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Abstract

Continual learning is a setting where machine learn-
ing models learn novel concepts from continuously shifting
training data, while simultaneously avoiding degradation
of knowledge on previously seen classes which may disap-
pear from the training data for extended periods of time (a
phenomenon known as the catastrophic forgetting problem).
Current approaches for continual learning of a single ex-
panding task (aka class-incremental continual learning) re-
quire extensive rehearsal of previously seen data to avoid
this degradation of knowledge. Unfortunately, rehearsal
comes at a cost to memory, and it may also violate data-
privacy. Instead, we explore combining knowledge distilla-
tion and parameter regularization in new ways to achieve
strong continual learning performance without rehearsal.
Specifically, we take a deep dive into common continual
learning techniques: prediction distillation, feature distil-
lation, L2 parameter regularization, and EWC parameter
regularization. We first disprove the common assumption
that parameter regularization techniques fail for rehearsal-
free continual learning of a single, expanding task. Next,
we explore how to leverage knowledge from a pre-trained
model in rehearsal-free continual learning and find that
vanilla L2 parameter regularization outperforms EWC pa-
rameter regularization and feature distillation. Finally, we
explore the recently popular ImageNet-R benchmark, and
show that L2 parameter regularization implemented in self-
attention blocks of a ViT transformer outperforms recent
popular prompting for continual learning methods.

1. Introduction
Deep learning models for machine learning applications

are typically trained offline on a large, static dataset. The
model is then deployed to the real world with assumptions
that the distribution of data it will encounter matches the
distribution of data it was trained on. Unfortunately, this as-
sumption does not hold for many applications because the
model will encounter a natural distribution shift in the target

*This material is based upon work supported by the National Science
Foundation under Grant No. 2239292.

data over time. These shifts lead to performance degrada-
tion, requiring that the model be replaced.

One way to replace a model is to collect additional train-
ing data, combine this new training data with the old train-
ing data, and then retrain the model from scratch. While this
will guarantee high model performance, it is not practical
for large-scale applications which may require long training
times for the model. This may lead to high financial [24]
and environmental [32] costs after numerous replacements.
Instead, the preferred way is to update the model in the most
efficient1 manner possible. The simplest way to update the
model is to train it on only the new training data. However,
this leads to a phenomenon known as catastrophic forget-
ting [42], where the model overwrites previously acquired
knowledge when learning the new data. This results in dras-
tic performance degradation, or “forgetting”, over the pre-
viously learned training data distribution.

The study of catastrophic forgetting is referred to as con-
tinual learning. In this setting, a model sequentially learns
from new task data while avoiding the catastrophic forget-
ting of previously seen data. This task data typically contain
semantic distribution shifts (e.g., we encounter new object
classes) rather than covariate distribution shifts 2 (e.g., we
encounter new lighting or background conditions). The goal
of the continual learning problem is to find the most effi-
cient training strategy to update models which are sequen-
tially trained on these task sequences. Strategies are typi-
cally evaluated on metrics such as task performance (e.g.,
classification accuracy for a classification problem), com-
putational efficiency (e.g., training time), and memory effi-
ciency (e.g., number of parameters stored).

In this paper, we focus on continual learning over a sin-
gle, expanding classification head. This is different from
the multi-task continual learning setting, known as task-
incremental continual learning, where we learn separate
classification heads for each task (and the task label is pro-
vided during inference) [23]. Unfortunately, SOTA meth-
ods for continual learning without task labels require that
a subset of the training data be stored or generated to mix

1W.r.t. to computation and/or memory, depending on the application.
2We note here that covariate distribution shifts have been studied in re-

cent continual learning works [10,31], but this is not the focus of our paper.
For more discussion on this comparison, the reader is referred to [58].
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in with future task data, a strategy referred to as rehearsal.
Many applications are unable to store this data because they
work with private user data that cannot be stored long term.
For example, some companies will collect user data to up-
date the models in the short term (hours to day) but this data
could have a timestamp and need deleting.

