SCALE: Online Self-Supervised Lifelong Learning without Prior Knowledge

Xiaofan Yu1, Yunhui Guo2, Sicun Gao1, Tajana Rosing1
1 University of California San Diego, 2 University of Texas at Dallas
\{xlyu, sicung, tajana\}@ucsd.edu
yunhui.guo@utdallas.edu

Abstract

Unsupervised lifelong learning refers to the ability to learn over time while memorizing previous patterns without supervision. Although great progress has been made in this direction, existing work often assumes strong prior knowledge about the incoming data (e.g., knowing the class boundaries), which can be impossible to obtain in complex and unpredictable environments. In this paper, motivated by real-world scenarios, we propose a more practical problem setting called online self-supervised lifelong learning without prior knowledge. The proposed setting is challenging due to the non-iid and single-pass data, the absence of external supervision, and no prior knowledge. To address the challenges, we propose Self-Supervised ContrAstive Life-long LEarning without Prior Knowledge (SCALE) which can extract and memorize representations on the fly purely from the data continuum. SCALE is designed around three major components: a pseudo-supervised contrastive loss, a self-supervised forgetting loss, and an online memory update for uniform subset selection. All three components are designed to work collaboratively to maximize learning performance. We perform comprehensive experiments of SCALE under iid and four non-iid data streams. The results show that SCALE outperforms the state-of-the-art algorithm in all settings with improvements up to 3.83%, 2.77% and 5.86% in terms of kNN accuracy on CIFAR-10, CIFAR-100, and TinyImageNet datasets. We release the implementation at \url{https://github.com/Orienfish/SCALE}.

1. Introduction

Lifelong learning, or continual learning, refers to the ability to continuously learn over time by acquiring new knowledge and consolidating past experiences. One major challenge of lifelong learning is to combat catastrophic forgetting, i.e., updating the model using new samples degrades existing knowledge learned in the past [26, 51].

Existing work has assumed various levels of prior knowledge about the input data stream. \textit{Supervised Lifelong Learning} presumes the presence of task and class labels along with samples [14, 29, 41, 48]. \textit{General Continual Learning} or \textit{task-free continual learning} eliminates the task labels and boundaries to focus on real-time adaptation to non-stationary continuum with limited memory, but still using class labels [6, 9, 44, 78]. \textit{Unsupervised Lifelong Learning} completely removes all labels; therefore, the algorithm needs to distill the knowledge from raw samples or streaming structure on its own [2, 37, 75].

While great progress has been made in lifelong learning, it is still challenging to deploy the existing algorithms in the wild to learn over time. One of the reasons is that even in the pure unsupervised setting, existing works assumed knowing the class boundary or the total number of classes in advance [57, 61, 70]. Such prior knowledge greatly eases the difficulty of learning without forgetting. For example, if the class boundary is distinct and known, the learning algorithm can expand the network or create a new memory buffer whenever detecting a class shift. But these prior
knowledge is extremely difficult, if not impossible, to obtain in real-world environments which are complex and unpredictable. Specifically, consider a camera mounted on a vehicle and an application of continuously training an image classification algorithm as the vehicle moves around (Figure 1). The sequence of incoming samples depends on the environment and the trajectory of the vehicle, hence, is very hard to predict when and how smooth the shift is.

In this paper, to align with the unpredictable real-world scenarios, we extend the current unsupervised learning setting to a more challenging and practical case: online unsupervised lifelong learning without prior knowledge. In particular, we make no assumption on the input streams:

(i) Unlike offline self-supervised learning \cite{11, 15}, the input data is non-iid and single-pass, i.e., all data samples appear only once.
(ii) Unlike General Continual Learning \cite{9, 44} and task-based lifelong learning \cite{24, 31, 46, 49}, the class and task labels are not given (no external supervision).
(iii) Unlike VAE-based design \cite{61} and KMeans-based progressive clustering \cite{31, 69}, the task or class boundaries and the number of classes are unknown in advance (no prior knowledge).

Additionally, the input stream can have distinct/blurred class boundaries or an imbalanced class appearance, all of which are not revealed to the algorithm. Our problem setting reflects the complexity and difficulty of lifelong learning problems in the real world\footnote{In this paper we focus on image classification while the same setup and methodology can be easily extended to other applications as well.}.

