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Abstract

We present the evaluation methodology, datasets and re-
sults of the BOP Challenge 2022, the fourth in a series of
public competitions organized with the goal to capture the
status quo in the field of 6D object pose estimation from
an RGB/RGB-D image. In 2022, we witnessed another sig-
nificant improvement in the pose estimation accuracy – the
state of the art, which was 56.9 ARC in 2019 (Vidal et al.)
and 69.8 ARC in 2020 (CosyPose), moved to new heights
of 83.7 ARC (GDRNPP). Out of 49 pose estimation meth-
ods evaluated since 2019, the top 18 are from 2022. Meth-
ods based on point pair features, which were introduced in
2010 and achieved competitive results even in 2020, are
now clearly outperformed by deep learning methods. The
synthetic-to-real domain gap was again significantly re-
duced, with 82.7 ARC achieved by GDRNPP trained only
on synthetic images from BlenderProc. The fastest variant
of GDRNPP reached 80.5 ARC with an average time per
image of 0.23s. Since most of the recent methods for 6D ob-
ject pose estimation begin by detecting/segmenting objects,
we also started evaluating 2D object detection and segmen-
tation performance based on the COCO metrics. Compared
to the Mask R-CNN results from CosyPose in 2020, detec-
tion improved from 60.3 to 77.3 APC and segmentation from
40.5 to 58.7 APC . The online evaluation system stays open
and is available at: bop.felk.cvut.cz.

1. Introduction
Estimating the 6D pose, i.e., the 3D translation and 3D

rotation, of specific rigid objects from a single image is an
important task for application fields such as robotic manipu-
lation, augmented reality, or autonomous driving. The BOP
Challenge 2022 is the fourth in a series of public challenges
that are part of the BOP1 project aiming to continuously re-

1BOP stands for Benchmark for 6D Object Pose Estimation [20].

port the state of the art in 6D object pose estimation. The
first challenge was organized in 2017 [21] and the results
were published in [20]. Results of the second challenge
from 2019 [17], the third from 2020 [22], and the fourth
from 2022 are included and discussed in this paper.

Participants of the 2022 challenge were competing on
three tasks: 6D object localization, 2D object detection, and
2D object segmentation. The 6D object localization task
has the same evaluation methodology and leaderboard since
2019, while the latter two tasks were introduced in 2022.

In the 6D object localization task, methods report their
predictions on the basis of two sources of information.
Firstly, at training time, a method is given 3D object mod-
els and training images showing the objects in known 6D
poses. Secondly, at test time, the method is provided with
a test image and a list of object instances visible in the im-
age, and the goal is to estimate 6D poses of the listed in-
stances. The images consist of RGB-D (aligned color and
depth) channels and intrinsic camera parameters are known.

The 2D object detection and segmentation tasks were
introduced to address the design of the majority of re-
cent object pose estimation methods, which start by de-
tecting/segmenting objects and then estimate their poses
from the predicted image regions. Evaluating the detec-
tion/segmentation and pose estimation stages separately en-
ables a better understanding of advances in the two stages.
To create an opportunity for detector-agnostic comparison
of pose estimation methods and to allow participants to fo-
cus only on the pose estimation stage, we also provided de-
fault detections and segmentations from Mask R-CNN [12]
trained for CosyPose [29], the winning method in 2020.

The challenge primarily focuses on the practical scenario
where no real images are available at training time, only the
3D object models and images synthesized using the mod-
els. While capturing real images of objects under various
conditions and annotating the images with 6D object poses
requires a significant human effort [18], the 3D models are
either available before the physical objects, which is often
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Figure 1. 2D object detection followed by 6D pose estimation from the detected regions is a strategy used by the majority of recent 6D
object pose estimation methods. This figure shows detections (top) and 3D object models rendered in estimated poses (bottom) produced
by the 2022 top-performing method, GDRNPP [34,51], on challenging images from YCB-V [55], HB [25], ITODD [6], and T-LESS [18].

the case for manufactured objects, or can be reconstructed at
an admissible cost. Approaches for reconstructing 3D mod-
els of opaque, matte and moderately specular objects are es-
tablished [37,40] and promising approaches for transparent
and highly specular objects are emerging [10, 36, 49, 53].

