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Abstract

Recovering 3D human mesh in the wild is greatly chal-
lenging as in-the-wild (ITW) datasets provide only 2D pose
ground truths (GTs). Recently, 3D pseudo-GTs have been
widely used to train 3D human mesh estimation networks
as the 3D pseudo-GTs enable 3D mesh supervision when
training the networks on ITW datasets. However, despite
the great potential of the 3D pseudo-GTs, there has been
no extensive analysis that investigates which factors are im-
portant to make more beneficial 3D pseudo-GTs. In this
paper, we provide three recipes to obtain highly beneficial
3D pseudo-GTs of ITW datasets. The main challenge is that
only 2D-based weak supervision is allowed when obtaining
the 3D pseudo-GTs. Each of our three recipes addresses the
challenge in each aspect: depth ambiguity, sub-optimality
of weak supervision, and implausible articulation. Experi-
mental results show that simply re-training state-of-the-art
networks with our new 3D pseudo-GTs elevates their per-
formance to the next level without bells and whistles. The
3D pseudo-GT is publicly available1.

1. Introduction
3D human mesh estimation aims to localize 3D human

mesh vertices in the 3D space. The major challenge is
the lack of 3D ground truths (GTs) of in-the-wild (ITW)
datasets [1, 16, 28]. Images of ITW datasets are captured
with a single camera without special equipment, such as
inertial measurement units (IMUs) and multiple calibrated
cameras, as ITW images are taken in our daily life. As
such special equipment is necessary to obtain 3D mesh data,
only sparse 2D GT poses (i.e., 2D GT coordinates of about
twenty joints) are available in ITW datasets without 3D
dense mesh GTs that have thousands of vertices.

The main training strategy for the 3D human mesh es-
timation in the wild is a mixed-batch training [6–8, 21, 22,

1https://github.com/mks0601/NeuralAnnot_RELEASE

(a) Importance of using 3D pseudo-GTs

(b) Benefit of our 3D pseudo-GTs

Figure 1. (a) 3D error (PA MPJPE) comparison on 3DPW [42] be-
tween Pose2Pose [33] trained without and with 3D pseudo-GTs.
(b) 3D error (PA MPJPE) comparison on 3DPW [42] between net-
works trained with their and our 3D pseudo-GTs. The numbers
are from Table 3.

26, 27, 33, 35, 40], which takes half samples of a mini-batch
from motion capture (MoCap) datasets [14, 17, 31, 37, 45]
and rest samples from ITW datasets. MoCap datasets are
captured from a controlled environment, such as a lab or
studio, and they provide 3D pose and mesh GTs by utiliz-
ing special equipment, such as multiple calibrated cameras.
During the mixed-batch training, samples from MoCap
datasets are supervised with 3D GT meshes, and those from
ITW datasets are supervised with 3D pseudo-GT meshes.
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Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. The overall pipeline of the proposed framework. (a): In the first stage, the annotation network f outputs SMPL parameters,
weakly supervised with 2D GT pose. (b): After finishing training the annotation network f , the inference results of f on seen training sets
become 3D pseudo-GTs. In the second stage, the estimation network g is fully supervised with the 3D pseudo-GTs. For simplicity, we do
not depict 3D supervisions of MoCap datasets during the mixed-batch training of f and g.

The contribution of MoCap datasets is providing 3D su-
pervision with their accurate 3D GTs, which do not ex-
ist in ITW datasets. However, using MoCap datasets is
not sufficient for the best performance in the wild. This
is because they are collected from the controlled environ-
ment; therefore, their image appearances, such as illumina-
tion and backgrounds, are highly limited and far from those
of ITW datasets [7,8,36]. To cope with such limitation, 3D
pseudo-GTs of ITW datasets have been widely used to pro-
vide 3D supervision to ITW samples. Although 3D pseudo-
GTs contain errors in nature, they provide 3D supervision
to ITW samples, which can complement 2D-based weak su-
pervision from 2D GT poses of ITW datasets.

Fig. 1 (a) shows that the 3D pseudo-GTs of ITW datasets
boost the performance a lot compared to a counterpart that
does not utilize the 3D pseudo-GTs. The figure shows that
3D pseudo-GTs are greatly important for high performance
and justifies the two-stage training pipeline (Fig. 2), of
which the first stage is acquiring 3D pseudo-GTs, and the
second stage is training a 3D human mesh estimation net-
work [6–8, 21, 22, 26, 27, 33, 35, 40] with the 3D pseudo-
GTs. In the first stage, the 3D pseudo-GTs are acquired us-
ing either the iterative fitting framework [3, 38] or external
annotation network [18, 23, 34]. We denote the annotation
network of the first stage by f and the estimation network
of the second stage by g.