Recognizing the unique challenges, we propose Self-Supervised ContrAstive Lifelong LEarning without Prior Knowledge (SCALE). SCALE is designed around three major components: a pseudo-supervised contrastive loss for contrastive learning, a self-supervised forgetting loss for lifelong learning, and an online memory update for uniform subset selection. All components are critical to the final learning performance: the contrastive loss enhances the similarity relationship by contrasting with memory samples, the forgetting loss prevents catastrophic forgetting, and the memory buffer retains the most “representative” raw samples within the limited buffer size. Our loss functions utilize pairwise similarity among the feature representations, thus eliminating the dependency on labels or prior knowledge. Moreover, contrastively learned representations have been shown to be more robust against catastrophic forgetting compared to the use of end-to-end cross-entropy loss \cite{12}.

Our contributions can be summarized as follows:

(1) We propose a more practical setting for unsupervised lifelong learning which assumes that the input data streams are non-iid and single pass, and no external supervision or prior knowledge is given.

(2) We design SCALE to extract and memorize knowledge on-the-fly without supervision and prior knowledge. SCALE uses contrastive lifelong learning based on self-distilled pairwise similarity, along with an online memory update to retain the “representative” raw samples on imbalanced streams.

(3) We perform comprehensive experiments on five different types of single-pass data stream sampled from CIFAR-10, CIFAR-100 and TinyImageNet datasets. SCALE outperforms state-of-the-art algorithms in all settings.

2. Related Work

Self-Supervised Learning (SSL) has been developed to learn low-dimensional representations on offline datasets without class labels, for various downstream tasks. Variational autoencoder (VAE)-based designs aimed for data reconstruction assuming various prior models in the latent space \cite{37, 39, 52}. Progressive clustering-based methods alternated between network update and clustering for self-labeling until convergence \cite{10, 11, 13, 30, 62, 76}. Information theory-based techniques maximized the mutual information between representations of augmented samples to retain invariance and avoid degenerate solutions \cite{8, 22, 34, 36, 45, 80}. Contrastive learning draws closer the augmented representation pairs while pushing away the others \cite{15–17, 32, 54}. Recent architecture techniques such as BYOL, SimSiam and OBoW \cite{18, 25, 27} used asymmetric networks to prevent learning trivial representations. However, all the above-mentioned works are designed for offline iid data and do not address catastrophic forgetting.

Supervised Lifelong Learning has been widely explored in three lines: dynamic architecture \cite{1, 43, 55, 59, 65, 73}, regularization \cite{3, 4, 41, 64, 79, 81, 82}, and experience replay using a memory buffer \cite{9, 14, 19, 29, 35, 48, 63, 71, 74}. Recently, a large amount of effort has been invested in online supervised lifelong learning. Most works used memory replay, such as Co2L \cite{12}, CoPE \cite{20}, GMED \cite{38}, Dual-Net \cite{56}, ASER \cite{67}, SCR \cite{50}, OCM \cite{28}, ODDL \cite{78}, OCD-Net \cite{44}. Nevertheless, the problem is significantly simplified with the presence of class labels.

Unsupervised Lifelong learning (ULL) is mostly studied under offline iid data with multiple passes on the entire dataset during training \cite{2, 37, 75, 77}. In contrast, online ULL is more challenging due to the non-iid and single-pass data continuum. Lifelong generative models leveraged mixture generative replay to mitigate catastrophic forgetting during online updates \cite{60, 61}. However, these VAE-based methods were computationally expensive. Many recent works have applied self-supervised knowledge distillation on task-based online ULL. He et al. \cite{31} utilized pseudo-labels from KMeans clustering to guide knowledge preservation from the previous task. CCSL \cite{46} em-
We assume the data comes in a class-(or samples are drawn from a sequence of continuous and periodic sampling while the surrounding distribution-) incremental manner. Such a setup mimics thus, it better adapts unpredictable real-world environments.

