
SCALE: Online Self-Supervised Lifelong Learning without Prior Knowledge
Supplementary Material

In the supplementary, we include more details on the fol-
lowing aspects:

• In Section 1, we list the implementation details
of SCALE, lifelong learning baselines and self-
supervised learning baselines, especially the hyper-
parameters for each dataset. For SCALE, we detail
the online memory update algorithm and compare with
MinRed [15].
• In Section 2, we provide details on constructing data

streams in our online unsupervised lifelong learning
problem setup.
• In Section 3, we show the accuracy curves during

training on all datasets. The accuracy curves of all life-
long learning baselines and SCALE are complemen-
tary to the results in Section 6 of the main paper.
• In Section 4, we conduct sensitivity analyses on the

streaming batch size n and memory batch size m in
SCALE.
• In Section 5, we conduct sensitivity analyses on the

temperature τ in our pseudo-supervised contrastive
loss. Different temperatures are ideal for iid and noniid
streams.
• In Section 6, we present the t-SNE plots of the fea-

tures during periodic evaluation, which vividly demon-
strates SCALE’s learning process.
• In Section 7, we analyze the computation time

complexity of SCALE, including all components of
pseudo-contrastive loss, forgetting loss and memory
update.

1. Implementation Details
1.1. Implementation Details of SCALE

We implement the pseudo-supervised contrastive learn-
ing component of SCALE based on the official SupCon
framework [10]. We use ResNet-18 [8] with a feature space
dimension of 512 as backbone. We use the Stochastic Gra-
dient Descent (SGD) optimizer with learning rate of 0.03.
The hyperparameters across all datasets are summarized in
Table 1.

Data augmentation. All methods except STAM share
the same augmentation procedure. For STAM, we use their

Table 1. Hyperparameters of SCALE across all datasets.

Param. Explain. Value
lr Learning rate 0.01
n Batch size for streaming data 128
M Memory buffer size 1280
m Sampled memory batch size 128
τ Temperature for pseudo-contrastive loss 0.1
µ Relative similarity threshold 0.05
λ Weight for self-supervised forgetting loss 0.1

official data loader with custom pre-processing. During the
training phase, our data augmentation procedure first nor-
malizes the data using mean and variances. we apply ran-
dom scaling 0.2-1, random horizontal flip, random color jit-
ter of brightness 0.6-1.4, contrast 0.6-1.4, saturation 0.6-
1.4, hue 0.9-1.1, and random gray scale with p = 0.2 for
CIFAR-10 and CIFAR-100. For TinyImageNet, we apply
the random scaling 0.08-1 with random aspect ratio 0.75-
1.33 and bicubic interpolation. All images are resized to 32
× 32. During the evaluation phase, we only normalize the
data but do not use any augmentation for all datasets.

Uniform memory subset sampling. In SCALE, one
key component is the online memory update where we
adapt the uniform subset sampling algorithms. To achieve
the best performance in online unsupervised lifelong learn-
ing (ULL), the memory buffer is supposed to retain the most
“representative” samples regarding the historical distribu-
tion in the feature space. Uniform sampling mechanism is
desired to extract representative samples from the sequen-
tial imbalanced streams. To remind the readers, the in-
put to the memory update is the imbalanced combined fea-
tures {zi}M+n

i=1 projected by the latest model θtu from the
previous raw memory samples {ei}Mi=1 and latest stream-
ing batch Xt

u. The goal is to select a subset of M sam-
ples from {zi}M+n

i=1 then store the corresponding raw sam-
ples in the new memory buffer. We employ the Part and
Selection Algorithm (PSA) [18] in SCALE and adapt the
implementation from diversipy (https://github.
com/DavidWalz/diversipy). The implementation is
the slightly improved version from [20]. PSA is a linear-
time algorithm designed to select a subset of well-spread
points. The algorithm has two stages: first, the candidate
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set {zi}M+n
i=1 is partitioned into M subsets, then one mem-

ber from each subset is selected to form the updated mem-
ory. During the first stage, each partition step selects the set
with the greatest dissimilarity among its members to divide.
The dissimilarity of a set A = {zi}M+n

i=1 is defined as the
maximum absolute difference among all dimensions:

aj := min
i=1,...,M+n

zij , bj := max
i=1,...,M+N

zij ,

∆j = bj − aj , j = 1, ...,K (1a)
øA := max

j=1,...,K
∆j (1b)

whereK denotes the dimension of the feature spaceZ . The
dissimilarity of A is the diameter of A in the Chebyshev
metric. During the second stage, PSA chooses the closest
member (in Euclidean metric) to the center of the hyperrect-
angle around Ai. The pseudocode and complexity analysis
of PSA are presented in [18] and [20]. The execution time
of PSA in our setup is discussed in Section 7.

