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Abstract

Continual learning in real-world scenarios is a major
challenge. A general continual learning model should have
a constant memory size and no predefined task bound-
aries, as is the case in semi-supervised Video Object Seg-
mentation (VOS), where continual learning challenges par-
ticularly present themselves in working on long video se-
quences. In this article, we first formulate the problem of
semi-supervised VOS, specifically online VOS, as a contin-
ual learning problem, and then secondly provide a pub-
lic VOS dataset, CLVOS23, focusing on continual learn-
ing. Finally, we propose and implement a regularization-
based continual learning approach on LWL, an existing
online VOS baseline, to demonstrate the efficacy of con-
tinual learning when applied to online VOS and to estab-
lish a CLVOS23 baseline. We apply the proposed base-
line to the Long Videos dataset as well as to two short
video VOS datasets, DAVIS16 and DAVIS17. To the best of
our knowledge, this is the first time that VOS has been de-
fined and addressed as a continual learning problem. The
proposed CLVOS23 dataset has been released at https :
//github.com/Amirdqg/CLVOS23.

1. Introduction

The goal of Video Object Segmentation (VOS) is to ac-
curately extract a target object at the pixel level from each
frame of a given video. In general, there are two cate-
gories of VOS solutions: semi-supervised or one-shot VOS,
in which the ground-truth masks of the target objects are
given in at least one frame at inference time, and unsuper-
vised VOS, in which the VOS model knows nothing about
the objects.

Among semi-supervised VOS approaches, online VOS
approaches [5,29,37] update a part of the VOS model based
on the evaluated frames and estimated masks. The idea
is that videos contain relevant information beyond just the
given frame’s mask, which a model can exploit by learning
during the evaluation process.

Online model learning, while a video is being analyzed,

leads to questions regarding how effectively the model
learns from frame to frame, particularly when some aspect
of the video looks different than what had been given in the
ground-truth frame. This leads to the domain of continual
learning, which is a type of machine learning where a model
is trained on a sequence of tasks, and is expected to con-
tinuously improve its performance on each new task while
retaining its ability to perform well on previously-learned
tasks.

The current state-of-the-art semi-supervised and specifi-
cally online VOS methods [5,29, 37] perform well on VOS
datasets with short videos (up to a few seconds or 100
frames in length) such as DAVIS16 [35], DAVIS17 [35],
and YouTube-VOS18 [45]. However, most of these meth-
ods do not retain their expected performance on long
videos, such as those in the Long Videos dataset [24] as
shown in the XMem paper [10]. The question of the poor
performance of online VOS on long videos has not been in-
vestigated in the VOS field, nor addressed through continual
learning.

Continual learning methods are typically tested on clas-
sification datasets, like MNIST [22], CIFAR10 [21], and
Imagenet [13], or on datasets specifically designed for con-
tinual learning, such as Core50 [28]. The classification
dataset is fed to the model as a sequential stream of data
in online continual learning methods [3]. In contrast to
the aforementioned datasets and test scenarios, long video
object segmentation has numerous real-world applications,
such as video summarization, human-computer interaction,
and autonomous vehicles [48].

In this paper, we formulate and address the inefficient
performance of the online VOS approaches on long videos
as an online continual learning problem. Moreover, we pro-
pose a new long-video object segmentation dataset for con-
tinual learning (CLVOS23), as a much more realistic and
significantly greater challenge for testing VOS methods on
long videos. As a baseline, we propose a Regularization-
based (prior-focused) Continual Learning (RCL) solution to
improve online VOS.
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2. Related work

Semi-supervised VOS methods try to maximize the ben-
efit from whatever information is given, normally the first
frame of the video. Early solutions in the literature [6, 34]
fine-tuned a pretrained VOS on the given information in
a video at evaluation time. In contrast, current state-of-
the-art solutions attempt to benefit from previously evalu-
ated frames and make use of an allocated memory to pre-
serve that information from preceding frames in segment-
ing the current frame. The so called memory-based VOS
approaches [5, 10, 30,33, 37, 50] also are categorised into
two streams, matching-based and online:

* Matching-based VOS methods [11,18,25,27,40,44,47]
match the representations of previous frames, stored
in memory, with the corresponding features extracted
from the current frame.