In the 2019 challenge, methods using the depth image
channel were mostly based on point pair features (PPF’s) [7]
and clearly outperformed methods relying only on the RGB
channels, all of which were based on deep neural networks
(DNN’s). DNN-based methods need large amounts of an-
notated training images, which had been typically obtained
by OpenGL rendering of the 3D object models on random
backgrounds [14,26]. However, as suggested in [23], the ev-
ident domain gap between these “render & paste” training
images and real test images limits the potential of the DNN-
based methods. To reduce the gap between the synthetic
and real domains and thus to bring fresh air to the DNN
world, we joined the development of BlenderProc2 [2, 3],
an open-source, physically-based renderer (PBR). For the
2020 challenge, we then provided participants with 350K
PBR training images (see [22] for examples), which helped
the DNN-based methods to achieve noticeably higher accu-
racy and to finally catch up with the PPF-based methods.

In the 2022 challenge, DNN-based methods for 6D ob-
ject localization clearly outperformed PPF-based methods
in both accuracy and speed, with the performance gains
coming mostly from advances in network architectures and
training schemes. The largest improvements were achieved
on challenging industry-relevant datasets ITODD [6] and
T-LESS [18], and on the HB dataset [25] which includes
diverse objects captured under various levels of occlusion.

2github.com/DLR-RM/BlenderProc

Remarkably, RGB methods from 2022 surpassed RGB-D
methods from 2020, the performance gap between methods
trained only on PBR images and methods trained also on
real images noticeably shrinked, and some methods started
training on the depth image channel in addition to the RGB
channels. On the new 2D object detection and segmentation
tasks, large gains were achieved w.r.t. a baseline from 2020.

Sec. 2 of this paper defines the evaluation methodology,
Sec. 3 introduces datasets, Sec. 4 describes the experimental
setup and analyzes the results, Sec. 5 presents the awards of
the BOP Challenge 2022, and Sec. 6 concludes the paper.

2. Evaluation Methodology
Methods are evaluated on the task of 6D object local-

ization, as in 2019 and 2020 [22], and additionally on the
tasks of 2D object detection and 2D object segmentation.
The tasks are defined below together with accuracy scores
that are used to compare methods. Participants could sub-
mit their results to any of the three tasks. Note that although
all BOP datasets currently include RGB-D images (Sec. 3),
a method may have used any of the image channels.

2.1. 2D Object Detection and Segmentation Tasks

Training input: At training time, a detection/segmentation
method is provided a set of training images showing ob-
jects annotated with ground-truth 2D bounding boxes (for
the detection task) and binary masks (for the segmentation
task). The boxes are amodal (covering the whole object sil-
houette, including the occluded parts) while the masks are
modal (covering only the visible object part). The method
can also use 3D mesh models that are available for the ob-
jects (e.g., to synthesize extra training images).
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Test input: At test time, the method is given an image
showing an arbitrary number of instances of an arbitrary
number of objects from a considered dataset. No prior in-
formation about the visible object instances is provided.

Test output: The method produces a list of amodal 2D
bounding boxes (for detection) and modal binary masks (for
segmentation) with confidences.

Metrics: Following the the evaluation methodology from
the COCO 2020 Object Detection Challenge [31], the de-
tection/segmentation accuracy is measured by the Average
Precision (AP). Specifically, a per-object APO score is cal-
culated by averaging the precision at multiple Intersection
over Union (IoU) thresholds: [0.5, 0.55, . . . , 0.95]. The ac-
curacy of a method on a dataset D is measured by APD cal-
culated by averaging per-object APO scores, and the overall
accuracy on the core datasets (Sec. 3) is measured by APC

defined as the average of the per-dataset APD scores.
Analagous to the 6D localization task, only instances for

which at least 10% of the projected surface area is visible
need to be detected/segmented. Correct predictions for ob-
jects that are visible from less than 10% are filtered out and
not counted as false positives. Up to 100 predictions per
image (with the highest confidences) are considered.