Comparison of MinRed and PSA (in SCALE). The
latest study by Purushwalkam et al. [15] proposed a mini-
mum redundancy (MinRed) memory update policy, which
assists buffer replay in self-supervised learning. When the
number of samples in the memory exceeds its capacity, they
rely on the cosine distance between all pairs of samples to
discard the most redundant one:

i∗ = arg min
i

min
j 6=i

dcos(zi, zj) (2)

Intuitively, MinRed is a greedy heuristic that keeps the most
“disimilar”M samples. The “dissimilarity” is judged by the
greatest distance from its closest selected feature. Although
MinRed is effective in retaining diverse samples, it does not
take into account global distribution and may lead to biased
selection on imbalanced incoming streams. This leads to
a degraded performance, as shown in Table 3 of the main
paper.

1.2. Implementation Details of Lifelong Learning
Baselines

The following lifelong learning baselines are used to
compare with SCALE:

• PNN [17]: Progressive Neural Network gradually ex-
pands the network architecture.
• SI [22]: Synaptic Intelligence performs online per-

synapse consolidation as a typical regularization tech-
nique.
• DER [1]: Dark Experience Replay retains existing

knowledge by matching the network logits across a se-
quence of tasks.
• STAM [19] uses online clustering and novelty detec-

tion to update an expandable memory architecture.

• CaSSLe [6] proposes a general framework that ex-
tracts the best possible representations invariant to task
shifts in ULL.
• LUMP [12] interpolates the current with the previous

samples to alleviate catastrophic forgetting in ULL.
Use SimCLR.

Note, that all methods except STAM are addable to self-
supervised learning backbones, while STAM employs a
unique expandable memory architecture. As SCALE lies
on the SimCLR backbone, we also experiment with the
above baselines on the SimCLR backbone for a fair com-
parison. We did not compare with VAE-based methods such
as [9, 16] since they have been reported to scale poorly on
large image datasets [5]. More implementation details are
grouped and summarized as follows:

• PNN, SI, DER, LUMP are adapted from the official
framework in [12] using their default hyperparameters.
PNN, SI and DER are originally designed for super-
vised lifelong learning but are adapted to ULL tasks as
described in [12]. For fair comparison, we use Sim-
CLR as the underlying contrastive learning backbone
for these baselines. For DER and LUMP, we use a re-
play buffer of the same size as SCALE.
• We take advantage of the official implementation of

STAM on CIFAR-10 and CIFAR-100 with their de-
fault hyperparameters. We use the original data loader
and parameters for CIFAR-10, CIFAR-100 as in the re-
leased code, and use our clustering and kNN classifier
on the learned embeddings.
• We use a modified version CaSSLe based on the orig-

inal implementation. Specifically, we remove task la-
bels and force the model to compare the representa-
tions of the current and previous batch.

2. Data Streams Construction
To remind the reader, we evaluated three image datasets:

CIFAR-10 (10 classes) [13], CIFAR-100 (20 coarse
classes) [11] and a subset of ImageNet (10 classes) [4]. We
construct five single-pass data streams for training:

• iid stream: We sample 4096, 2560 and 500 images
from each class of CIFAR-10, CIFAR-100, and Tiny-
ImageNet, then shuffle all samples.
• Sequential class-incremental stream: We sample

4096, 2560 and 500 images from each class of CIFAR-
10, CIFAR-100, and TinyImageNet, then feed them
class-by-class to the model.
• Sequential class-incremental stream with blurred

boundaries: We sample the same number of im-
ages from each class as the standard sequential class-
incremental stream. We then mix the last 25% samples
of the previous class with the first 25% samples of the



next class, with a gradual mix probability between 0.05
and 0.5. Specifically, for samples closer to the bound-
ary, there is a higher probability to be exchanged with
a sample on the other side of the boundary.
• Sequential class-incremental stream with imbal-

anced class appearance: For each incrementally in-
troduced class, we randomly sample a subset with
more than half of the total samples in that class.
Specifically, suppose that there are U samples in that
class. We first uniformly sample an integer V ∈
[0.5U,U ], then we randomly sample V samples from
that class.
• Sequential class-incremental stream with concur-

rent class appearance: Similar as the sequential
class-incremental stream, we sample the same amount
of images from each class. We then group the classes
2-by-2 with its adjacent class, and shuffle all samples
in one group. In this way, each 2-class group is re-
vealed to the model incrementally, while the samples
in one group follow a random order.