In this paper, we take a closer look at rehearsal-free
strategies for continual learning which do not store train-
ing data. Rather than propose a new method, we offer
an interesting and impactful new perspective building on
existing strategies. Specifically, we start by asking the
question: what type of regularization (parameter-space or
prediction-space) is best for rehearsal-free continual learn-
ing? We provide analysis into how these methods forget
from a feature-drift perspective, and show that parameter
regularization is most effective at reducing forgetting in the
feature encoder while prediction distillation using multi-
class sigmoid instead of softmax is most effective for re-
ducing forgetting and bias in the classifier head.

Unfortunately, we show that the gap between rehearsal
and rehearsal-free methods remains large. We conjecture
that pre-training may help close this gap, leading us to our
next question: what type of regularization (parameter-space
or prediction-space) can best leverage a pre-trained model
for rehearsal-free continual learning? We surprisingly find
that, while L2 regularization has low accuracy when the
model is randomly initialized from scratch, it actually per-
forms best in this pre-training setting and beats out more
sophisticated methods, including recent prompting for con-
tinual learning methods [54, 60, 61].

Finally, we show that a simple method derived from our
findings can even outperform rehearsal-based methods on
a standard continual learning benchmark. In summary, we
make the following findings and contributions:
1. We provide a closer look into rehearsal-free continual

learning with best practices, identifying that forgetting
largely happens in the later layers. The most effective
mitigation is through regularizing the final predictions
when pre-training is not available.

2. We extend the above investigations to the scenario where
pre-training is available and find that regularizing pa-
rameters is more effective than regularizing predictions,
pointing out the efficacy of methods can shift dramati-
cally with continual learning problem settings.

3. We achieve SOTA results in the rehearsal-free setting
and even outperform recent SOTA prompting for con-
tinual learning methods [54, 60, 61].

2. Background and Related Work
Continual Learning: Continual learning approaches can
be organized into a few broad categories which are all
useful depending on the problem setting and constraints.
One group of approaches expand a model’s architecture as

new tasks are encountered; these are highly effective for
applications where a model growing with tasks is practi-
cal [14,34,37,40,51]. We do not consider these methods be-
cause the model parameters grow with the number of tasks,
but acknowledge that our contributions could be incorpo-
rated into these approaches.

Another approach is to regularize the model with re-
spect to past task knowledge while training the new task.
This can either be done by regularizing the model in the
weight space (i.e., penalize changes to model parame-
ters) [2, 13, 29, 55, 66] or the prediction space (i.e., penalize
changes to model predictions) [1,6,21,33,36]. Regularizing
knowledge in the prediction space is done using knowledge
distillation [20] and it has been found to perform better than
model regularization based methods for continual learning
when task labels are not given [35, 57].

Rehearsal with stored data [3–5,7,8,15,16,22,28,39,47–
49, 59] or samples from a generative model [26, 27, 43, 52,
56] is highly effective when storing training data or train-
ing/saving a generative model is possible. Unfortunately
for many machine learning applications, long-term storage
of training data will violate data-privacy, as well as incur-
ring a large memory cost. With respect to the generative
model, this training process is much more computationally
and memory intensive compared to a classification model
and additionally may violate data legality concerns because
using a generative model increases the chance of memo-
rizing potentially sensitive data [41]. This motivates us to
work on the important setting of rehearsal-free approaches
to mitigate catastrophic forgetting.
Online Rehearsal-Free Continual Learning: Other works
have looked at rehearsal-free continual learning from an on-
line “streaming” learning perspective using a frozen, pre-
trained model [17,38]. While these works focus on efficient
online learning from a fixed, frozen feature space, we in-
stead analyze non-frozen models which are allowed to train
”to convergence” on task data (as is common for offline con-
tinual learning [63]). Therefore, our setting is very different
from these works.
Prototype-Based Approaches for Continual Learning:
Prototypes can be leveraged for continual learning as a
means to avoid catastrophic forgetting without storing data.
Recent methods learn a feature space for prototypes with
approaches such as learning an embedding network [65] or
leveraging strong augmentations for self-supervised learn-
ing [62, 68]. While learning prototypes in an embedding
network [65] can better mitigate forgetting compared to
cross-entropy classification, we avoid such approaches be-
cause training an embedding network with metric learn-
ing can often be a hard challenge [68]. While leverag-
ing strong self-supervision to augment data and prototypes
can achieve SOTA performance for rehearsal-free continual
learning [62,68], it is not clear if the performance increase is
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due to mitigating forgetting versus having generally better
features due to an expanded dataset of strong data augmen-
tations [11]. Additionally, these approaches require a large
first-task to learn a strong initial feature space (which is not
always valid). In summary, while these advanced strate-
gies perform well in the absence of stored data, we instead
offer our work as a different perspective on simple, exist-
ing, widely-adopted strategies rather than a complex, SOTA
method which requires additional assumptions (e.g., having
a large first task).
Rehearsal-Free Continual Learning: Recent works learn
prompts within a frozen, pre-trained transformer model for
continual learning [54, 60, 61]. While effective, this ap-
proach assumes that the data within the continual learning
sequence can be separated with a pre-trained encoder; be-
cause this assumption is often invalid, it is still strongly
desired to understand how fine-tuning based approaches
forget in the rehearsal-free setting. Other works propose
producing images for rehearsal using deep-model inver-
sion [9, 53, 64]. While these methods perform well com-
pared to generative modeling approaches and simply re-
hearsal from a small number of stored images, we argue that
these methods have similar risks to generative approaches.
Specifically, model-inversion is a slow process associated
with high computational costs in the continual learning set-
ting [53] and inverting images from a trained model can also
violate the same data-privacy concerns [25]. This motivates
us to ask: “how can we entirely eliminate rehearsal includ-
ing stored, trained, or inverted training data?”