Annotation networks f [3, 18, 23, 34, 38] are weakly su-
pervised with 2D GT poses to obtain 3D pseudo-GTs of
ITW datasets. The weak supervision of ITW samples is en-
abled by SMPL body model [29], which produces 3D hu-
man mesh from pose and shape parameters in a differen-
tiable way. After extracting 3D joint coordinates from the
3D mesh and projecting them to the 2D space, the 2D-based
weak supervision minimizes the distance between the pro-
jected 2D joint coordinates and 2D GT pose. In this way, the
2D GT pose weakly supervises SMPL parameters, which
can make all vertices of the 3D mesh fit to the 2D GT pose.
In this paper, we define 3D pseudo-GTs as SMPL parame-

ters.

Unfortunately, although many recent 3D human mesh es-
timation methods train their networks g [6–8, 21, 22, 26, 27,
33, 35, 40] with 3D pseudo-GTs of ITW datasets for their
performances, there has been no extensive analysis that in-
vestigates which factors are important to obtain beneficial
3D pseudo-GTs. In this paper, we provide three recipes
for highly beneficial 3D pseudo-GTs of ITW datasets.
The main challenge is that only 2D-based weak supervision
is allowed without 3D evidence in ITW datasets when ob-
taining the 3D pseudo-GTs. The absence of the 3D evidence
when training the annotation networks f (i.e., the first stage
in Fig. 2) causes severe ambiguities, while the estimation
networks g (i.e., the second stage in Fig. 2) suffer less from
them as the 3D pseudo-GTs from the first stage serve 3D
evidence.

We address the challenge of obtaining beneficial 3D
pseudo-GTs (i.e., the first stage in Fig. 2) in three as-
pects: depth ambiguity, sub-optimality of weak supervision,
and implausible articulation. First, multiple 3D data (e.g.,
SMPL parameters) corresponds to the same 2D evidence,
which incurs depth ambiguity. Second, weak supervision
signals make networks converge to sub-optimal points com-
pared to full supervision. Finally, 3D human meshes with
anatomically implausible articulations can correspond to
the 2D GT pose. All the previous iterative fitting frame-
works [3, 38] and annotation networks f [18, 23, 34] suffer
from the problems as they rely on the 2D-based weak super-
vision when obtaining 3D pseudo-GTs; however, they have
not carefully considered the problems. Fig. 1 (b) shows that
without bells and whistles, simply re-training state-of-the-
art estimation networks g with our new 3D pseudo-GTs el-
evate their performance to the next level on ITW bench-
marks [42]. Fig. 3 shows that the performance of estima-
tion network g improves with each recipe applied. We will
publicly open our 3D pseudo-GTs, which can benefit the
community and following works.
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Annotation networks f Train f on 3DPW Initialization of f Use VPoser and L2 reg. in f

SPIN [23] ✗ ImageNet classification [12] ✗

EFT [18] ✗ 3D pose network [23] ✗

NeuralAnnot [34] ✗ ImageNet classification [12] ✓

Ours ✓ 2D pose network [44] ✓

Table 1. Comparison of previous annotation networks and ours.

Figure 3. 3D errors (PA MPJPE) of estimation network g, trained
with different 3D pseudo-GTs, on 3DPW [42]. The lower the bet-
ter. Each pseudo-GT is designed for mitigating depth ambiguity,
sub-optimality of weak supervision, and implausible articulation.
Our three recipes significantly improve 3D errors of g.

2. 3D pseudo-GTs of ITW datasets
2.1. Overall pipeline

Fig. 2 shows the overall pipeline of the proposed frame-
work. Our entire system consists of two networks: an-
notation network f and estimation network g, where both
networks are trained with the mixed-batch training strategy.
The annotation network f is trained with 2D and 3D GTs
of ITW and MoCap datasets, respectively. Please note that
the mixed-batch training of the annotation network f is dif-
ferent from that of estimation network g in that only 2D
supervision, without 3D supervision, is available for ITW
samples. The testing results of f on seen training images of
ITW datasets become 3D pseudo-GTs. The 3D pseudo-GTs
are used to train the estimation network g. As developing
a new network architecture is not our focus, we design the
annotation network f to have the network architecture of
Pose2Pose [33], a state-of-the-art SMPL parameter regres-
sion network. For the details of Pose2Pose, please refer to
the supplementary material. We use various state-of-the-art
3D human mesh estimation networks [8, 22, 23, 26, 33, 35]
for the estimation network g and show generalizability of
our 3D pseudo-GTs to them in the experimental section.