Supervision or prior knowledge about task, class or data; low-dimension representations online without any external in Table 1 based on the assumed prior knowledge. The problem definition of STAM is most similar to ours. Yet, STAM’s memory architecture required labeled samples in the initial batch of each task for cluster association. The problem definition of STAM is employed self-supervised contrastive learning for intra- and inter-task distillation. CaSSLe [24] proposed a general framework for SSL backbones, which extracted the best possible representations that are invariant to task shifts. LUMP [49] mitigated forgetting by interpolating the current task’s samples with the finite memory buffer. But all of these works relied on task boundaries to generate good results. Tiezzi et al. [70] developed a human-like attention mechanism for continuous video streams with little supervision. KIERA [57] employed expandable memory architecture for single-pass data using online clustering, novelty detection and memory update. KIERA required labeled samples in the initial batch of each task for cluster association. The problem definition of STAM is most similar to ours. Yet, STAM’s memory architecture cannot be trained with common optimizers, and thus is limited in fine-tuning for downstream tasks.

We summarize the existing contributions for online ULL in Table 1 based on the assumed prior knowledge. The proposed SCALE excels existing works in that SCALE learns low-dimension representations online without any external supervision or prior knowledge about task, class or data; thus, it better adapts unpredictable real-world environments.

3. Online Unsupervised Lifelong Learning without Prior Knowledge

In this section, we present the online unsupervised lifelong learning problem without prior knowledge. Our setup is motivated by real-world applications and extended from previous studies by removing certain assumptions.

Input streams. We assume the data comes in a class- (or distribution-) incremental manner. Such a setup mimics continuous and periodic sampling while the surrounding environment changes over time. Suppose that the input samples are drawn from a sequence of T classes with each class corresponding to a unique distribution in $\{P^1, ..., P^T\}$. The complete input sequence can then be represented as $D = \{D^1, ..., D^T\}$ where D^t denotes a series of n_t batches of samples, i.e., $D^t = \{X_1^t, ..., X_{n_t}^t\}$. With t denoting the class ID and u representing the batch ID in the current class, each batch of data X_u^t is a set of samples $\{X_1^t, ..., X_{X_u^t}^t\}$, where $X_u^t \sim P^t(X)$. In the rest of the paper, we use capital letters to denote batch names and lowercase letters for individual samples. Each training batch $X_u^t \in D^t$ appears once in the entire stream (single-pass) while the task and class labels are not revealed. The total number of classes T, the transition boundaries and the batch numbers n_t are not known by the learning algorithm either. Our goal is to learn a model that distinguishes classes or distributions $\{P^1, ..., P^T\}$ at any moment throughout the stream, without supervision by external labels or prior knowledge.

Based on previous problem formulations [57,61,68], five particular types of input streams are considered: (i) iid data that is sampled iid from all classes. (ii) Sequential class-incremental stream where the observed classes are balanced in length and are introduced one-by-one with clear boundaries that are not known by the algorithm. (iii) Sequential class-incremental stream with blurred boundaries. The boundary is blurred by mixing the samples from two consecutive classes, mimicking class shift is smooth and difficult to detect. (iv) Imbalanced sequential class-incremental stream uses different batch sizes in each class, mimicking distribution shifts at unpredictable times. (v) Sequential class-incremental stream with concurrent classes where more than one class is incrementally introduced at the time. In this paper two classes are revealed concurrently and P^t_i refers to their combined distribution. To aid understanding, we use a self-driving vehicle with a mounted camera as an example to visualize all five input streams as shown in Figure 2.

Training and evaluation protocol. The training and evaluation setup is similar to [61,68] and is detailed in Figure 2. The model is a representation mapping function to a low-dimensional feature space, i.e., $f_\theta : \mathcal{X} \rightarrow \mathcal{Z}$ where θ represents learnable parameters and \mathcal{Z} refers to the low-dimensional feature space. The training proceeds self-supervisedly based on the feature representation batch $Z^t_u = f_\theta(X^t_u)$. As for evaluation, we periodically test the frozen model θ^t_u on a separate dataset $\mathcal{E} = \{(x_j, y_j)\}$ as the training progresses. We randomly sample an equal amount of labeled samples from each class possibly seen in $\{P^1, ..., P^T\}$ and add them to \mathcal{E}. Thus even when the class has not shown up in the sequence, it is always included in \mathcal{E}. For each testing sample $(x_j, y_j) \in \mathcal{E}$, we first compute the learned latent representations $z_j = f_{\theta^t_u}(x_j)$. We then apply a classifier $g : \mathcal{Z} \rightarrow \mathcal{Y}$ on z_j to generate the predicted labels \hat{y}_j. The classifier g can be unsupervised or supervised to evaluate different aspects of the representation learning ability. Following previous protocols [61,68], we use spectral clustering, an unsupervised clustering method,
and employ unsupervised clustering accuracy (ACC) as the accuracy metric. ACC is defined as the best accuracy among all possible assignments between clusters and target labels:

\[
ACC = \max_{\psi} \sum_{j=1}^{|E|} \mathbb{1}\{y_j = \psi(\hat{y}_j)\}/|E|.
\]