3. Preliminaries
Continual Learning: In continual learning, a model is
shown labeled data corresponding to M semantic object
classes c1, c2, . . . , cM over a series of N tasks correspond-
ing to non-overlapping subsets of classes. We use the no-
tation Tn to denote the set of classes introduced in task n,
with |Tn| denoting the number of object classes in task n.
Each class appears in only a single task, and the goal is to
incrementally learn to classify new object classes as they
are introduced while retaining performance on previously
learned classes. To describe our inference model, we denote
θi,n as the model θ at time i that has been trained with the
classes from task n. For example, θn,1:n refers to the model
trained during task n and the linear classification heads as-
sociated with all tasks up to and including class n. We drop
the second index when describing the model trained during
task n with all linear classification heads (for example, θn).

In this paper, we deal with the class-incremental contin-
ual learning setting rather than the task-incremental contin-
ual learning setting. Class-incremental continual learning
is challenging because the learner must support classifica-
tion across all classes seen up to task n [23] (i.e., no task
labels are provided to the learner during inference). Task-

incremental continual learning is a simpler multi-task set-
ting where the task labels are given during both training and
inference.

4. Rehearsal-Free Regularization
When training on a new task n, the key to mitigating for-

getting is to transfer knowledge from a “checkpoint” model,
θn−1 (which is copied and frozen at the end of task n− 1),
into the model being updated, θn. In this section, we first
review three classic ways to transfer knowledge in continual
learning which can be described as “rehearsal-free”. These
approaches are visualized in Figure 1, and we encourage the
reader to refer back to Figure 1 throughout reading this sec-
tion. We then argue that one of these methods, prediction
distillation, is more important for transferring knowledge
from a model’s classifier, whereas the other two methods,
parameter regularization and feature distillation, are more
important for transferring knowledge from a model’s fea-
ture encoder. We will use this section as a foundation to
motivate and understand the findings presented in Section 5.

4.1. Parameter Space Regularization

One of the earliest approaches for continual learning,
EWC, proposed regularizing the model in the model param-
eter space [29]. At a high level, this approach searches for
a solution in each new task that lies within the weight space
of solutions to the previous tasks. This is done by calculat-
ing the L2 distance between each model parameter in θn−1

and each model parameter in θn, or:

Lewc =

Nparams∑
j=1

F jj
n−1

(
θjn − θjn−1

)2

(1)

where F jj
n−1 is the jth diagonal element of the n− 1th

Fisher information matrix Fn−1, which is calculated using
the data and loss function in task n − 1. We refer to this
approach as EWC throughout this paper. Observe that if
F is given as the identify matrix, Lewc simply becomes L2
regularization between the model parameters. We will an-
alyze this approach as well and refer to it as simply L2 for
the rest of this paper. A strong advantage of L2 regulariza-
tion versus EWC regularization is that L2 regularization can
be applied in the absence of an importance-weighting ma-
trix (e.g., L2 can be applied in the first task of a continual
learning sequence in the presence of pre-training to retain
the pre-trained knowledge). While the original work shows
that using the identify matrix for F hurts performance, we
will show later that L2 can actually outperform EWC under
certain continual learning settings.