2.2. 6D Object Localization Task

As in the 2019 and 2020 editions of the challenge, meth-
ods are evaluated on the task of 6D localization of a varying
number of instances of a varying number of objects from a
single image. This variant of the 6D object localization task
is referred to as ViVo and defined as follows.3

Training input: A method is provided a set of training
images showing objects annotated with 6D poses, and 3D
mesh models of the objects (typically with a color texture).
A 6D pose is defined by a matrix P = [R | t], where R is
a 3D rotation matrix, and t is a 3D translation vector. The
matrix P defines a rigid transformation from the 3D space
of the object model to the 3D space of the camera.

Test input: The method is given an image unseen during
training and a list L = [(o1, n1), . . . , (om, nm)], where ni

is the number of instances of object oi visible in the image.

Test output: The method outputs a list E = [E1,. . . ,Em],
where Ei is a list of ni pose estimates with confidences for
instances of object oi.

Metrics: The 6D object localization task is evaluated as in
the 2020 challenge [22]. In short, the error of an estimated
pose w.r.t. the ground-truth pose is calculated by three pose-
error functions: Visible Surface Discrepancy (VSD) which

3See Sec. A.1 in [22] for a discussion on why the methods are evaluated
on 6D object localization instead of 6D object detection, where no prior
information about the visible object instances is provided [19].

treats indistinguishable poses as equivalent by considering
only the visible object part, Maximum Symmetry-Aware
Surface Distance (MSSD) which considers a set of pre-
identified global object symmetries and measures the sur-
face deviation in 3D, and Maximum Symmetry-Aware Pro-
jection Distance (MSPD) which considers the object sym-
metries and measures the perceivable deviation. An esti-
mated pose is considered correct w.r.t. a pose-error func-
tion e, if e < θe, where e ∈ {VSD,MSSD,MSPD} and
θe is the threshold of correctness. The fraction of annotated
object instances for which a correct pose is estimated is re-
ferred to as Recall. The Average Recall w.r.t. a function e,
denoted as ARe, is defined as the average of the Recall rates
calculated for multiple settings of the threshold θe and also
for multiple settings of a misalignment tolerance τ in the
case of VSD. The accuracy of a method on a dataset D is
measured by: ARD = (ARVSD + ARMSSD + ARMSPD) / 3,
which is calculated over estimated poses of all objects from
D. The overall accuracy on the core datasets is measured by
ARC defined as the average of the per-dataset ARD scores.4

3. Datasets

BOP currently includes twelve datasets in a unified for-
mat – sample test images are in Fig. 2 and dataset parame-
ters in Tab. 1. Seven from the twelve were selected as core
datasets: LM-O, T-LESS, ITODD, HB, YCB-V, TUD-L,
IC-BIN. A method had to be evaluated on all core datasets
to be considered for the main challenge awards (Sec. 5).

Each dataset includes 3D object models and training and
test RGB-D images annotated with ground-truth 6D ob-
ject poses. The object models are provided in the form
of 3D meshes (in most cases with a color texture) which
were created manually or using KinectFusion-like systems
for 3D reconstruction [37]. While all test images are real,
training images may be real and/or synthetic. The seven
core datasets include a total of 350K photorealistic PBR
(physically-based rendered) training images generated and
automatically annotated with BlenderProc [2–4]. Example
images, a description of the generation process and an anal-
ysis of the importance of PBR training images are in Sec.
3.2 and 4.3 of the 2020 challenge paper [22]. Datasets T-
LESS, TUD-L and YCB-V include also real training im-
ages, and most datasets additionally include training im-
ages obtained by OpenGL rendering of the 3D object mod-
els on a black background. Test images were captured in
scenes with graded complexity, often with clutter and occlu-
sion. Datasets HB and ITODD include also real validation
images – in this case, the ground-truth poses are publicly
available only for the validation and not for the test images.