Here, the predicted label \(\hat{y}_j\) is the cluster assignment to sample \(x_j\), \(\psi\) ranges over all possible one-to-one mappings between \(\hat{y}_j\) and \(y_j\). For supervised classification, we employ \(k\)-Nearest Neighbor (\(k\)NN) classifier.

Challenges. The major difference between our online unsupervised lifelong learning and previous problems is the prior assumptions about the input stream. Online ULL is more challenging than previous ULL problems as shown in Table 1 from three aspects:

(C1) **The non-iid and single-pass input data streams** require online knowledge distillation, which is largely different from offline self-supervised learning with iid data and multi-pass training [11, 15, 80].

(C2) **The lack of task or class labels** differs our online ULL from General Continual Learning (with class labels) [9, 44] and task-based lifelong learning (with task labels) [24, 31, 46, 49]. The model must distill the knowledge from the stream on its own without external supervision.

(C3) **The absence of prior knowledge.** Existing ULL methods rely on class boundaries [24, 31, 46, 49] or maintain and update class prototypes after detecting a shift [57, 61]. However, these approaches do not apply when there is no prior knowledge, especially with smooth transitions, imbalanced streams or simultaneous classes as in our online ULL.

4. The Design of SCALE

To address the above challenges of online ULL, we propose SCALE, an unsupervised lifelong learning method that can learn over time without prior knowledge. An overview of SCALE is shown in Figure 3. SCALE is designed around three major components (shown in yellow boxes): a pseudo-supervised contrastive loss, a self-supervised forgetting loss, and an online memory update module that emphasizes uniform subset selection. By combining stored memory samples with the streaming samples during learning, SCALE addresses challenge (C1). Second, SCALE uses the newly proposed pseudo-supervised contrastive learning paradigm that distills the relationship among samples via pairwise similarity. Pseudo-supervised distillation works without task or class labels thus handles challenge (C2). Learning from pairwise similarity does not depend on class boundaries or the number of classes, therefore SCALE responds to challenge (C3).

We emphasize that all components are carefully designed to work collaboratively and maximize learning performance: the contrastive loss is responsible for extracting the similarity relationship by contrasting with memory samples, the forgetting loss retains the similarity knowledge thus prevents catastrophic forgetting, finally the online memory update maintains a memory buffer with representative raw samples in the past. We record the raw input samples rather than feature representations in the memory buffer because feature representations might change during training. The quality or the “representativeness” of memory samples can significantly affect learning performance, as demonstrated by our results in the evaluation section.

Figure 3 shows the pipeline of SCALE in detail. Memory buffer is assumed to have maximum size of \(M\), and the stored memory samples are represented by \(\{e_i\}_{i=1}^M\). Each streaming batch \(X'_t\) with batch size of \(n = |X'_t|\) is stacked with a randomly sampled subset of \(m\) memory samples to form a combined batch \(\{x_i\}_{i=1}^{m+n}\) as input to SCALE. We apply double-view augmentation to the stacked data and obtain \(\{\tilde{x}_i\}_{i=1}^{2(m+n)}\) where \(\tilde{x}_{2k-1}, \tilde{x}_{2k}\) denote two randomly augmented samples from \(x_k\). The augmented samples are fed into the representation learning model \(f_\theta\) to obtain normalized low-dimensional features \(\tilde{z}_i = f_\theta(\tilde{x}_i), \forall i \in \{1, \ldots, 2(m+n)\}\). SCALE distills pairwise similarity from
SCALE requires careful design for all three components to distill and memorize knowledge on the fly.

Figure 3. The pipeline of SCALE is designed around three major components depicted by yellow boxes. The right-hand portion in orange includes the operations related to self-supervised contrastive and lifelong learning. The left-hand portion in green contains the procedures related to online memory update. SCALE requires careful design for all three components to distill and memorize knowledge on the fly.