* Online VOS [5,6,26,37,42] update (fine-tune) a small
model based on the features and estimated masks of
preceding frames.

Continual learning [1, 17,46] is a sequential learning pro-
cess where the data sequence may come from different do-
mains and tasks; thus, a model is learning from data where
distribution drift [16] may occur suddenly or gradually.
Catastrophic forgetting is the key challenge in continual
learning and it was first defined on neural networks [31,36]
when a neural network model is trained on a sequence
of tasks, but has access to the training data for only the
current task. In such circumstances, the model learning
process is inclined to frequently update those parameters
which are heavily influenced by data from the current task,
leading to previously-learned tasks to be partially forgot-
ten. The concept of catastrophic forgetting was also de-
fined on other machine learning models [14]. There are
three different approaches to catastrophic forgetting: prior-
focused (regularization-based) [9, 12], likelihood-focused
(rehearsal-based) [4, 7,43, 49], and hybrid (ensemble) ap-
proaches [23,39].

Elastic Weight Consolidation (EWC) [20] and Memory
Aware Synopses (MAS) [2] are two examples of prior-
focused methods that employ regularization during training
to limit the change of previously learned weights. These
methods assume that previously learned task weights can
serve as a prior for the current network weights, which are in
charge of learning new tasks. Through the use of a penalty
term in the loss function, these methods aim to preserve the
significant parameters from preceding tasks.

Likelihood-focused (rehearsal) techniques concentrate
on minimizing the model’s loss function by taking into ac-
count historical information. Examples include deep gen-
erative replay (DGR) [4 1] and variational generative replay
(VGR) [15], which keep previous data or train generative

models on earlier tasks prior to training the new task. Gen-
erative Adversarial Networks (GANSs) are used in [41] to
produce data from each task as samples to be used during
the training of a new task.

Finally, as their name implies, hybrid methods seek
to combine the benefits of prior-focused and likelihood-
focused techniques. As an example, Variational Continual
Learning (VCL) [32] combines the posterior from the previ-
ous task (i.e., the prior to the current task) with information
about the new task (i.e., its likelihood).

The solution proposed in this article is a Regularization-
based Continual Learning (RCL) approach, drawing its mo-
tivation from EWC [20].

3. Problem formulation

An online VOS model O= [5,29,37] is first trained of-
fline to minimize the following loss function and to learn
the model parameters =:

H= arg_minll(OE/(F),Y). (1)

In Eq. (1), £ is usually a pixel-wise cross entropy loss [8],
F'is an image frame and Y is the segmented mask in which
each pixel of F' is labeled, based on the number of objects
in the video sequence. For example, in the case of single-
object video, Y is just a binary foreground/background
mask. An online VOS model typically has a U-Net encoder-
decoder structure [38], and further comprises the following
pieces:

1. A pretrained encoder, extracting feature X from each
frame F’,

2. A memory M = {X, Y}, storing features X and their
associated labels ) / masks. The memory can be up-
dated with input feature X; and estimated output Y; at
time ¢;

3. A target model Ct, which is trained on the memory
Mt at time ¢, and provides information to decoder D;

4. Pretrained decoder D and label encoder E [5] net-
works which obtain temporal information from the tar-
get model alongside the encoder’s output, to generate
a fine-grain output mask Y from frame F'.

The time index ¢ is based on input time frame. Thus, at time
t, Ct=A¢ is updated to C* on M? where Ac is the target
model update step. Next, the output Y, is estimated from
Ct, thus M? can be augmented with pairs (X; 1, Y1) to
create M**1, Potentially, we could update M at every time
frame ¢, but for practical and computational reasons, we
can choose to update the memory every A » frames, where
A is the memory update step. An analogous target model
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Figure 1. General online VOS framework: The target model C*~2¢ is updated on memory M? to form C*. The target model C is
initialized based on the given ground truth mask Y, and its associated feature X ,. The memory M is updated every Ay time steps (video
frames) with new information (X;41, Y;+1). The dashed lines show how the target model C is updated based on memory M every Ac
frames, and the dotted lines show memory update. Our proposed methods focus on the target model component (C) of the framework. The
frame images used in the figure are taken from the “car” video in the proposed CLVOS23 dataset.

update step A is considered for updating C. This process
is depicted in Figure 1.