4When calculating ARC , scores are not averaged over objects before
averaging over datasets, which is done when calculating APC (Sec. 2.1) to
comply with the original COCO evaluation methodology [31].
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LM [13] LM-O* [1] T-LESS* [18] ITODD* [6]

HB* [25] YCB-V* [55] RU-APC [41] IC-BIN* [5]

IC-MI [46] TUD-L* [20] TYO-L [20] HOPE [48]

Figure 2. An overview of the BOP datasets. The seven core
datasets are marked with a star. Shown are RGB channels of sam-
ple test images which were darkened and overlaid with colored 3D
object models in the ground-truth 6D poses.

Train. im. Val im. Test im. Test inst.

Dataset Obj. Real PBR Real All Used All Used

LM-O [1] 8 – 50K – 1214 200 9038 1445
T-LESS [18] 30 37584 50K – 10080 1000 67308 6423
ITODD [6] 28 – 50K 54 721 721 3041 3041
HB [25] 33 – 50K 4420 13000 300 67542 1630
YCB-V [55] 21 113198 50K – 20738 900 98547 4123
TUD-L [20] 3 38288 50K – 23914 600 23914 600
IC-BIN [5] 2 – 50K – 177 150 2176 1786

LM [13] 15 – 50K – 18273 3000 18273 3000
RU-APC [41] 14 – – – 5964 1380 5964 1380
IC-MI [46] 6 – – – 2067 300 5318 800
TYO-L [20] 21 – – – 1670 1670 1670 1670
HOPE [48] 28 – – 50 188 188 3472 2898

Table 1. Parameters of the BOP datasets. The core datasets are
listed in the upper part. PBR training images rendered by Blender-
Proc [2,3] are provided for all core datasets. Most datasets include
also OpenGL-rendered training images of 3D object models on a
black background (not shown in the table). If a dataset includes
both validation and test images, ground-truth annotations are pub-
lic only for the validation images. All test images are real. Column
“Test inst./All” shows the number of annotated object instances for
which at least 10% of the projected surface area is visible in the
test image. Columns “Used” show the number of test images and
object instances used in the BOP Challenge 2019, 2020, and 2022.

The datasets can be downloaded from the BOP website5 and
more details can be found in Chapter 7 of [15].

4. Results and Discussion

This section presents results of the BOP Challenge 2022,
compares them with results from 2019 and 2020 challenge
editions, and summarizes the main messages for our field.

5bop.felk.cvut.cz/datasets

In total, 49 methods were evaluated on the ViVo variant
of the 6D object localization task on all seven core datasets
– 11 methods in 2019, 15 in 2020, and 23 in 2022. Ad-
ditionally, 8 methods were evaluated on the new detection
task and 8 methods on the new segmentation task.

4.1. Experimental Setup

Participants of the BOP Challenge 2022 were submit-
ting results of their methods to the online evaluation sys-
tem at bop.felk.cvut.cz from May 1, 2022 until the
deadline on October 16, 2022. The methods were evalu-
ated on the ViVo variant of the 6D object localization task
as described in Sec. 2.2 and on the 2D object detection and
segmentation tasks as described in Sec. 2.1. The evaluation
scripts are publicly available in the BOP toolkit.6

A method had to use a fixed set of hyper-parameters
across all objects and datasets. For training, a method may
have used the provided object models and training images,
and rendered extra training images using the object mod-
els. However, not a single pixel of test images may have
been used for training, nor the individual ground-truth poses
or object masks provided for the test images. Ranges of
the azimuth and elevation camera angles, and a range of
the camera-object distances determined by the ground-truth
poses from test images is the only information about the test
set that may have been used during training.