For the evaluation dataset, we sample 500, 250 and 50 sam-
ples per class from the official validation dataset of CIFAR-
10, CIFAR-100 and TinyImageNet respectively.

3. Accuracy Curve during Training
The accuracy curves of all lifelong learning methods dur-

ing training are depicted in Figure 6, 7 and 8 for CIFAR-10,
CIFAR-100 and TinyImageNet respectively. Outstanding
from all methods, SCALE learns incrementally regardless
of the iid or sequential manner. Compared to iid cases,
sequential data streams are more challenging, where more
baselines present the “forgetting” or unimproved trend as
new classes arrive. Among the three datasets, CIFAR-10
streams are easier to learn from. CIFAR-100 streams with
20 coarse classes act as the most challenging dataset where
multiple baselines collapse from the beginning. The 10-
class subset from ImageNet causes more fluctuations during
the online learning procedure.

4. Sensitivity Analyses of Streaming and Mem-
ory Batch Sizes

As indicated in multiple studies [3,7,21], batch size has a
significant impact on the performance of contrastive learn-
ing methods, as a large number of samples are required to
enhance the contrast effect. We study the impact of stream-
ing and memory batch sizes in SCALE. We first fix the
memory batch size m = 128 and alter the streaming batch
size upon iid and sequential CIFAR-10 streams. The av-
erage final ACC and kNN accuracy after 3 random trials
are shown in Figure 1. It can be seen that the impact of
batch sizes on ACC and kNN accuracies is slightly differ-
ent. Compared to ACC, kNN accuracy behaves more stably

Figure 1. Average ACC (left) and kNN accuracy (right) on iid
and sequential CIFAR-10 streams, with different batch sizes n and
memory batch size m = 128.

Figure 2. Average ACC (left) and kNN accuracy (right) on iid and
sequential CIFAR-10 streams, with different memory batch sizes
m and streaming batch size n = 128.

hence our discussion in the rest of the material mainly fo-
cuses on kNN accuracies. For iid streams, a larger batch
size leads to a higher kNN accuracy in SCALE, as more
samples can be used for contrast. However, in the sequen-
tial case, SCALE is robust to batch sizes with less than 1%
difference in terms of kNN accuracy when using batch sizes
of 64, 96, 128 and 160. Such robustness can be attributed to
two reasons: (i) unlike SimCLR, we use small batch sizes
for the online learning scenarios, thus the effect of varying
batch sizes diminishes; (ii) for the sequential streams, the
contrasting samples mainly come from the memory buffer
(with different labels). Therefore a large batch size does not
greatly improve the contrastive learning performance.

We then fix the streaming batch size to n = 128 and
apply various memory batch sizes. The average ACC and
kNN accuracy of SCALE on 3 random CIFAR-10 streams
is shown in Figure 2. Interestingly, as the contrasting perfor-
mance of SCALE depends on both the streaming and mem-
ory samples, the effect of changing one of them is not sig-
nificant. When using memory samples of 64, 96, 128 and
160 on sequential streams, the different on ACC and kNN
accuracies are less than 0.7% and 1.35% respectively.

5. Sensitivity Analyses of Temperature τ

We setup MNIST following similar protocols in Sec-
tion 2. Figure 3 reports the ACC at the end of iid and single-
class sequential data streams on MNIST, when choosing
various values for temperature τ in the contrastive loss
(Equation (3)) and temperature κ in the tSNE pseudo-
positive set selection (Equation (6)). It can be observed that



Figure 3. Heatmap of final ACC on MNIST, iid stream (left) and
sequential class-incremental stream (right) using various tempera-
tures.

Figure 4. t-SNE plots on the evaluation dataset at the start (left),
middle (middle) and end (right) of training on iid data streams on
MNIST.

the type of data stream (i.e., iid or sequential) has a signifi-
cant effect on the best combinations of temperatures. Under
the iid datastream, high temperature of τ = 0.5 is preferred
while κ has a small impact on the final ACC. However, in
the sequential case, temperature of τ = 0.1 or even smaller
is desired while κ in pseudo-positive set construction also
drives the final ACC. Intuitively, contrastive learning ben-
efits when there are more negative samples from the other
classes to compare against, where a large temperature value
works better. However, in online ULL scenarios, a lower
temperature τ with comparable κ shows better performance
in driving the closer samples together and memorizing the
similarity relationship.