All of the parameters of the VOS model (=) are first
trained offline on a set of training data containing video
frames and annotated labels; however, certain parameters
of the model need to be updated online at testing time on
the extracted features XX’ of evaluated frames and their as-
sociated predicted labels ) which are kept in the memory
M. In particular, let © be the parameters of target model
C, consisting mainly of convolutional filter weights, for
© = {0,}}£, where K is the number of target model param-
eters. It should be emphasized that © is a rather small subset
of the overall parameter set (=), since the target model C is
usually a small convolutional neural network for reasons of
efficiency. The target model is updated every A¢ frames
throughout the video, repeatedly trained on features X" and
associated encoded labels E()) of stored decoder outputs
from preceding frames. Both X and ) are stored in memory
M, as shown in Figure 1.

It is worth noting that E is a label encoder, generating
sub-mask labels from each Y [5]. For online training of
Ct=2¢ at time t, every Y € Mt is fed to E and we seek
a trained model C? to learn what E specifies from each Y.
That is, the target model acts like a dynamic attention model
to generate a set of score maps E(Ct(X )) in order for the
segmentation network (D) to produce the segmented output
mask Y associated with each frame F'. The loss function L,
which is used for the online training of target model C? at

time ¢, is

L(e', M") = )
| M s K

Z] n(E(Yn) —E(Ct(Xn)))Hg—%ZAQZQ
n=1 k=1

where 0! € O is a parameter of C* and | M| is the number
of feature and mask pairs { X, Y} in the memory M".

Depending on the overall architecture, E is an offline /
pre-trained label encoder network, as in [5], or just a pass-
through identity function, as in [37]. It is worth noting that
the influence and effect of E is not the focus or interest of
this paper.

In Eq. (2), W, is the spatial pixel weight, deduced from
Y,, and d,, is the associated temporal weight decay coef-
ficient. In the loss function L(0%, M?"), W,, balances the
importance of the target and the background pixels in each
frame, whereas d,, defines the temporal importance of pair
of feature and mask (X,,,Y,,) in memory, typically empha-
sizing more recent frames [5].

4. Proposed dataset

As shown in Figure 1, online VOS assumes the change in
each video sequence to be gradual, meaning that a constant
size of memory M? has an adequate capacity to update the
target model C*~2¢ to C* for segmenting the current frame
F,.. In the ideal case, where the samples in a video se-
quence are independent and identically distributed (i.i.d.),
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Figure 2. A set of sub-sampled frames from three videos of the DAVIS16 dataset [35], in each case two rows: actual images (top) and
segmented objects (bottom). The first video, “cow” is the longest in DAVIS16, however there is no significant change between frames.
There is a gradual change in appearance in the other two videos. The given annotated (ground-truth) frame in each video is highlighted in

green.

machine learning problems are made significantly easier,
since there is then no need to handle distributional drift and
temporal dependency in VOS. However, i.i.d. assumption
is not valid in video data.

Figure 2 shows three video sequences from the
DAVIS2016 dataset, where we can see that target objects
do not have an abrupt change through video frames. Objects
could have small changes, such as in the “cow” video (the
longest video in DAVIS2016 at 104 frames), and the other
two videos (soapbox and motocross-jump) possess varia-
tions in object appearance, however the changes are grad-
ual. As a result, for such datasets the identically distributed
assumption of frames is usually valid, particularly for short
videos. It is thus worth mentioning that the YouTube-
VOS18 sequences are even shorter than those in DAVIS16
and DAVIS17, where the longest video in the validation set
of YouTube-VOS18 has 36 frames.

The semi-supervised VOS approaches maintain the i.i.d.
assumption for video sequences, despite the fact that this
assumption is clear not valid in all video sequences, partic-
ularly longer ones. It is precisely for this reason that state-
of-the-art semi-supervised VOS models are not expected to
have a similar performance on long video datasets [10].