4.2. Feature Space Regularization

Another approach for continual learning is to leverage
knowledge distillation from θn−1 to regularize the learning
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Figure 1. Three ways to transfer knowledge from a checkpoint model in continual learning. Parameter regularization penalizes
changes in the model parameter space. This can be weighted by the Fisher Information Matrix (e.g., EWC [29]) or with no weighting
(e.g., L2 regularization). Prediction distillation (e.g., LwF [36]) penalizes features in the model prediction space with respect to some data
x, whereas feature distillation penalizes features in the model intermediate feature space with respect to some data x. In the case where x
is strictly from the new task, both distillation methods are “rehearsal-free”.

of θn. This was first introduced for continual learning in the
Learning without Forgetting (LwF) [36] method as knowl-
edge distillation in the prediction space. We will refer to
this as PredKD throughout the paper.

Let us denote pθ(y | x) as the predicted class distribution
produced by model θ for input x. Using this notation, the
loss function for PredKD is defined as:

LPredKD = CE(pθn,1:n−1
(x), pθn−1,1:n−1

(x)) (2)

where CE is the standard cross-entropy loss. Knowledge
can also be distilled in the feature space instead of the pre-
diction space. The intuition here is to directly align the
models’ feature space so that the feature space does not drift
far from the previous checkpoint solution. We will refer to
this as FeatureKD throughout the paper with a loss func-
tion given as:

LFeatKD = ||θln(x)− θln−1(x)||22 (3)

Notice that, since we do not generate class predictions
pθ(y | x) at the intermediate feature space, we instead min-
imize the squared error.

4.3. Task-Bias

Another continual learning phenomena that exists in the
absence of task labels during inference is task bias to-
wards recent task data. This is typically mitigated with
solutions relying on rehearsal data [1, 63]. Since we can-
not reduce task bias with rehearsal data in our setting, we
borrow from the rehearsal-free continual learning method
LWF.MC [47] and use sigmoid binary cross-entropy classi-
fication loss (referred to as BCE) instead of the typical soft-
max cross-entropy classification loss (we note here that this
is nearly equivalent to using the ”labels trick” from [67]).
The intuition here is that softmax classification without re-
hearsal data results in a strong bias against the previously
seen classes because minimizing this loss reduces the mag-
nitude of the old classes’ corresponding logit outputs. We
will show that the BCE classifier boosts the methods EWC,
L2, and FeatKD into competitive SOTA approaches, despite
having been previously reported to “fail” in the continual
learning setting when task labels are not present [23].

5. Experiments
In this section, we take a closer look at EWC, L2,

PredKD, and FeatKD in the rehearsal-free continual learn-
ing setting. We analyze performance of these four losses in
addition to both i) a naive model trained with classification
loss only (referred to as naive) and ii) an upper bound model
trained with the joint training data from all tasks (referred
to as upper-bound). We first provide benchmark results on
the CIFAR-100 dataset [30] which contains 100 classes of
32x32x3 images. We train with a 18-layer ResNet [18] for
250 epochs using Adam optimization; the learning rate is
set to 1e-3 and is reduced by 10 after 100, 150, and 200
epochs. We use a weight decay of 0.0002 and batch size of
128. Importantly, we do not tune our hyperparameters (i.e.,
the loss weights) on the full task set because tuning hyper-
parameters with hold out data from all tasks may violate the
principle of continual learning that states each task is vis-
ited only once [58]. Instead, we tuned our hyperparameters
(including the loss weight for each approach) (using a half-
decade linear sweep from 1e − 3 to 1e2) on a small task
sequence of each dataset.
Evaluation Metrics: We evaluate methods using final ac-
curacy, or the accuracy with respect to all past classes after
having seen all N tasks (referred to as AN,1:N ). Specifi-
cally, we have:

Ai,n =
1

|Dtest
n |

∑
(x,y)∈Dtest

n

1(ŷ(x, θi,n) = y | ŷ ∈ Tn) (4)

Note that Ai,n gives the local task accuracy (i.e., inference
in task-incremental learning where the task label is given,
used to calculate local forgetting FL

N below) and Ai,1:n

gives the global task accuracy (i.e., the accuracy when the
task label is unknown, used to calculate global forgetting
FG
N below). For the final task accuracy in our results, we

will denote AN,1:N as simply A1:N . We also measure: (I)
global forgetting, or the measurement of average decrease
in performance on task n with respect to the global task
where no task label is given (referred to as FG

N ); and (II)
local forgetting, or the measurement of average decrease in
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Table 1. Ablation results (%) on 10 task CIFAR-100. A1:N gives the final task accuracy, FG
N gives the average global forgetting, and

FG
L gives the average local forgetting. BCE refers to binary cross-entropy loss whereas Soft refers to softmax cross-entropy loss. We report

the mean over 3 trials.
(a) parameter regularization

Method A1:N (↑) FG
N (↓) FL

N (↓)
Upper-Bound 56.2 0.0 0.0

PredKD+EWC (BCE) 22.7 −0.7 7.8
EWC (BCE) 7.7 64.0 58.5

PredKD+EWC (Soft) 7.3 44.4 56.8
EWC (Soft) 7.3 52.7 57.8

(b) feature regularization

Method A1:N (↑) FG
N (↓) FL

N (↓)
Upper-Bound 56.2 0.0 0.0

PredK +FeatKD (BCE) 19.1 7.0 26.5
FeatKD (BCE) 8.2 66.5 58.2

PredKD+FeatKD (Soft) 8.2 54.2 60.5
FeatKD (Soft) 8.5 63.9 61.8

Table 2. Results (%) on 10 task CIFAR-100 using BCE classifi-
cation. A1:N gives the final task accuracy, FG

N gives the average
global forgetting, and FG

L gives the average local forgetting. We
report the mean over 3 trials.

Method A1:N (↑) FG
N (↓) FL

N (↓)
Upper-Bound 56.2 0.0 0.0

Naive 8.6 71.0 63.4
PredKD 25.2 3.2 27.2

PredKD + FeatKD 19.1 7.0 26.5
PredKD + EWC 22.7 −0.7 7.8

PredKD + L2 21.6 1.6 15.4

performance on task n with respect to the local task where
the task index is given (referred to as FL

N ). Global forgetting
is taken from [33] and given as:

FG
N =

1

N − 1

N∑
i=2

i−1∑
n=1

|Tn|
|T1:i|

(Rn,n −Ri,n) (5)

where:

Ri,n =
1

|Dtest
n |

∑
(x,y)∈Dtest

n

1(ŷ(x, θi,1:n) = y) (6)

and local forgetting is taken from [39] and given as:

FL
N =

1

N − 1

N−1∑
n=1

(AN,n −An,n) (7)

5.1. Rehearsal-Free Continual Learning

We start by analyzing performance on a 10 task sequence
from CIFAR-100. Here, our model is shown 10 different
tasks derived of 10 classes per task from the CIFAR-100
dataset. We use loss weights of {1e1, 5e−1, 1, 5} for EWC,
L2, PredKD, and FeatKD. Our first finding is that PredKD
and BCE are foundational for rehearsal-free continual
learning. In Table 1b, we tease apart two approaches
which mitigate “feature drift”: EWC and FeatKD3. For the

3Here, we leave out L2 given that it is a special case of EWC.

two sides of this table, the top rows refer to the feature-
drift method (EWC or FeatKD) using BCE when combined
with PredKD. Below, we ablate the two methods sepa-
rately, showing performance when i) PredKD is removed,
ii) BCE is replaced with softmax classification, and iii)
when PredKD is removed and BCE is replaced with soft-
max classification.