Only subsets of test images were used to remove redun-
dancies and speed up the evaluation, and only object in-
stances for which at least 10% of the projected surface area
is visible were considered in the evaluation.

4.2. 6D Object Localization Results

An overview of the 6D object localization results is in
Tab. 2 and properties of the evaluated methods in Tab. 3. In
2022, all 23 of the new submissions rely on DNN’s in their
pipelines and 18 of them outperform CosyPose [29], the
top-performing method from the 2020 challenge. The best
method from 2022, GDRNPP [34, 51], is purely learning-
based and achieves 83.7 ARC , outperforming CosyPose
by substantial 13.9 points in ARC (#1−#19 in Tab. 2).
Gains in accuracy are most notable on the industrial ITODD
dataset [6] where GDRNPP reaches 67.9 ARC (+36.6 ARC

w.r.t. CosyPose). This result is significant as ITODD re-
flects a challenging industrial scenario and was previously
dominated by PPF-based approaches, the best of which,
KoenigHybrid [27] (#24), achieved 48.3 ARC .

GDRNPP dominates in 2022: The GDRNPP method was
evaluated in seven variants, four of which are on top of the
leaderboard. The variants were tailored towards different
BOP 2022 awards (Sec. 5) by relying on different data do-
mains and modalities and on different detection and pose re-

6github.com/thodan/bop toolkit
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# Method LM-O T-LESS TUD-L IC-BIN ITODD HB YCB-V ARC Time

1 GDRNPP-PBRReal-RGBD-MModel [34, 51] 77.5 87.4 96.6 72.2 67.9 92.6 92.1 83.7 6.26
2 GDRNPP-PBR-RGBD-MModel [34, 51] 77.5 85.2 92.9 72.2 67.9 92.6 90.6 82.7 6.26
3 GDRNPP-PBRReal-RGBD-MModel-Fast [34, 51] 79.2 87.2 93.6 70.2 58.8 90.9 83.4 80.5 0.23
4 GDRNPP-PBRReal-RGBD-MModel-Offi. [34, 51] 75.8 82.4 96.6 70.8 54.3 89.0 89.6 79.8 6.41
5 Extended FCOS+PFA-MixPBR-RGBD [24] 79.7 85.0 96.0 67.6 46.9 86.9 88.8 78.7 2.32
6 Extended FCOS+PFA-MixPBR-RGBD-Fast [24] 79.2 77.9 95.8 67.1 46.0 86.0 88.0 77.1 0.64
7 RCVPose3D-SingleModel-VIVO-PBR [54] 72.9 70.8 96.6 73.3 53.6 86.3 84.3 76.8 1.34
8 ZebraPoseSAT-EffnetB4+ICP(DefaultDet) [43] 75.2 72.7 94.8 65.2 52.7 88.3 86.6 76.5 0.50
9 Extended FCOS+PFA-PBR-RGBD [24] 79.7 80.2 89.3 67.6 46.9 86.9 82.6 76.2 2.63