Figure 3 shows the “dressage” video from the Long
Videos dataset [24], the dataset consisting of three long se-
quences with a total of 7411 frames. As is clear from Fig-
ure 3, an i.i.d. assumption is not at all valid on “dressage”
video, because of the 22 substantial distribution drifts which
take place, a behaviour which is much more closely aligned
with the non-i.i.d. assumption of continual learning. How-
ever, this new continual learning-based interpretation of the
long video sequences is discussed for the first time in VOS
and continual learning. As the evaluation label mask is cho-

sen uniformly in the Long Videos dataset, it does not show
how well a VOS solution handles sudden shifts in the tar-
get’s appearance. Alternatively, we propose annotating the
frames for the evaluation based on the distribution drift that
occurs in each video sequence.

Figure 3 shows 23 sub-chunks of videos in the “dres-
sage” video of the Long Videos dataset. Each sub-chunk
is separated from its previous and next sub-chunks based
on the distribution drifts. When an online or offline event,
such as a sports competition, is recorded using multiple
cameras, these distribution drifts are common in media-
provided videos. As a result, in our proposed dataset, we
first utilize the following strategy to select candidate frames
for annotation and evaluation.

e We select the first frame of each sub-chunk S. It is
interesting to see how VOS models handle the distri-
bution drift that happens in the sequence, which is ar-
riving a new task in continual learning.

* The last frame of each sequence is also selected. The
first frame ground truth label mask is given to the
model as it is set in the semi-supervised VOS scenario.

¢ One frame from the middle of each sub-chunk is also
selected for being annotated.

As shown in Figure 3, selecting the annotated
frames uniformly will cause some small sub-chunks
(S11, 512, S17, S19) to be missed in the evaluation. For
CLVOS23, in addition to the 3 videos from the Long
Videos dataset, we added the other 6 videos described in
Table 1. All frames of the 6 new added videos are extracted
with the rate of 15 Frames Per Second (FPS). To ensure
that all distribution drifts are captured, we only annotate the
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Video name | #Sub-chunks (tasks) ‘ #Frames ‘ #Annotated frames

dressage 23 3589 43
blueboy 27 1416 47
rat 22 2606 42
car 18 1109 37
dog 12 891 25
parkour 24 1578 49
skating 5 778 11
skiing 5 692 11
skiing-long 9 903 19

Table 1. Each video sequence’s specifications in the proposed
CLVOS23 dataset. The first three videos (Dressage, Blueboy, and
Rat) are taken directly from the Long Videos dataset [24] and we
added additional annotated ground-truth frames to each of them to
make them more appropriate for continual learning.

first frame of each sub-chunk in the Long Videos dataset
and add them to the uniformly selected annotated frames.
The proposed dataset has following advantages over the
Long Videos dataset [24].

e It added 5951 frames to 7411 frames of the Long
Videos dataset.

¢ CLVOS23 increased the number of annotation frames
from 63 in the Long Videos dataset to 284.

¢ It increases the number of videos from 3 to 9.

e The selected annotated frames are chosen based on
the distribution drift that happens in the videos (sub-
chunks) rather than being uniformly selected.

It is worth noting that for a long VOS dataset, it is very
expensive and sometimes unnecessary to annotate all the
frames of videos for evaluation. It is worth mentioning that
We utilized the Toronto Annotation Suite [19] to annotate
the selected frames for evaluation. The frames of new 6
videos were resized to have a height of 480 pixels. The
width of each frame is defined as proportionate to its height.
The link to access to the dataset is provided.'

5. Proposed method

A continual learning system should have a limited con-
stant memory which is essential for a bounded system work-
ing on an infinite sequence of data. Thus, we focus on ad-
dressing continual learning using the memory-based VOS
models and among them we are interested in the online VOS
approaches, where part of the model (C) is updating on a
constant size memory M.

The LWL method [5], which is an extension over the
well-known FRTM framework [37] benefits from a label
encoder network E that tells the target model C what to

https://github.com/Amirdg/CLV0OS23

learn [5]. In this article, LWL has been chosen as the on-
line VOS baseline method. The framework structure that is
explained in Figure 1 is followed by LWL, where encoder,
decoder D, and the label encoder E are all trained offline;
consequently, we do not make any modifications to these
components by implementing the proposed solution.