2.2. Three recipes for 3D pseudo-GTs

The major challenge to obtaining beneficial 3D pseudo-
GTs of ITW datasets is that only weak supervision targets
(i.e., 2D GT poses) are available without 3D evidence. The
absence of the 3D evidence when training the annotation
networks f (i.e., the first stage in Fig. 2) causes severe am-
biguities, while the estimation networks g (i.e., the sec-
ond stage in Fig. 2) suffers less from the ambiguities as
the 3D pseudo-GTs from the first stage serve 3D evidence.
We design our recipes to address the challenge of obtain-
ing more beneficial 3D pseudo-GTs in three aspects: depth

(a) MoCap images (b) 3DPW images (c) ITW images

Figure 4. Comparisons of images from MoCap dataset [14],
3DPW [42], and ITW dataset [28].

ambiguity, sub-optimality of weak supervision, and implau-
sible articulation. Fig. 3 shows how the 3D error of the
estimation network g changes when the 3D pseudo-GTs of
ITW datasets are obtained following our recipes. Our three
recipes are summarized below.
1. To resolve the depth ambiguity, even if the scales of
datasets are small, collect ITW datasets with 3D GTs (e.g.,
3DPW [42]) and train the annotation network f on them.
The 2D-based weak supervision causes depth ambiguity as
there can be an infinite number of 3D data (e.g., SMPL pa-
rameters) that correspond to the same 2D evidence. Pre-
vious annotation networks f [18, 23] alleviated the depth
ambiguity by using MoCap datasets during the mixed-batch
training. As MoCap datasets provide 3D GT meshes, their
networks learn an image-to-3D mesh function from MoCap
datasets, and the learned function is shared with the ITW
case in the same network. However, it is not sufficient as
MoCap images have largely different image appearances,
such as backgrounds, illuminations, and colors, compared
to those of ITW images. The reason for such a large ap-
pearance gap is that MoCap datasets are captured from a
restricted environment, such as a studio or lab, while ITW
datasets are captured from anywhere in our daily life. Due
to such a large appearance gap, knowledge learned from
MoCap samples might not sufficiently be transferred to the
ITW case.

To bridge MoCap and ITW datasets, even if the scales
of datasets are small, we propose to collect ITW datasets
with 3D GTs and train the annotation network f on them.
One example of such a small-scale ITW dataset with 3D
GTs is 3DPW [42]. 3DPW is captured from the outdoor
environment with moving cameras, and its image appear-
ance is much closer to those of ITW images than existing
MoCap datasets [14, 17, 31, 37, 45], as shown in Fig. 4. Im-
portantly, it provides accurate 3D GTs thanks to IMUs, at-
tached to subjects’ bodies and hidden under clothes. There-
fore, the 3DPW dataset serves as a bridge between MoCap
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and ITW datasets. None of previous annotation networks
f [18, 23, 34] is trained on such small-scale ITW datasets
with 3D GTs; instead, some of them [18, 23] are trained on
additional ITW datasets with 2D GTs [1, 16]. We observed
that despite its small scale (23K unique images), utilizing
3DPW as an additional training set to train the annotation
network f improves the 3D pseudo-GTs of ITW datasets
a lot, which results in lower 3D errors of the estimation
networks g on multiple 3D benchmarks [32, 42]. On the
other hand, we show that 95× larger ITW datasets (2.2M
unique images [20]) with 2D GTs are not helpful for the
3D pseudo-GTs. This implies that the existence of 3D GTs
in 3DPW is much more important to make 3D pseudo-GTs
better than a large number of 2D GTs and rich appearance
distribution from ITW datasets. Please note that the advan-
tage of 3DPW for the annotation network f is not from the
in-domain similarity between the 3DPW training and test-
ing set. Although we use the 3DPW training set when train-
ing annotation networks f to obtain 3D pseudo-GTs, the
performance of the estimation network g improves on mul-
tiple benchmarks without using 3DPW for the training of
g.

2. To resolve the sub-optimality of weak supervision, ini-
tialize the annotation network f with a pre-trained 2D
pose estimation network. When training the annotation net-
work f , samples from ITW datasets are weakly supervised
with 2D GTs without 3D supervision. The weak supervi-
sion might make networks converge to sub-optimal points
as it involves ambiguity in nature compared to the full su-
pervision [2, 4, 5, 9, 41, 43]. We alleviate the sub-optimality
by initializing ResNet backbone [12] of our annotation net-
work f with that of a pre-trained 2D pose estimation net-
work [44]. From the perspective of the representation learn-
ing [10,11,13], the pre-trained 2D pose estimation network
can extract human articulation information much better than
the random initialization and ImageNet [39] classification
network [12]. By extracting useful human articulation fea-
tures from images at the early stage of the training, our an-
notation network f can reach a better convergence point,
which results in more beneficial 3D pseudo-GTs.