The bottom row demonstrates that vanilla EWC and
FeatKD fail for continual learning (poor A1:N ) yet do rea-
sonably well in mitigating local forgetting FL

N when a soft-
max PredKD is added (i.e., they perform well for task-
incremental learning where the task label is given) [23]. The
deeper finding here is that both EWC and FeatKD perform
well at regularizing the feature drift yet fail at regulariz-
ing/debiasing the classifier head. As motivated in the prior
section, we see that a significant jump in performance is
achieved when combining both BCE and PredKD.

In order to closer examine the effects of parameter reg-
ularization and feature distillation on catastrophic forget-
ting, we consider the following approaches i) PredKD4, ii)
PredKD + FeatKD, iii) PredKD + EWC, and iv) PredKD +
L2. Specifically, we want to understand where forgetting is
occurring in these methods. We borrow the practice from
[45] and look at the centered kernel alignment (CKA) sim-
ilarity between feature representations over time for differ-
ent layers in the model (higher is better). In Figure 2, we
see the CKA similarity score plotted for each layer in each
model across tasks for the task-1 data. The x-axis at task n
gives the CKA similarity score between features evaluated
on task-1 holdout data from θ1 versus the features gener-
ated on task-1 holdout data from θn. We calculate the CKA
at the following layers: Linear, or the output of the linear
layer; pen, or the output of the penultimate layer; and L-
2,L-3,L-4, or the outputs at the second-to-last, third-to-last,
and fourth-to-last layers. Acc refers to the accuracy An,1:n,
where n is the task number (i.e., x axis). We can interpret
these scores with the full results in Table 2. For this exper-
iment, we see that PredKD converges to the highest final
accuracy, while PredKD + EWC has the lowest forgetting.
Why is this? When we look at Figure 2, we see an trade-

4Notice that this is equivalent to the LwF.MC method from [47].
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(a) PredKD (b) PredKD + FeatKD

(c) PredKD + EWC (d) PredKD + L2

Figure 2. CKA Analysis on task-1 forgetting for continual learning on CIFAR-100 for 10 tasks. Linear refers to the output of the linear
layer, pen refers to the output of the penultimate layer, and L-2..4 refers to the outputs at second-to-last, third-to-last, etc. layers. Acc refers
to An,1:n, where n is the task number (i.e., x axis).

Table 3. Results (%) on 10 task CIFAR-100 leveraging pre-
training and BCE classification. A1:N gives the final task accu-
racy, FG

N gives the average global forgetting, and FG
L gives the

average local forgetting. We report the mean over 3 trials.

Method A1:N (↑) FG
N (↓) FL

N (↓)
Upper-Bound 56.2 0.0 0.0

Naive 8.5 75.6 67.6
PredKD 26.6 3.9 34.3

PredKD + FeatKD 23.5 7.5 25.3
PredKD + EWC 31.1 −0.4 12.2

PredKD + L2 35.6 1.0 15.0

off between retaining task 1 similarity across all layers ver-
sus final accuracy. Specifically, adding the parameter reg-
ularization losses (EWC and L2) induce low forgetting but
at the cost of low plasticity (i.e., the ability to learn a new
task). One surprising finding (which extends to the rest of
this paper) is that FeatKD reduces the final accuracy without
gaining any improvements in forgetting. In summary, the
main takeaways from this section are that: 1) PredKD and
BCE create a strong baseline for rehearsal-free contin-
ual learning and 2) Parameter regularization in addition
to this baseline reduces forgetting, but at the expense of
low plasticity and therefore low final accuracy.

5.2. How to Leverage Pre-Trained Models

Because the gap between SOTA and the upper bound for
rehearsal-free continual learning remains large, we explore
leveraging pre-trained models. Specifically, we ask the
question: what type of regularization (parameter-space
or prediction-space) can best leverage model pre-training