\{\tilde{z}_i\}_{i=1}^{2(m+n)}\), which are then used to compute the pseudo-supervised contrastive and forgetting losses to update the current model \(\theta^t\). On the other hand, online memory update takes previous memory buffer \(\{e_t\}_{t=1}^M\) and the streaming batch \(X_u^t\) as input, selects a subset of \(M\) samples to store in the updated memory buffer. We discuss the details below.

4.1. Pseudo-Supervised Contrastive Loss and Self-Supervised Forgetting Loss

The loss function of SCALE has two terms: a novel pseudo-supervised contrastive loss \(L^{\text{cont}}\) for learning representations and a self-supervised forgetting loss \(L^{\text{forget}}\) for preserving knowledge:

\[
L = L^{\text{cont}} + \lambda \cdot L^{\text{forget}}. \tag{2}
\]

A hyperparameter \(\lambda\) is used to balance the two losses. Both loss functions rely on pairwise similarity hence do not need prior knowledge and adapt to a variety of streams.

Pseudo-Supervised Contrastive Loss. Our contrastive loss is inspired from the InfoNCE objective \([54]\) which enhances the similarity between positive pairs over negative pairs in the feature space. SimCLR \([15]\) and SupCon \([40]\) are the typical offline contrastive learning techniques using InfoNCE loss. Different from SimCLR (treats only the augmented pair as positive, unsupervised) and SupCon (forms the positive set based on labels, supervised), SCALE establishes a pseudo-positive set based on pairwise similarity. Given a feature representation \(\tilde{z}_i\), its pseudo-positive pair \(\tilde{z}_j\) is selected from the self-distilled pseudo-positive set \(\Gamma_i\). Negative pairs are all non-identical representations in the augmented batch \(\{\tilde{z}_i\}_{i=1}^{2(m+n)}\). Formally, the pseudo-supervised contrastive loss is defined as:

\[
L^{\text{cont}} = \sum_{i=1}^{2n} \sum_{j \in \Gamma_i, j \neq i} \frac{-\log(p_{ij})}{\gamma} \cdot \log(p_{ij}) \cdot \log(p_{ij}^{\text{past}}), \tag{3}
\]

where \(\tau > 0\) is a temperature hyperparameter. Note, that all memory samples only act as negative contrasting pairs to avoid overfitting. Without task or class labels, SCALE distills the pairwise similarity among feature representations and \(\mu \geq 0\) is a hyperparameter as similarity threshold. Our contrastive loss is unique and different from traditional contrastive loss functions \([15, 32, 40]\) due to the self-distilled pseudo-positive set \(\Gamma_i\), which maximizes the effectiveness of unsupervised representation learning in an online setting.

Self-Supervised Forgetting Loss. To combat catastrophic forgetting, we construct a self-supervised forgetting loss based on the KL divergence of the similarity distribution:

\[
L^{\text{forget}} = \sum_{i=1}^{2(m+n)} \sum_{j=1, j \neq i} -p_{ij} \cdot \log \frac{p_{ij}}{p_{ij}^{\text{past}}}, \tag{5}
\]

where \(p_{ij}, p_{ij}^{\text{past}}\) are the pairwise similarity among feature representations \(\{\tilde{z}_i\}_{i=1}^{2(m+n)}\) and \(\{\tilde{z}_i^{\text{past}}\}_{i=1}^{2(m+n)}\), which are mapped by the model \(\theta^t\) and frozen model \(\theta_{t-1}^{\text{frozen}}\). To form a valid distribution, we enforce the pairwise similarity of a given instance to sum to one: \(\sum_{j=1, j \neq i} p_{ij} = 1, \forall i \in \{1, \ldots, 2(m+n)\}\). The same rule applies to \(p_{ij}^{\text{past}}\). In SCALE, the learned knowledge is stored by pairwise similarity. Hence penalizing the KL divergence of pairwise similarity distribution from a past model can prevent catastrophic updates. As we are not aware of class or task boundaries, we use the frozen model from the previous batch. Note, that a similar distillation loss is used in \([12, 31, 46]\) but for supervised or task-based lifelong learning.