6. t-SNE Plots during Training
To clearly visualize the challenges of learning from se-

quential incremental input versus iid input, we depict the t-
SNE plots on the feature space using the evaluation dataset
during training SCALE. The colors indicate ground-truth
class labels. As shown in Figure 4, under iid data streams
on MNIST, all classes are quickly separated as the middle-
stage t-SNE plot already demonstrates the distinguished
class distribution in the feature space. On the contrary, due
to the lack of labels and balanced data input, distinguishing
and memorizing various classes under class-incremental in-
put is much more difficult as shown in Figure 5. SCALE is
able to extract obvious class patterns and discriminate one
class versus the others by the kNN classifier.

7. Time Complexity of SCALE
Time complexity of loss functions. We analyze the

computation complexity of SCALE and compare with state-

Figure 5. t-SNE plots on the evaluation dataset at the start (left),
middle (middle) and end (right) of training on sequential data
streams on MNIST.

of-the-art lifelong learning method.

• Co2L [2] is the state-of-the-art supervised lifelong
learning method using contrastive loss and forgetting
loss. Both losses depend on the pairwise similarity
between all streaming and memory representations.
Hence after the forward propagation, the computation
complexity of computing the losses is O((m + n)2),
where m and n refer to the memory and streaming
batch size respectively.
• SCALE utilizes the pseudo-contrastive loss and for-

getting loss, both based on pairwise similarity and the
computation can be reused. Therefore, the computa-
tion complexity to compute the losses in SCALE is the
same as Co2L, both being O((m + n)2). Moreover,
SCALE consumes less time and resource than CaSSLe
without the predictor.

We measure the execution time per batch on a Linux
desktop with Intel Core i7-8700 CPU at 3.2 GHz and 16 GB
RAM, and a NVIDIA GeForce 3080Ti GPU. The settings
are the same as the implementation details in Section 1.
The results in Table 2 show that SCALE consumes nearly
the same time as Co2L. The computation time of Co2L
and SCALE is directly affected by the combined batch size
m+ n, which supports our analyses.

Table 2. Average computation time (in seconds) of losses per batch
in Co2L, CaSSLe and SCALE on CIFAR-10, using various batch
sizes.

n m Time (s)
Co2L SCALE

128 128 0.050 0.051
64 128 0.034 0.035

128 64 0.034 0.035

Time complexity of memory update. SCALE employs
the PSA to select a uniformly distributed subset. We mea-
sure the execution time per memory update of random se-
lection, KMeans-based selection, MinRed [15] and PSA on
the same machine. The results are summarized in Table 3.
The configurations are the same as described in Section 1.
PSA is only slower than the random baseline and exe-
cutes faster than KMeans-based selection and MinRed. The
KMeans-based selection performs KMeans clustering on all



latent features and then runs a random update within each
cluster. We implement KMeans using the scikit-learn
library [14] with k equal to the ground-truth number of
classes. In our setting, KMeans is not ideal as it not only
uses prior knowledge of the number of class, but is not com-
putationally efficient due to its iterative nature. MinRed
as a greedy heuristic needs to evaluate all candidates in a
sample-by-sample manner. In our implementation, MinRed
is 10% slower than PSA.

While the memory update seems to take much longer
time compared to computing loss values, we remind the
reader that all above memory selection mechanisms are de-
ployed on CPU, and do not utilize the acceleration capabil-
ity of GPU. In the future, we plan to re-implement the code
to convert to a GPU version.

Table 3. Average computation time (in seconds) per memory up-
date on CIFAR-10, using various memory update policies.

random KMeans MinRed [15] PSA
Time (s) 0.40 1.51 1.05 0.95
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(a) CIFAR-10 iid

(b) CIFAR-10 seq

(c) CIFAR-10 seq-bl

(d) CIFAR-10 seq-im

(e) CIFAR-10 seq-cc

Figure 6. ACC and kNN accuracy curve on all streams sampled
from CIFAR-10 using various lifelong learning baselines.



(a) CIFAR-100 iid

(b) CIFAR-100 seq

(c) CIFAR-100 seq-bl

(d) CIFAR-100 seq-im

(e) CIFAR-100 seq-cc

Figure 7. ACC and kNN accuracy curve on all streams sampled
from CIFAR-100 using various lifelong learning baselines.

(a) TinyImageNet iid

(b) TinyImageNet seq

(c) TinyImageNet seq-bl

(d) TinyImageNet seq-im

(e) TinyImageNet seq-cc

Figure 8. ACC and kNN accuracy curve on all streams sampled
from TinyImageNet using various lifelong learning baselines.