3. To resolve the implausible articulation, use a combi-
nation of VPoser [38] and L2 regularizer in the anno-
tation network f . When training the annotation network
f , samples from ITW datasets are supervised only with 2D
GTs without 3D targets (i.e., 3D GTs and 3D pseudo-GTs).
However, relying only on the 2D-based data term might
make the networks produce 3D meshes with anatomically
implausible articulations (e.g., penetration and out of pos-
sible range of 3D joint rotations) as such 3D meshes can
also minimize the 2D-based data term. To prevent this, we
use a combination of VPoser [38] and L2 regularizer when
training the annotation network f . VPoser is a variational
auto-encoder, which embeds large-scale SMPL pose param-

eters [30] to a Gaussian latent space. It can effectively limit
3D human meshes, produced from SMPL parameters, to
anatomically plausible ones. We modify our annotation net-
work f to estimate the latent code of VPoser as the original
Pose2Pose network directly estimates SMPL pose parame-
ter. In addition, during the training, we newly apply an L2
regularizer to the estimated latent code to enforce the code
to be in the latent space of VPoser.
* Novelty of our recipes. Although all three recipes can be
applied to the estimation network g, we observed that the
effect of our recipes is much larger when they are applied
to annotation networks f compared to being applied to es-
timation networks g. This is because annotation networks
f do not have 3D evidence of ITW datasets in the training
stage, while estimation networks g utilize 3D pseudo-GTs
as 3D evidence of ITW datasets. Therefore, annotation net-
works f suffer from the three ambiguities, while estimation
networks g suffer much less.

Table 1 shows a comparison of previous annotation
networks and ours. Although NeuralAnnot [34] used
VPoser [38] like ours, they did not investigate that the usage
of VPoser is especially helpful for the annotation network
f , while has a small effect when VPoser is used for the es-
timation network g. We show this analysis in the experi-
mental section, which indicates that the usage of VPoser is
specially designed for the annotation network f .

3. Experiment

3.1. Datasets

MoCap datsets. We use Human3.6M (H36M) [14] and
MPI-INF-3DHP (MI) [31] as MoCap datasets. They are
used only to train both the annotation network f and esti-
mation network g and are not used for evaluation purposes
as our goal is an evaluation on ITW benchmarks, not on
MoCap ones.
ITW datasets with 2D GTs. We use COCO [28], MPII [1],
and LSPET [16] as ITW datasets, which provide 2D GTs.
They are used for the training of annotation networks f and
estimation networks g. The inference results of annotation
networks f on the above ITW datasets become 3D pseudo-
GTs, used to train estimation networks g. The above ITW
datasets are not used for evaluation purposes as they do not
provide 3D targets.
ITW datasets with 3D GTs. We use 3DPW [42] and
MuPoTS [32] as additional ITW datasets. Both contain im-
ages, captured from outdoor, with 3D GTs thanks to IMUs
or multi-view marker-less motion capture systems. 3DPW
training split is used to train annotation networks f and op-
tionally estimation networks g, and 3DPW test split used to
evaluate g. MuPoTS is used only for the evaluation purpose
of estimation networks g.
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Training sets of g 3D errors of g
H36M+MI+[COCO]SMPLify 64.76 / 87.42
H36M+MI+[COCO]SMPLify-X 60.40 / 81.64
H36M+MI+[COCO]SPIN 60.70 / 80.24
H36M+MI+[COCO]EFT 55.15 / 78.02
H36M+MI+[COCO]CLIFF 53.36 / 75.59
H36M+MI+[COCO]NeuralAnnot 53.34 / 76.98
H36M+MI+[COCO]Ours wo. first recipe 50.82 / 75.63
H36M+MI+[COCO]Ours wo. second recipe 48.84 / 75.72
H36M+MI+[COCO]Ours wo. third recipe 48.31 / 75.70
H36M+MI+[COCO]Ours 47.52 / 74.55

Table 2. Comparison of Pose2Pose trained with different 3D
pseudo-GTs of COCO. For all settings, Pose2Pose is used as the
estimation network g. The subscript at the square brackets denotes
the annotation network f to obtain the 3D pseudo-GTs. The left
and right 3D errors of g (PA MPJPE) are calculated on 3DPW and
MuPoTS, respectively.

3.2. Evaluation protocol

As the main focus of this paper is acquiring better 3D
pseudo-GTs of ITW datasets, we evaluate how much 3D
pseudo-GTs are beneficial for the estimation network g. To
this end, we first acquire 3D pseudo-GTs using an anno-
tation network f . Then, we train an estimation network g
using the mixed-batch training strategy, where 3D pseudo-
GTs are from the annotation network f . Finally, we report
the most widely used 3D error metric in the 3D human mesh
estimation community, PA MPJPE, of the estimation net-
work g on the multiple 3D ITW benchmark (i.e., test split
of 3DPW and MuPoTS). The errors are measured from 3D
joint coordinates, extracted from 3D meshes following pre-
vious works [23, 33]. We additionally use 3DPCK as an
evaluation metric of MuPoTS as previous works [8, 15].
The lower 3D errors or the higher 3DPCK of the estima-
tion network g indicate the better 3D pseudo-GTs from the
annotation network f .