Pairwise Similarity. Pairwise similarity is the key of SCALE hence picking the suitable metric is of critical importance. An appropriate pairwise similarity metric should
(i) consider the global distribution of all streaming and memory samples, and (ii) sum to one for a given instance as required by the forgetting loss. We adopt the symmetric SNE similarity metric from t-distributed stochastic neighbor embedding (t-SNE), which was originally proposed to visualize high-dimensional data by approximating the similarity probability distribution [72]:

\[p_{ij} = \frac{p_{ij} + p_{ji}}{2}, \quad p_{ji} = \frac{\exp(\tilde{z}_j \cdot \tilde{z}_i / \kappa)}{\sum_{k=1, k \neq i}^{n} \exp(\tilde{z}_k \cdot \tilde{z}_i / \kappa)}, \] (6)

where \(\kappa > 0 \) is a temperature hyperparameter. Since the form of Equation (6) is similar to Equation (3), in practice, the computation can be reused to improve efficiency. The symmetric SNE similarity captures the global similarity distribution among all features without using supervision or prior knowledge.

4.2. Online Memory Update

The goal of online memory update is to retain the most “representative” raw samples from historical streams to obtain the best outcome in contrastive learning. One major challenge is that the input streams are non-iid and possibly imbalanced. Existing work has proposed various memory update strategies to extract the most informational samples, e.g., analyzing interference or gradients information [5, 7, 19, 38, 67]. However, most previous works rely on class labels thus are not applicable in online ULL. Without labels and prior knowledge, we cannot make any assumption (for example, clusters) on the manifold of the feature representations that are fed to memory update. Purushwalkam et al. [58] were the first to bring up a similar problem setting and proposed minimum redundancy (MinRed) memory update, prioritizing dissimilar samples without considering the global distribution. Unlike MinRed, we propose to perform distribution-aware uniform subset sampling for memory update.

The input to memory update is the imbalanced combined batch \(\{x_i\}_{i=1}^{M+n} \) of the previous memory buffer \(\{e_i\}_{i=1}^{M} \) and streaming batch \(X_n \). We first map the raw samples to the feature space, i.e., \(z_i = f_\theta(x_i), \forall i \in \{1, ..., M + n\} \). Then we select a subset of \(M \) samples from \(\{z_i\}_{i=1}^{M+n} \) and store the corresponding raw samples in the limited-size memory buffer, while discard the rest. Aiming at extracting the representative samples from non-iid streams without supervision, SCALE employs the Part and Select Algorithm (PSA) [66] for uniform subset selection. PSA first performs \(M \) partition steps which divide all samples into \(M \) subsets, then picks one sample from each subset. Each step partitions the existing set with the greatest dissimilarity among its members, thus PSA selects a subset of samples with uniform distribution in the spanned feature space. To the best of the authors’ knowledge, this is the first time using uniform subset selection in lifelong learning problems.

5. Evaluation

5.1. Experimental Setup

Datasets: We construct the online single-pass data streams from CIFAR-10 (10 classes) [53], CIFAR-100 (20 coarse classes) [42] and a subset of TinyImageNet (10 classes) [21]. For each dataset, we construct five types of streams: iid, sequential classes (seq), sequential classes with blurred boundaries (seq-bl), sequential classes with imbalance lengths (seq-im), and sequential classes with concurrent classes (seq-cc).

Networks: For all datasets, we apply ResNet-18 [33] with a feature space dimension of 512.

Baselines. Since SCALE uses an InfoNCE-based loss, we compare with SimCLR [15] and SupCon [40] and the following lifelong learning baselines using SimCLR as backbone:

- From the group of supervised lifelong learning, we select PNN [65], SI [81] and DER [9] with necessary modifications for online ULL.
- For task-based ULL, we use the source code of CaSSLe [24] after removing the task labels.
- Finally, we also compare with STAM [68], using their original data loader and parameters, and LUMP [49].

We did not compare with VAE-based methods such as [37, 61] since they are reported to scale poorly on medium and large image datasets [23].

Metrics. We use spectral clustering with \(T \) as the number of clusters and compute the ACC. kNN classifier is used to evaluate the supervised accuracy with \(k = 50 \).

Implementation details of SCALE and baselines are presented in the Appendix. All memory methods use a buffer of size \(M = 1280 \). The size of the sampled memory batch is \(n = 128 \), which is the same as the size of the streaming batch \(n \). For the similarity threshold, we use an adaptive threshold of \(\text{mean} + \mu(\text{max} - \text{mean}) \) where \(\text{mean} \) and \(\text{max} \) are the mean and max pairwise similarity in \(p_{ij} \). With an adaptive threshold, we alleviate the effects of variations in absolute similarity. SCALE employs the Stochastic Gradient Descent optimizer with a learning rate of 0.03.