(from an auxiliary dataset) for rehearsal-free continual
learning? We note here that our work differs from [46] in
that we analyze the effect of regularization on forgetting
in pre-trained models rather than show that pre-trained
models are more robust to forgetting. We repeat our exper-
iments from the previous section, but this time our model
is initialized with ImageNet [50] pre-training. We use
loss weights of {1e2, 1e − 1, 5, 5} for EWC, L2, PredKD,
and FeatKD. The main results are found in Table 3. Sur-
prisingly, we found the order of performance between
PredKD, PredKD + EWC, and PredKD + L2 have been
reversed! While the forgetting metrics are not significantly
affected, we see that A1:N has remained the same for
PredKD but largely increased for EWC and L2. These
results are reasonable after considering the following: with
pre-training, less plasticity is needed because the model
(features) are already useful for new tasks; thus, methods
which achieved low forgetting at a cost of low performance
on new tasks in the no pre-training scenario now have the
“cost” removed. For further validation of this perspective,
we notice that the CKA similarity scores presented in
Figure 3 have not changed much from Figure 2, yet the
differential in performance on new tasks, presented in
Figure 4, is strikingly large. That is, pre-training does not
seem to affect “forgetting” for these methods but rather
enhances the ability to learn new tasks without forgetting.
In summary, the main takeaways from this section are that:
1) L2 with PredKD outperforms EWC with PredKD
in the presence of pre-training, and both of these
approaches far outperform PredKD without parameter
regularization and 2) For parameter regularization
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(a) PredKD (b) PredKD + FeatKD

(c) PredKD + EWC (d) PredKD + L2

Figure 3. CKA Analysis on task-1 forgetting for continual learning on CIFAR-100 for 10 tasks with model pretraining on ImageNet1k.
Linear refers to the output of the linear layer, pen refers to the output of the penultimate layer, and L-2..4 refers to the outputs at second-to-
last, third-to-last, etc. layers. Acc refers to An,1:n, where n is the task number (i.e., x axis).

(a) no pre-training (b) ImageNet1k pre-training

Figure 4. Most recent task accuracy versus tasks seen. Here, the accuracy at task n is the local task accuracy An,n (as opposed to
An,1:n), which we use to represent the ability to learn each new tasks. These plots demonstrate that the methods with ImageNet1k pre-
training can achieve higher performance on new tasks (i.e. they require less plasticity to adapt to new tasks) compared to the methods with
no pre-training.

methods, pre-training greatly improves the ability to
learn new tasks but has little effect on forgetting.

5.3. Context with Current Literature - ResNet

We compare our results with SOTA methods on the
exemplar-free continual learning setting on CIFAR-100 us-
ing the saem 18-layer ResNet backbone. The difference be-
tween our setting of rehearsal-free continual learning and
this setting of exemplar-free continual learning is that, while
neither store images for rehearsal, the latter setting often
synthesizes these images. As discussed in Section 2, creat-
ing synthetic images with model inversion is a computation-
ally expensive procedure and may still violate data-privacy
concerns. We make our comparison in Table 4, showing fi-
nal accuracy for the methods discusses in this paper. We
find that 1) Pre-training can outperform SOTA rehearsal

methods from synthetic data, and 2) Pre-training can
even outperform simple rehearsals methods that store
a 2000 image coreset of data.

5.4. Context with Current Literature - ViT

Next, motivated by our findings in the previous sections,
we ask: can parameter regularization outperform prompt-
ing for continual learning methods? [54, 60, 61]. Specifi-
cally, we conjecture that, given a fair implementation and
comparison, which targets modifying only the same spot of
the ViT model as prompting methods, parameter regulariza-
tion might outperform prompting for these benchmarks.

We benchmark using ImageNet-R [19,60] which is com-
posed of 200 object classes with a wide collection of im-
age styles, including cartoon, graffiti, and hard examples
from the original ImageNet dataset [50]. This benchmark is
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Table 4. Results (%) for continual learning on CIFAR-100 on
10 tasks for different types of rehearsal and pre-training. A1:N

gives the final task accuracy.