3.3. Comparison with state-of-the-art methods

Comparison with previous annotation networks f . Ta-
ble 2 shows that Pose2Pose [33], trained with 3D pseudo-
GTs of COCO from our annotation network f , achieves the
lowest 3D errors on both 3DPW and MuPoTS. Even after
we apply only two of three recipes, Pose2Pose trained with
our f 3D pseudo-GTs still outperforms counterparts trained
with 3D pseudo-GTs from previous f . For all settings, only
3D pseudo-GTs of COCO are different, and the remaining
settings are the same. This proves the superiority of our
annotation network f compared to previous annotation net-
works [18,23,25,34] and iterative fitting frameworks [3,38]
regarding the ability to acquire beneficial 3D pseudo-GTs.
For the comparison, we use the public 3D pseudo-GTs of
previous works [18,23,25,34]. The 3D pseudo-GTs of SM-
PLify [3] are provided in the websites of SPIN, and those
of SMPLify-X [38] are obtained by running their official

Input image
Ours

Front view Side view
NeuralAnnot

Front view Side view Input image
Ours

Front view Side view
NeuralAnnot

Front view Side view

Figure 5. Visual comparison between 3D pseudo-GTs of COCO
from ours and NeuralAnnot [34].

codes to 2D GT poses of COCO. Fig. 5 visually demon-
strates that our 3D pseudo-GTs are better than those of Neu-
ralAnnot [34]. NeuralAnnot fails to capture difficult poses,
such as bent poses of the top-row examples. In addition, it
suffers from depth ambiguity, as shown in bottom-row ex-
amples. In the bottom-left example, the right shoulder and
hip should be farther from the camera than the left ones.
Also, in the bottom-right example, the left leg should be be-
hind the right leg. On the other hand, our 3D pseudo-GTs
successfully capture such difficult cases.

Table 3 shows the generalizable benefits of our 3D
pseudo-GTs to various state-of-the-art estimation networks
g. For the experiment, we train two networks for each esti-
mation network g using official codes of it: one with 3D
pseudo-GTs of ITW datasets that it originally used, and
the other with 3D pseudo-GTs of ITW datasets that are
obtained from our annotation network f . Please note that
other than 3D pseudo-GTs of ITW datasets, all other set-
tings, such as the training schedule, remain the same for
each estimation network g. The table shows that simply
changing 3D pseudo-GTs of ITW datasets from theirs to
ours greatly decreases the 3D errors. In particular, the error
of the z-axis decreases the most among x-, y- and z-axis er-
rors, which shows that our 3D pseudo-GTs effectively alle-
viate the depth ambiguity of the 3D human mesh estimation
from a monocular image. The reason for the relatively small
z-axis error gap of METRO [26] is that it is additionally
trained on 3DPW. Nevertheless, our 3D pseudo-GTs still
enhance its performance. As detailed training set configu-
rations of PARE [22] are not publicly available, we simply
trained the PARE network only on COCO, the reason for
different 3D errors from their paper.
Pushing the performance of state-of-the-art networks.
Using our 3D pseudo-GTs of ITW datasets, we investigate
how far state-of-the-art networks can become better. To this
end, we re-trained 3DCrowdNet [8] with our 3D pseudo-
GTs and stretched its training schedule two times. Table 4
and 5 show that our 3DCrowdNet outperforms all exist-
ing methods on both 3DPW and MuPoTS. In Table 4, for
the fair comparison with recent works [22, 26, 27] that use
3DPW to train their networks, we additionally show our re-
sult when 3DCrowdNet is additionally trained on 3DPW.
Please note that 3DCrowdNet with its original 3D pseudo-
GTs and stretched schedule produces a 50.1 3D error, much
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Estimation networks g Training sets of g 3D errors of g

SPIN [23]
H36M+MI+[COCO+MPII+LSPET]SMPLify 59.6 (21.6/24.2/40.8)
H36M+MI+[COCO+MPII+LSPET]Ours 51.6 (19.0/20.7/35.4)

I2L-MeshNet [35]
H36M+MuCo+[COCO]SMPLify-X 57.7 (20.6/21.7/40.8)
H36M+MuCo+[COCO]Ours 47.1 (17.1/18.5/32.6)