5.2. Accuracy Results

Final Accuracy. The final ACC and kNN accuracy on all datasets and all data streams are reported in Figure 4. Both mean and standard deviation of the accuracy are reported after 3 random trials. ACC values are generally lower than their kNN counterparts. It should be noted that SCALE outperforms all state-of-the-art ULL algorithms on almost all streaming patterns, both in terms of ACC and kNN accuracy. In all settings in CIFAR-10, SCALE improves 1.69-4.62% on ACC and 1.32-3.83% on kNN comparing with the best performed baseline. For CIFAR-100, SCALE achieves improvements of up to 2.15% regarding ACC and 2.77%
Figure 4. SCALE improves kNN accuracy over the best state-of-the-art baseline by up to 3.83%, 2.77% and 5.86% kNN on CIFAR-10, CIFAR-100 and TinyImageNet datasets. The figures show final accuracy results on five different streams sampled from CIFAR-10 (first row), CIFAR-100 (second row) and TinyImageNet (third row) datasets. For each data stream setting, the left figure displays ACC while the right figure shows the kNN accuracy at the end of the stream. The red dashed line depicts the ACC or kNN accuracy of SupCon.

regarding kNN comparing with the best baseline. For TinyImageNet, SCALE enhances 0.2-3.33% on ACC and 2.53-5.86% on kNN accuracy over the best baseline. Out of all data streams, iid and seq-cc streams are easier to learn while the single-class sequential streams are more challenging and result in lower accuracy. Our results demonstrate the strong adaptability of SCALE which does not require any prior knowledge about the data stream.

Baseline Performances. SimCLR produces low accuracy as it is originally designed for offline unsupervised representation learning with multiple epochs. Interestingly, the supervised contrastive learning baseline, SupCon (shown by red dashed line in Figure 4), does not always result in superior accuracy and can be attributed to overfitting on the limited memory buffer. Such result aligns with the recent findings that self-supervisedly learned representations are more robust than supervised counterparts under non-iid streams [24, 47]. Among the techniques adapted from supervised lifelong learning, DER achieves relatively good results on all datasets but is still not comparable with SCALE. The recently proposed ULL module, CaSSLe, significantly relies on task boundary knowledge to preserve the classification semantics from previous tasks, thus showing poor results in our online ULL setup. LUMP utilizes a mixup data augmentation technique and may not work well for certain image datasets. STAM outperforms the rest of the baselines. However, STAM utilizes a unique memory architecture and cannot be fine-tuned for downstream tasks.

Accuracy Curve. To examine the dynamics of online learning, we summarize the kNN accuracy curves during training on blurred sequential CIFAR-10 and CIFAR-100 streams in Figure 5 (more results in the Appendix). We can observe that SCALE enjoys gradually increasing kNN accuracy as we introduce new classes, which demonstrates SCALE’s ability to consistently learn new knowledge while consolidating past information, all without supervision or prior knowledge. Most baselines are subject to collapse or forgetting, and are not able to distill or remember the knowledge in online ULL. The expandable-memory baseline STAM is incapable of learning without effective novelty detection.

5.3. Ablation Studies

Loss Functions. We experiment with various combinations of contrastive loss and forgetting loss on the sequential streams, as shown in Table 2. Even with a replay buffer, SimCLR and SupCon do not lead to satisfying results on online ULL. Co2L [12] is a supervised lifelong learning baseline using contrastive and forgetting losses. For fair comparison, we remove its dependence on class labels. With the pseudo-supervised contrastive loss, SCALE gains 1.55% in
Figure 5. The average kNN accuracy during training on the blurred sequential streams sampled from CIFAR-10 (left) and CIFAR-100 (right) datasets. Each training trial contains 10k training steps while each class spans 1k steps.

Table 2. Average final kNN accuracy on the sequential streams, under different combinations of loss functions.