10 SurfEmb-PBR-RGBD [11] 76.0 82.8 85.4 65.9 53.8 86.6 79.9 75.8 9.05
11 GDRNPP-PBRReal-RGBD-SModel [34, 51] 75.7 85.6 90.6 68.0 35.6 86.4 81.7 74.8 0.56
12 Coupled Iterative Refinement (CIR) [32] 73.4 77.6 96.8 67.6 38.1 75.7 89.3 74.1 –
13 GDRNPP-PBRReal-RGB-MModel [34, 51] 71.3 78.6 83.1 62.3 44.8 86.9 82.5 72.8 0.23
14 ZebraPoseSAT-EffnetB4 [43] 72.1 80.6 85.0 54.5 41.0 88.2 83.0 72.0 0.25
15 ZebraPoseSAT-EffnetB4(DefaultDet) [43] 70.7 76.8 84.9 59.7 41.7 88.7 81.6 72.0 0.25
16 ZebraPose-SAT [43] 72.1 78.7 86.1 54.9 37.9 84.7 82.8 71.0 –
17 Extended FCOS+PFA-MixPBR-RGB [24] 74.5 77.8 83.9 60.0 35.3 84.1 80.6 70.9 3.02
18 GDRNPP-PBR-RGB-MModel [34, 51] 71.3 79.6 75.2 62.3 44.8 86.9 71.3 70.2 0.28
19 CosyPose-ECCV20-SYNT+REAL-ICP [29] 71.4 70.1 93.9 64.7 31.3 71.2 86.1 69.8 13.74
20 ZebraPoseSAT-EffnetB4 (PBR Only) [43] 72.1 72.3 71.7 54.5 41.0 88.2 69.1 67.0 –
21 PFA-cosypose [24, 29] 71.4 73.8 83.7 59.6 24.6 71.2 80.7 66.4 –
22 Extended FCOS+PFA-PBR-RGB [24] 74.5 71.9 73.2 60.0 35.3 84.1 64.8 66.3 3.50
23 SurfEmb-PBR-RGB [11] 66.3 73.5 71.5 58.8 41.3 79.1 64.7 65.0 8.89
24 Koenig-Hybrid-DL-PointPairs [27] 63.1 65.5 92.0 43.0 48.3 65.1 70.1 63.9 0.63
25 CosyPose-ECCV20-SYNT+REAL-1VIEW [29] 63.3 72.8 82.3 58.3 21.6 65.6 82.1 63.7 0.45
26 CRT-6D 66.0 64.4 78.9 53.7 20.8 60.3 75.2 59.9 0.06
27 Pix2Pose-BOP20 w/ICP-ICCV19 [38] 58.8 51.2 82.0 39.0 35.1 69.5 78.0 59.1 4.84
28 ZTE PPF 66.3 37.4 90.4 39.6 47.0 73.5 50.2 57.8 0.90
29 CosyPose-ECCV20-PBR-1VIEW [29] 63.3 64.0 68.5 58.3 21.6 65.6 57.4 57.0 0.48
30 Vidal-Sensors18 [50] 58.2 53.8 87.6 39.3 43.5 70.6 45.0 56.9 3.22
31 CDPNv2 BOP20 (RGB-only & ICP) [30] 63.0 46.4 91.3 45.0 18.6 71.2 61.9 56.8 1.46
32 Drost-CVPR10-Edges [7] 51.5 50.0 85.1 36.8 57.0 67.1 37.5 55.0 87.57
33 CDPNv2 BOP20 (PBR-only & ICP) [30] 63.0 43.5 79.1 45.0 18.6 71.2 53.2 53.4 1.49
34 CDPNv2 BOP20 (RGB-only) [30] 62.4 47.8 77.2 47.3 10.2 72.2 53.2 52.9 0.94
35 Drost-CVPR10-3D-Edges [7] 46.9 40.4 85.2 37.3 46.2 62.3 31.6 50.0 80.06
36 Drost-CVPR10-3D-Only [7] 52.7 44.4 77.5 38.8 31.6 61.5 34.4 48.7 7.70
37 CDPN BOP19 (RGB-only) [30] 56.9 49.0 76.9 32.7 6.7 67.2 45.7 47.9 0.48
38 CDPNv2 BOP20 (PBR-only & RGB-only) [30] 62.4 40.7 58.8 47.3 10.2 72.2 39.0 47.2 0.98
39 leaping from 2D to 6D [33] 52.5 40.3 75.1 34.2 7.7 65.8 54.3 47.1 0.43
40 EPOS-BOP20-PBR [16] 54.7 46.7 55.8 36.3 18.6 58.0 49.9 45.7 1.87
41 Drost-CVPR10-3D-Only-Faster [7] 49.2 40.5 69.6 37.7 27.4 60.3 33.0 45.4 1.38
42 Félix&Neves-ICRA2017-IET2019 [39, 42] 39.4 21.2 85.1 32.3 6.9 52.9 51.0 41.2 55.78
43 Sundermeyer-IJCV19+ICP [45] 23.7 48.7 61.4 28.1 15.8 50.6 50.5 39.8 0.86
44 Zhigang-CDPN-ICCV19 [30] 37.4 12.4 75.7 25.7 7.0 47.0 42.2 35.3 0.51
45 PointVoteNet2 [9] 65.3 0.4 67.3 26.4 0.1 55.6 30.8 35.1 –
46 Pix2Pose-BOP20-ICCV19 [38] 36.3 34.4 42.0 22.6 13.4 44.6 45.7 34.2 1.22
47 Sundermeyer-IJCV19 [45] 14.6 30.4 40.1 21.7 10.1 34.6 44.6 28.0 0.20
48 SingleMultiPathEncoder-CVPR20 [44] 21.7 31.0 33.4 17.5 6.7 29.3 28.9 24.1 0.19
49 DPOD (synthetic) [57] 16.9 8.1 24.2 13.0 0.0 28.6 22.2 16.1 0.23