The proposed regularization-based continual learning
(RCL) method is inspired by the EWC [20] algorithm,
where the network parameters © of the target model C in
LWL are regularized to preserve the important parameters
and prevent modification during the target model updating
steps. The importance of each parameter 6 is associated
with the magnitude of its related gradient ¢y, during the pre-
ceding update steps. Therefore, during each updating (on-
line learning) step ¢, the training parameters ©° are regular-
ized by the magnitude of the gradients of the target models’
parameters ® = {¢;}1< | and the updated model’s param-
eters © = {Hk}szl of preceding updates, which are stored
in the regularizer memory M p.

Thus, for all features X and their related output masks
Y in the memory M?, the target model C* with parameters
©?, and the regularizer memory MEAC, the following loss
function defined in Eq. (3) is used for training the target
model of LWL:

Lr(©f, M, MiT20) = 3)

t—A
IMp =]

2
L, My +x Y cI»J’H@t - @J‘H
j=1

where the loss function L is described in Eq. (2), A controls
the regularisation term, and |M§{AC| shows how many
pairs of {©, ®} have been stored in My so far. The loss
function in Eq. (3) is used to update the target model, and
it regularizes the target model training to preserve its pre-
viously learned knowledge. The proposed RCL method is
depicted in Figure 4. As illustrated in this figure, the pro-
posed RCL can be added to any online VOS method and
improve its performance as shown in Section 6.

It is worth noting that the memory M is initialized by
the encoded features of the given frame F; and its provided
ground-truth mask Y; as defined in a semi-supervised VOS
scenario.

One drawback of the proposed regularization-based
method is that it needs to store the parameter importance
&' and the parameters of the target model ©¢ after each on-
line updating step t; however, a limited number of stored
pairs of {®, ©} are enough to regularize the updating step
of the target model C*.

Additionally, for a small target model C, it is feasible to
calculate and store the ® and © during the updating step;
however, it is a real challenge for a larger target model.
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Figure 3. A subset of frames from “dressage” video of the Long Videos dataset [24]. The video consists of 23 sub-chunks that are separated
from each other by significant distributional drifts or discontinuities. The lower (sparse) row, in each set, show the annotated frames. The
annotations provided by [24] are shown without a border, whereas the annotated masks added via this paper, and made available via the
CLVOS23 dataset, are shown with blue borders. The four sub-chunks that are missing from the Long Videos dataset are encircled in red.

6. Experimental Result

A fixed setup is used for the evaluated methods, with
maximum memory sizes of N = 32 for LWL and LWL-
RCL as suggested in LWL’s original publication. For all
experiments, the target model C is updated for three epochs
on the memory M in each updating step to have a fair com-
parison with the baseline. The target model is updated every
time the memory is updated, following the proposed setup

in [10].

The memory M is initialized by the given ground truth
frame F,. In all of the experiments, as suggested in the
semi-supervised online VOS baseline (LWL), the informa-
tion extracted from Fy is preserved and is used throughout

the evaluation of other frames in the video sequence. In the
proposed method, the same concept is followed where in
the proposed regularisation-based LWL, the importance pa-
rameters ®° and the parameters O related to the training
of the target model C on X, and Y, are kept in Mg.

In the RCL method, A is set to 5 and the maximum size of
Mg is set to 20. We validate these hyper-parameter using
cross validation. In LWL, the target model C is a small one
layer convolutional neural network. Additionally, the same
pretrained decoder D and encoder models are used for all
experiments of LWL. To measure the effectiveness of the
proposed method, consistent with the standard DAVIS pro-
tocol [35] the mean Jaccard J index, mean boundary F
scores, and the average of J&F are reported for all evalu-
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Figure 4. The proposed online VOS framework, with the proposed RCL approach: At time ¢, the process of updating C*~2¢ on M? is
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regularized by all pairs of the target model’s parameters and their associated importance {®, ©} in the regularizer memory M5 as
shown in Eq. (3). After updating C*~2¢ to C*, M’ 2 is updated using {®*, ©'} calculated from C*.

ated methods. The speed of each method is reported on the
DAVIS16 dataset [37] in units of Frames Per Second (FPS).
All experiments were performed using one NVIDIA V100
GPU.