<table>
<thead>
<tr>
<th>Contrast Loss</th>
<th>Forget Loss</th>
<th>CIFAR-10</th>
<th>TinyImageNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>SimCLR [15]</td>
<td>×</td>
<td>18.84</td>
<td>18.13</td>
</tr>
<tr>
<td>SupCon [40]</td>
<td>×</td>
<td>23.83</td>
<td>15.67</td>
</tr>
<tr>
<td>Co2L [12]</td>
<td>✓</td>
<td>30.63</td>
<td>30.80</td>
</tr>
<tr>
<td>SCALE</td>
<td>✓</td>
<td>30.45</td>
<td>30.40</td>
</tr>
<tr>
<td>SCALE</td>
<td>×</td>
<td>32.18</td>
<td>31.33</td>
</tr>
</tbody>
</table>

Table 3. Average final kNN accuracy on the imbalanced sequential streams using different memory update policies in SCALE.

<table>
<thead>
<tr>
<th>Memory update</th>
<th>CIFAR-10</th>
<th>CIFAR-100</th>
<th>TinyImageNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/ label</td>
<td>32.41</td>
<td>21.21</td>
<td>27.73</td>
</tr>
<tr>
<td>random</td>
<td>29.80</td>
<td>20.10</td>
<td>23.67</td>
</tr>
<tr>
<td>KMeans</td>
<td>31.59</td>
<td>22.15</td>
<td>29.07</td>
</tr>
<tr>
<td>MinRed [58]</td>
<td>23.66</td>
<td>19.75</td>
<td>25.13</td>
</tr>
<tr>
<td>PSA (this paper)</td>
<td>32.21</td>
<td>23.16</td>
<td>31.33</td>
</tr>
</tbody>
</table>

terms of kNN accuracy on CIFAR-10 compared to Co2L with a traditional contrastive loss. With the forgetting loss, SCALE gets 1.78% kNN accuracy gain on CIFAR-10.

Memory Update Policies. We experiment with SCALE on the imbalanced sequential stream with different memory update policies and summarize the results in Table 3. With the distribution-aware uniform PSA memory update, SCALE surpasses the rest unsupervised strategies. KMeans-based memory selection does not lead to the best result on sequential streams as the representations are not separable. MinRed [58] prioritizes dissimilar samples regardless of global distribution, thus leads to biased selection and degraded performance on imbalanced data. All components of SCALE are necessary for the best overall learning performance.

5.4. Hyperparameters

We experiment with the important parameters in SCALE. The weight balancing coefficient λ plays an important role in the balance between pseudo-contrastive loss and self-supervised forgetting loss in SCALE. The accuracy on various CIFAR-10 streams after 3 random trials, under various λ, are plotted in Figure 6 (left). In most settings, $\lambda = 0.1$ produces the best results. A smaller λ places less weight on the forgetting loss thus leads to forgetting; conversely, a larger λ may over-emphasize the memorizing effect and prevent learning meaningful representations.

The threshold u is critical in defining the pseudo-positive set. The accuracy after 3 random trials on CIFAR-10 streams are shown in Figure 6 (right). The sensitivity to threshold on iid and sequential streams is different. For iid streams, each incoming batch contains diverse samples from all classes. A higher threshold improves performance by restricting the pseudo-positive set to near-by samples that are more likely to belong to one class. For sequential streams, as the samples from the same batch are from the same class, a positive but lower threshold helps filter sufficiently similar samples into the pseudo-positive set, to boost learning outcome.

6. Conclusion

Existing works in unsupervised lifelong learning assume various prior knowledge thus are not applicable for learning in the wild. In this paper, we propose the online unsupervised lifelong learning problem without prior knowledge that (i) accepts non-iid, non-stationary and single-pass streams, (ii) does not rely on external supervision, and (iii) does not assume prior knowledge. We propose SCALE, a self-supervised contrastive lifelong learning technique based on pairwise similarity. SCALE uses a pseudo-supervised contrastive loss for representation learning, a self-supervised forgetting loss to avoid catastrophic forgetting, and an online memory update for uniform subset selection. Experiments demonstrate that SCALE improves kNN accuracy over the best state-of-the-art baseline by up to 3.83%, 2.77% and 5.86% on all non-iid CIFAR-10, CIFAR-100 and TinyImageNet streams.

Acknowledgements

This work was supported in part by National Science Foundation under Grants #2003279, #1830399, #1826967, #2100237, #2112167, #2112665, and in part by SRC under task #3021.001. This work was also supported by a startup funding by the University of Texas at Dallas.
References

[53] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in natural images with unsupervised feature learning. 2011. 6

[81] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In International