Pose2Pose [33]
H36M+[COCO+MPII]NeuralAnnot 54.4 (19.1/20.3/39.0)
H36M+[COCO+MPII]Ours 49.6 (18.4/18.8/34.7)

3DCrowdNet [8]
H36M+MuCo+CrowdPose+[COCO+MPII]NeuralAnnot 51.5 (17.6/18.2/36.3)
H36M+MuCo+CrowdPose+[COCO+MPII]Ours 47.2 (16.8/17.7/33.5)

PARE [22]
[COCO]EFT 57.3 (20.3/20.3/41.7)
[COCO]Ours 47.3 (17.5/18.2/32.9)

PyMAF [46]
H36M+MI+[COCO+MPII+LSPET]SPIN 58.9 (21.0/23.7/41.8)
H36M+MI+[COCO+MPII+LSPET]Ours 50.9 (18.0/20.8/35.1)

METRO [26]
H36M+UP3D+MuCo+3DPW+MPII+[COCO]SMPLify-X 47.9 (18.8/18.5/32.4)
H36M+UP3D+MuCo+3DPW+MPII+[COCO]Ours 45.8 (17.9/17.2/31.3)

Table 3. Comparison of various estimation networks g, trained with different 3D pseudo-GTs of ITW datasets. Notations are the same as
Table 2, except the 3D errors of g (PA MPJPE) are calculated on 3DPW, and three errors in the parenthesis are from x-, y-, and z-axis,
respectively.

Estimation networks g 3D errors of g
SPIN [23] 59.2

Pose2Mesh [7] 58.9
PyMAF [46] 58.9

I2L-MeshNet [35] 57.7
Pose2Pose [33] 54.4

ROMP [40] 53.3
3DCrowdNet [8] 51.5

PARE [22] 49.3
HybrIK [24] 48.8

Our 3DCrowdNet 46.1
METRO* [26] 47.9
PARE* [22] 46.4

MeshGraphormer* [27] 45.6
Our 3DCrowdNet* 43.6

Table 4. Comparisons of 3D human mesh estimation methods on
3DPW. * denotes additional training on 3DPW.

Estimation networks g
3DPCK of g

All Matched
SMPLify-X [38] 62.8 68.0

HMR [19] 66.0 70.9
Jiang et al. [15] 69.1 72.2

3DCrowdNet [8] 72.7 73.3
Our 3DCrowdNet 76.2 76.9

Table 5. Comparisons of 3D human mesh estimation methods on
MuPoTS. The higher the better.

worse than our 46.1 3D error on 3DPW. The tables show
the power of our 3D pseudo-GTs, which elevate a state-of-
the-art estimation network g to a top-performing method.

3.4. Ablation study

For all the ablation studies, our annotation network f
produces 3D pseudo-GTs of COCO. Then, the 3D pseudo-
GTs of COCO in addition to H36M, MI, and optionally
3DPW are used to train the estimation network g. We use
Pose2Pose [33] for our estimation network g.

First stage Second stage 3D errors

Annot. network f

Annot. network f 48.21 / 75.55
Fine-tuned annot. network f 47.93 / 75.13

Est. network g 46.21 / 74.40

Table 6. Comparison of 3D errors (PA MPJPE) of various
pipelines on 3DPW. The left and right 3D errors of g (PA MPJPE)
are calculated on 3DPW and MuPoTS, respectively.

Justification of using separated networks in our two-
stage framework. As shown in Fig. 2, our framework for
the 3D human mesh estimation in the wild consists of two
stages, of which the first stage is obtaining 3D pseudo-GTs
with annotation network f , and the second stage is training
estimation network g with the 3D pseudo-GTs of the first
stage. The annotation network f and estimation network g
are separated. To justify using separated networks in our
two-stage framework, we compare two variants with our
setting in Table 6. The first variant is testing the annotation
network f on 3DPW. Although the purpose of the annota-
tion network is to obtain 3D pseudo-GTs of ITW datasets,
we can use it as an estimation network and test it on 3DPW.
The second variant measures the 3D error using the annota-
tion network f after fine-tuning it with the 3D pseudo-GTs.
This setting uses 3D pseudo-GTs from the annotation net-
work f (the first variant) for the fine-tuning; however, it
uses one network instead of the separated two networks like
ours. Finally, our estimation network g is trained with the
3D pseudo-GTs, where the 3D pseudo-GTs are from the an-
notation network f (the first variant). For a fair comparison,
all networks in the table have the same network architecture
of Pose2Pose [33]. The table shows that our estimation net-
work g achieves the lowest error, which justifies using sepa-
rated networks in our two-stage framework. The reason for
the better performance of our setting is that it is fully super-
vised with 3D targets (i.e., 3D pseudo-GTs) from the start of
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Recipes Where to apply recipe 3D errors of g

Train on 3DPW

None 50.82 / 75.63
Annotation network f 47.13 / 74.43
Estimation network g 48.33 / 74.84

Both f and g 45.98 / 73.97

Initialize with 2D pose network

None 48.84 / 75.72
Annotation network f 46.99 / 74.58
Estimation network g 48.13 / 74.73

Both f and g 45.98 / 73.97

Use VPoser and L2 reg.