Table 2. 6D object localization results on the seven core datasets. The methods are ranked by the ARC score which is the average of the
per-dataset ARD scores defined in Sec. 2.2. The last column shows the average image processing time (in seconds).

finement methods. Having results of these variants enables
to understand the importance of individual aspects of the
pipeline. The common ground is the Geometrically-Guided
Direct Regression Network (GDR-Net) [51], which takes
an RGB object crop as input and densely predicts 2D-3D
correspondences, identities of surface fragments [16], and a
mask of the visible object part. Then, instead of applying
PnP-RANSAC [16], the predictions are concatenated and
fed into a small CNN with a fully connected head that re-

gresses a scale-invariant translation [30] and a 3D rotation
using the allocentric 6D representation [28]. The 3D rota-
tion loss takes into account object symmetries that are pro-
vided in the BOP datasets. For BOP 2022, GDR-Net [51]
was modified by exchanging the ResNet34 backbone with
ConvNext [35], predicting both modal and amodal masks
as intermediate representations, and applying stronger do-
main randomization. The winning GDRNPP variant trains
YOLOX [8] for object detection and GDR-Net for pose es-
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# Method Year Type DNN per Det./seg. Refinement Train im. ...type Test im.

1 GDRNPP-PBRReal-RGBD-MModel [34, 51] 2022 DNN Object YOLOX ∼CIR RGB-D PBR+real RGB-D
2 GDRNPP-PBR-RGBD-MModel [34, 51] 2022 DNN Object YOLOX ∼CIR RGB-D PBR RGB-D
3 GDRNPP-PBRReal-RGBD-MModel-Fast [34, 51] 2022 DNN Object YOLOX Depth adjust. RGB PBR+real RGB-D
4 GDRNPP-PBRReal-RGBD-MModel-Offi. [34, 51] 2022 DNN Object Default (synt+real) ∼CIR RGB-D PBR+real RGB-D
5 Extended FCOS+PFA-MixPBR-RGBD [24] 2022 DNN Dataset Extended FCOS PFA RGB PBR+real RGB-D
6 Extended FCOS+PFA-MixPBR-RGBD-Fast [24] 2022 DNN Dataset Extended FCOS PFA RGB PBR+real RGB-D
7 RCVPose3D-SingleModel-VIVO-PBR [54] 2022 DNN Dataset RCVPose3D ICP RGB-D PBR+real RGB-D
8 ZebraPoseSAT-EffnetB4+ICP(DefaultDet) [43] 2022 DNN Object Default (synt+real) ICP RGB PBR+real RGB-D
9 Extended FCOS+PFA-PBR-RGBD [24] 2022 DNN Dataset Extended FCOS PFA RGB PBR RGB-D