The effectiveness of the proposed regularization-based
continual learning method (RCL) is evaluated by augment-
ing an online VOS framework (LWL); however, the pro-
posed method can be extended to any online VOS method
having a periodically-updated network model, as in Fig-
ure 1.

Table 2 shows the results of the selected baseline
(LWL) and the augmented baseline with the proposed
regularization-based method (RCL) on the Long Video
dataset [24], and the proposed CLVOS23 dataset. Here,
six experiments with six different memory and target model
update step sizes Ac € {1,2,4,6,8,10} are conducted
(Ap = Ac), where, the memory M? is updated after
each target model C*~2¢ update to C*. For reference, the
means and standard deviations of six runs of two compet-
ing methods (LWL and LWL-RCL) are reported in Table 2.
As it is represented in Table 2, CLVOS23 is a more diffi-
cult VOS dataset in comparison to the Long Videos dataset,
since LWL has lower performance on CLVOS23. Addition-
ally, the proposed RCL improves LWL on CLVOS23 more

than the Long Videos dataset, which shows CLVOS23 is
a more appropriate dataset for evaluating online, continual
learning-based contributions.

Furthermore, looking at the standard deviations reported
in Table 2, the proposed regularization-based method de-
creases the standard deviation of reported results with
different memory and target model step sizes Ac €
{1,2,4,6,8,10}. This indicates that the proposed method
is more robust against selecting different frame rates for up-
dating the target model C.

Table 3 shows the results of the selected baseline on two
short VOS datasets (DAVIS16 and DAVIS17). The results
show that the proposed RCL method does not have any neg-
ative effects on the accuracy of the baseline method (LWL);
however, it affects the speed of the baseline since it needs to
recalculate the regularization term in Eq. (3) in every epoch
of the updating step.

It is worth mentioning that we use the suggested hyper-
parameters in the original paper of LWL [5]; nevertheless,
the used hyper-parameters are not necessarily the best pa-
rameters for LWL on long video datasets, and it is possible
to improve the performance of the baseline method on the
evaluated dataset by only making some small changes to
LWL. The objective of this article is to provide a contin-
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Method ‘ Long Videos [24] ‘ CLVOS23
| J F J&F | T F TeF
LWL [5] 78.0+4.3 81.6+42 79.844.2 | 68.1+£22  71.9424  70.0+2.3

LWL-RCL (ours) | 79.843.0 827432 81.343.1 | 704 £1.9 74.33+£2.0 72.44+2.0

Table 2. Performance analysis of the evaluated methods against
the validation set of the Long Videos and proposed CLVOS23
datasets.

Method | DAVIS17 | DAVIS16 | Fps
| v F J&F| T F  J&F|

LWL [5] 77.1 829 80.0 |87.3 885 879 | 1815

LWL-RCL (ours) | 77.1 829 80.0 |87.3 885 879 | 1447

Table 3. Performance analysis of the evaluated methods against
validation sets of the DAVIS16 and DAVIS17 datasets.

ual learning-based VOS dataset and a method that improves
any online VOS approaches that struggle with forgetting on
long video sequences with abrupt changes in the target ob-
ject’s appearance.

7. Conclusion

In this article, we presented a dataset called CLVOS23 to
examine the capability of semi-supervised VOS approaches
to deal with the forgetting of past frames’ learning, and
we frame this problem as a continual learning challenge.
To help online VOS methods get around memory limita-
tions without sacrificing accuracy, we also proposed adding
a regularization-based module to them. The proposed mod-
ules can be added to any existing online VOS framework
that is already in place to make it more efficient and resis-
tant to distribution drifts that can happen during long video
clips, while keeping or even improving performance accu-
racy. The changes we made to the standard procedure for
online VOS made it more accurate on long videos, accord-
ing to our results. Furthermore, on the short video datasets
(DAVIS16, DAVIS17) where the object’s appearance does
not suddenly change, the proposed methods do not outper-
form the baselines.
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