] Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu
Abuduweili, Jiachen Li, and Humphrey Shi. Escap-
ing the big data paradigm with compact transformers.
arXiv:2104.05704, 2021. 1, 3

[14] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015. 2

[15] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
Dahua Lin. Learning a unified classifier incrementally via
rebalancing. In In CVPR, June 2019. 1, 2, 3, 4, 5, 6, 7

[16] Quentin Jodelet, Xin Liu, and Tsuyoshi Murata. Balanced
softmax cross-entropy for incremental learning. In Interna-
tional Conference on Artificial Neural Networks, pages 385–
396. Springer, 2021. 3

[17] KJ Joseph, Salman Khan, Fahad Shahbaz Khan,
Rao Muhammad Anwar, and Vineeth Balasubrama-
nian. Energy-based latent aligner for incremental learning.
In CVPR, 2022. 1

[18] K J Joseph, Salman Khan, Fahad Shahbaz Khan, and Vi-
neeth N Balasubramanian. Towards open world object de-
tection. In In CVPR, 2021. 3

[19] Salman Khan, Muzammal Naseer, Munawar Hayat,
Syed Waqas Zamir, Fahad Shahbaz Khan, and Mubarak
Shah. Transformers in vision: A survey. ACM Computing
Surveys, 2021. 1

[20] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the national academy of sci-
ences, 114(13):3521–3526, 2017. 1

[21] James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Ku-
maran, and Raia Hadsell. Overcoming catastrophic forget-
ting in neural networks. In CoRR, abs/1612.00796, 2016.
7

[22] Joseph Kj, Jathushan Rajasegaran, Salman Khan, Fa-
had Shahbaz Khan, and Vineeth N Balasubramanian. Incre-
mental object detection via meta-learning. In TPAMI, 2021.
3

[23] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 5

[24] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep
learning. nature, 521(7553):436–444, 2015. 1

[25] Zhizhong Li and Derek Hoiem. Learning without forgetting.
In ECCV, 2016. 2, 5, 6, 7

[26] Yaoyao Liu, Bernt Schiele, and Qianru Sun. Adaptive ag-
gregation networks for class-incremental learning. In CVPR,
2021. 3, 6, 8

[27] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and
Qianru Sun. Mnemonics training: Multi-class incremental
learning without forgetting. In In CVPR. IEEE, jun 2020. 1,
6, 7

[28] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021. 1, 3, 5

[29] David Lopez-Paz and Marc’Aurelio Ranzato. Gradi-
ent episodic memory for continuum learning. In CoRR,
abs/1706.08840, 2017. 7

[30] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2019. 6

[31] Chunjie Luo, Jianfeng Zhan, Xiaohe Xue, Lei Wang, Rui
Ren, and Qiang Yang. Cosine normalization: Using cosine
similarity instead of dot product in neural networks. In In-
ternational Conference on Artificial Neural Networks, pages
382–391. Springer, 2018. 4

[32] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh
Rawat, Himanshu Jain, Andreas Veit, and Sanjiv Kumar.
Long-tail learning via logit adjustment. In ICLR, 2021. 4

2429



[33] Jathushan Rajasegaran, Munawar Hayat, Salman Khan, Fa-
had Shahbaz Khan, Ling Shao, and Ming-Hsuan Yang. An
adaptive random path selection approach for incremental
learning. In NeurIPS, 2019. 2, 3, 5, 7

[34] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H. Lampert. icarl: Incremental clas-
sifier and representation learning. In CVPR, 2017. 1, 2, 3, 5,
6, 7

[35] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu,
Irina Rish, Yuhai Tu, and Gerald Tesauro. Learning to learn
without forgetting by maximizing transfer and minimizing
interference. In ICLR, 2019. 3

[36] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. In IJCV, 115(3):211–252, 2015. 5

[37] Jürgen Schmidhuber. Deep learning in neural networks: An
overview. Neural networks, 61:85–117, 2015. 1

[38] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Ba-
tra. Grad-CAM: Visual explanations from deep networks via
gradient-based localization. In IJCV, 128(2):336–359, oct
2019. 5

[39] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.
Continual learning with deep generative replay. In NeurIPS,
30, 2017. 3

[40] Rishabh Tiwari, Krishnateja Killamsetty, Rishabh Iyer, and
Pradeep Shenoy. Gcr: Gradient coreset based replay buffer
selection for continual learning. In CVPR, 2022. 3

[41] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
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