None 48.31 / 75.70
Annotation network f 46.21 / 74.40
Estimation network g 48.13 / 75.72

Both f and g 45.98 / 73.97

Table 7. Comparison of 3D errors of estimation networks g, trained with different settings. The left and right 3D errors of g (PA MPJPE)
are calculated on 3DPW and MuPoTS, respectively.

Annotation network f Estimation network g

ID Training sets Unique images Training sets 3D errors
f1 H36M+MI+COCO 919K H36M+MI+[COCO]f1 53.02 / 77.04
f2 H36M+MI+COCO+MPII 919K+29K H36M+MI+[COCO]f2 53.23 / 77.05
f3 H36M+MI+COCO+LSPET 919K+9K H36M+MI+[COCO]f3 54.14 / 77.53
f4 H36M+MI+COCO+InstaVariety 919K+2185K H36M+MI+[COCO]f4 53.86 / 78.49
f5 H36M+MI+COCO+3DPW 919K+23K H36M+MI+[COCO]f5 51.61 / 75.37

Table 8. Comparison of 3D errors of estimation networks g, trained with different 3D pseudo-GTs of COCO. Notations are the same as
Table 2.

the training. On the other hand, the two variants are weakly
supervised with 2D targets (i.e., 2D GT poses) from the start
of the training, although the second variant is fine-tuned
with 3D targets later. The weak supervision at the start of
the training makes the two variants converge to sub-optimal
points compared to the estimation network g. All networks
in the table are trained on H36M+MI+MSCOCO+3DPW.
In addition, ResNet [12] of them are initialized with pre-
trained 2D pose estimation network [44].
Applying the recipes to estimation networks g. Table 7
shows that applying our recipes to annotation network f
improves the 3D errors on both benchmarks much more
than applying them to estimation networks g. Applying the
recipes to both annotation network f and estimation net-
work g performs the best; however, the performance im-
provement is limited compared to the improvement brought
by applying the recipes only to annotation network f . For
example, applying each recipe to annotation network f
brings 3.69, 1.85, and 2.1 3D error improvement, respec-
tively, while applying additionally to both f and g brings
1.15, 1.01, and 0.23 3D error improvement. This shows
that our recipes are specially designed for the annotation
networks f to obtain beneficial 3D pseudo-GTs. The rea-
son for the small effect when the recipes are applied to the
estimation networks g is that the estimation networks g are
trained with 3D pseudo-GTs, while annotation networks f
are trained with 2D GTs of ITW datasets without 3D ev-
idence. The absence of 3D evidence when training anno-
tation networks f results in severe ambiguities, which can

be cured by our recipes. On the other hand, as estimation
networks g are fully supervised with 3D pseudo-GTs, they
suffer less from ambiguities. For each recipe, None repre-
sents both annotation and estimation networks are trained
with the remaining other two recipes.
Effect of training annotation network f on 3DPW. Ta-
ble 8 shows how 3DPW changes the 3D pseudo-GTs com-
pared to other ITW datasets, such as MPII, LSPET, and
InstaVariety [20]. As the table shows, adding other ITW
datasets does not obtain the performance gain of g com-
pared to H36M+MI+COCO. This is because adding ITW
datasets does not contribute to relieving the depth ambigu-
ity as they provide only 2D GTs. On the other hand, 3DPW
provides 3D GTs, largely helpful to alleviate the depth am-
biguity. Importantly, the 3D errors of g on MuPoTS de-
crease as well, which implies that using 3DPW as an addi-
tional training set is beneficial for multiple 3D ITW bench-
marks.

It is noticeable that InstaVariety has 95 times more im-
ages than 3DPW, while much less helpful for the beneficial
3D pseudo-GTs. This tells us that for the 3D pseudo-GTs of
ITW datasets, the existence of 3D GTs is much more impor-
tant than a large number of 2D GTs and rich appearance dis-
tribution from ITW datasets. It suggests a different research
direction compared to recent representation learning meth-
ods [10, 11, 13] as they suggest that collecting large-scale
unlabeled images can boost the image classification perfor-
mance a lot. Our analysis is consistent with Table 9. The
table shows that when we only use 2D GTs of 3DPW with-

2761



Annotation network f Estimation network g

ID Training sets Training sets 3D errors
f1 H36M+MI+COCO H36M+MI+[COCO]f1 53.02 (18.7/19.4/38.1)
f2 H36M+MI+COCO+3DPW without 3D GTs H36M+MI+[COCO]f2 53.66 (18.8/19.6/38.6)
f3 H36M+MI+COCO+3DPW H36M+MI+[COCO]f3 51.61 (18.4/19.2/36.9)

Table 9. Comparison of 3D errors of estimation networks g, trained with different 3D pseudo-GTs of COCO. Notations are the same as
Table 3.