Method Rehearsal Pre-train A1:N (↑)
Upper-Bound None None 56.2

Naive None None 8.8

PredKD None None 24.6
PredKD + FeatKD None None 12.4
PredKD + EWC None None 23.3

PredKD + L2 None None 21.5
PredKD None ImNet 24.9

PredKD + FeatKD None ImNet 21.7
PredKD + EWC None ImNet 32.5

PredKD + L2 None ImNet 34.4
DGR [18] Gen. None 8.1

DeepInversion [64] Synth. None 10.9
ABD [53] Synth. None 33.7
Rehearsal 2k IMG None 24.0
LwF [36] 2k IMG None 27.4

attractive because the distribution of training data has sig-
nificant distance to the pre-training data (ImageNet), thus
providing a fair and challenging problem setting. We use
the exact same experiment setting as the recent CODA-
Prompt [54] paper. We implement our method and all base-
lines in PyTorch [44] using the ViT-B/16 backbone [12]
pre-trained on ImageNet-1K [50]. We compare to the fol-
lowing methods (the same rehearsal-free comparisons of
CODA-Prompt): Learning without Forgetting (LwF) [36],
Learning to Prompt (L2P) [61], a modified version of L2P
(L2P++) [54], and DualPrompt [60]. Additionally, we re-
port the upper bound (UB) performance and performance
for a neural network trained only on classification loss us-
ing the new task training data (we refer to this as FT).

We freeze most of the backbone and only fine-tune
the QKV projection matrices of self-attention blocks
throughout the ViT model. The intuition is that we are
modifying the same modules as the prompting methods, but
using classic continual learning methods that fine-tune with
regularization rather than add prompts. We use loss weights
of {1e3, 1} for EWC and L2, respectively. Importantly, we
use the same classification head as L2P, DualPrompt, and
CODA-Prompt, and additionally compare to a FT variant,
FT++, which uses the same classifier as the prompting
methods and suffers from less forgetting. For additional
details, we refer the reader to the CODA-Prompt [54] paper.

In Table 5, we benchmark against the popular and recent
rehearsal-free continual learning methods. We found that L2
achieves a high state-of-the-art in this setting. Compared
to the prompting methods L2P, DualPrompt, and the re-
cent CODA-Prompt, L2 has clear and significant improve-
ments, whereas EWC has poor performance. Our intuition

Table 5. Results (%) on ImageNet-R for 10 tasks (20 classes per
task, 3 trials). A1:N gives the final task accuracy and FG

N gives the
average global forgetting. We report mean % stdev over 5 trials.

Method A1:N (↑) FG
N (↓)

UB 77.13 -
FT 10.12± 0.51 25.69± 0.23

FT++ 48.93± 1.15 9.81± 0.31
LwF.MC 66.73± 1.25 3.52± 0.39

L2P 69.29± 0.73 2.03± 0.19
L2P++ 71.66± 0.64 1.78± 0.16

DualPrompt 71.32± 0.62 1.71± 0.24
CODA-P (small) 73.93± 0.49 1.60± 0.20

CODA-P 75.45± 0.56 1.64± 0.10
EWC 64.66± 2.04 1.55± 0.25

L2 76.06± 0.65 1.68± 0.16

is that L2 is much stronger given it begins regularization in
task 1 (rather than task 2, such as EWC), and regularizes
not only for past tasks but also future tasks by encourag-
ing the model parameters to stay close to rich initial pre-
training state. In summary, the main takeaway from this
experiment is that fine-tuning with L2 parameter regu-
larization in the QKV projection matrices of ViT self-
attention blocks outperforms prompting for continual
learning methods.

6. Conclusions
In this work, we take a closer look at several popular

continual learning strategies in the setting of rehearsal-free
continual learning. This setting reflects machine-learning
applications which cannot store or generate past-seen train-
ing data due to privacy concerns or memory constraints.
We first show that parameter regularization techniques such
as L2 and EWC can succeed in the rehearsal-free contin-
ual learning setting if softmax is removed from the clas-
sification head. Then, we compare parameter regulariza-
tion, feature distillation, and prediction distillation on a 10-
task continual learning benchmark. We find that with a
randomly initialized model, parameter regularization meth-
ods achieves low forgetting but at the cost of low accuracy.
When we initialize the model with pre-trained weights, we
find that parameter regularization injects both low forgetting
and high accuracy. Surprisingly, we found that L2 regular-
ization outperforms EWC in the pre-trained model scenario.
To validate these findings, we demonstrate that L2 param-
eter regularization implemented in a ViT transformer out-
performs recently popular prompting for continual learning
methods. In conclusion, our study has provided valuable
insights into the efficacy of different types of regularization
for continual learning and highlighted the potential of regu-
larization in rehearsal-free settings.
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