Annotation network f Estimation network g

ID Initialization Training sets Training sets 3D errors
f1 ImageNet cls. [12]

H36M+MI+COCO+3DPW
H36M+MI+[COCO]f1 51.61 (18.4/19.2/36.9)

f2 3D pose [23] H36M+MI+[COCO]f2 51.62 (18.4/19.0/37.0)
f3 2D pose [44] H36M+MI+[COCO]f3 47.52 (17.4/18.4/33.0)

Table 10. Comparison of 3D errors of estimation networks g, trained with different 3D pseudo-GTs of COCO. Notations are the same as
Table 3.

out 3D GTs, the quality of 3D pseudo-GTs does not change
much, which leads to similar 3D errors of g compared to
H36M+MI+COCO. The result shows that the performance
gain from using 3DPW is not from images of 3DPW, but
from 3D GTs of 3DPW. In particular, most of the perfor-
mance gain is from the z-axis, which shows the effective-
ness of using 3DPW to resolve the depth ambiguity.
Effect of initializing annotation network f with a pre-
trained 2D pose network. Table 10 shows that initializ-
ing annotation network f with a pre-trained 2D pose net-
work [44] produces more beneficial 3D pseudo-GTs, which
result in lower 3D errors of g compared to the conven-
tional ImageNet classification pre-training [12]. This is
because initializing with the pre-trained 2D pose network
makes the annotation network f extract useful human artic-
ulation features from images at the early stage of the train-
ing. Therefore, better initialization results in a better con-
vergence point, which alleviates the sub-optimality of weak
supervision. Interestingly, the z-axis error decreases much,
while the errors of x- and y-axis remain similar. This indi-
cates that the proposed initialization does not simply result
in better 2D pose estimation ability, but helps our annotation
network f to produce more beneficial 3D pseudo-GTs. We
further compare our initialization with the initialization of
EFT [18], which initializes their network with pre-trained
3D pose estimation network [23]. We observed that ini-
tializing the network with pre-trained 3D pose estimation
network [23] produces almost the same results as the Im-
ageNet counterpart and is largely beaten by our 2D-based
initialization. We think this is because the pre-trained 3D
pose network [23] is already converged to produce lower
quality 3D pseudo-GTs than ours.

4. Related works

SMPLify [3] and SMPLify-X [38] are iterative fitting
frameworks, which iteratively fit SMPL parameters to tar-
get 2D pose by minimizing energy functions. Using them
to 2D GT pose of ITW datasets, researchers [7, 26, 27, 35]

obtained 3D pseudo-GTs. Recently, several annotation net-
works are introduced. SPIN [23] predicts SMPL parameters
using a network and iteratively fits [3] the predicted param-
eters to 2D GT pose. Their final 3D pseudo-GT of each
sample is obtained by selecting one with smaller SMPLify
loss [3] between their fit and prepared initial 3D pseudo-
GT. The initial 3D pseudo-GTs are prepared before training
their network by running SMPLify [3] to 2D GT pose. The
final 3D pseudo-GTs are used to train an HMR [19] regres-
sor. EFT [18] fine-tunes the pre-trained SPIN to the 2D GT
pose of each sample, and the outputs of the last fine-tuning
iteration become the 3D pseudo-GT of the sample. Both
SPIN and EFT require initial 3D pseudo-GTs from SM-
PLify [3] to train their networks. On the other hand, Neu-
ralAnnot [34] is weakly supervised with 2D GT pose with-
out requiring initial 3D pseudo-GTs. Compare to them, our
annotation network produces more beneficial 3D pseudo-
GTs, which results in much lower 3D errors of the estima-
tion networks (Table 2 and 3). Table 1 shows differences
between our annotation networks and the above ones.

5. Conclusion

We introduce three recipes to obtain highly beneficial 3D
pseudo-GTs of ITW datasets for the 3D human mesh esti-
mation in the wild. Experimental results show that simply
re-training state-of-the-art networks with our 3D pseudo-
GTs elevates their performance to the next level. In addi-
tion, we show our 3D pseudo-GTs are much more beneficial
than previous ones. In closing, we hope the community to
have more remarks on the importance of 3D pseudo-GTs.
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