10 SurfEmb-PBR-RGBD [11] 2022 DNN Dataset Default (PBR) Custom RGB-D PBR RGB-D
11 GDRNPP-PBRReal-RGBD-SModel [34, 51] 2022 DNN Dataset YOLOX Depth adjust. RGB PBR+real RGB-D
12 Coupled Iterative Refinement (CIR) [32] 2022 DNN Dataset Default (synt+real) CIR RGB-D PBR+real RGB-D
13 GDRNPP-PBRReal-RGB-MModel [34, 51] 2022 DNN Object YOLOX – RGB PBR+real RGB
14 ZebraPoseSAT-EffnetB4 [43] 2022 DNN Object FCOS – RGB PBR+real RGB
15 ZebraPoseSAT-EffnetB4(DefaultDet) [43] 2022 DNN Object Default (synt+real) – RGB PBR+real RGB
16 ZebraPose-SAT [43] 2022 DNN Object FCOS – RGB PBR+real RGB
17 Extended FCOS+PFA-MixPBR-RGB [24] 2022 DNN Dataset Extended FCOS PFA RGB PBR+real RGB
18 GDRNPP-PBR-RGB-MModel [34, 51] 2022 DNN Object YOLOX – RGB PBR RGB
19 CosyPose-ECCV20-SYNT+REAL-ICP [29] 2020 DNN Dataset Default (synt+real) DeepIM+ICP RGB PBR+real RGB-D
20 ZebraPoseSAT-EffnetB4 (PBR Only) [43] 2022 DNN Object FCOS – RGB PBR RGB
21 PFA-cosypose [24, 29] 2022 DNN Dataset MaskRCNN PFA RGB-D PBR+real RGB
22 Extended FCOS+PFA-PBR-RGB [24] 2022 DNN Dataset Extended FCOS PFA RGB PBR RGB
23 SurfEmb-PBR-RGB [11] 2022 DNN Dataset Default (PBR) Custom RGB PBR RGB
24 Koenig-Hybrid-DL-PointPairs [27] 2020 DNN/PPF Dataset Retina/MaskRCNN ICP RGB Synt+real RGB-D
25 CosyPose-ECCV20-SYNT+REAL-1VIEW [29] 2020 DNN Dataset Default (synt+real) ∼DeepIM RGB PBR+real RGB
26 CRT-6D 2022 DNN Dataset Default (synt+real) Custom RGB PBR+real RGB
27 Pix2Pose-BOP20 w/ICP-ICCV19 [38] 2020 DNN Object MaskRCNN ICP RGB PBR+real RGB-D
28 ZTE PPF 2022 DNN/PPF Dataset Default (synt+real) ICP RGB PBR+real RGB-D
29 CosyPose-ECCV20-PBR-1VIEW [29] 2020 DNN Dataset Default (PBR) ∼DeepIM RGB PBR RGB
30 Vidal-Sensors18 [50] 2019 PPF – – ICP – – D
31 CDPNv2 BOP20 (RGB-only & ICP) [30] 2020 DNN Object FCOS ICP RGB Synt+real RGB-D
32 Drost-CVPR10-Edges [7] 2019 PPF – – ICP – – RGB-D
33 CDPNv2 BOP20 (PBR-only & ICP) [30] 2020 DNN Object FCOS ICP RGB PBR RGB-D
34 CDPNv2 BOP20 (RGB-only) [30] 2020 DNN Object FCOS – RGB Synt+real RGB
35 Drost-CVPR10-3D-Edges [7] 2019 PPF – – ICP – – D
36 Drost-CVPR10-3D-Only [7] 2019 PPF – – ICP – – D
37 CDPN BOP19 (RGB-only) [30] 2020 DNN Object RetinaNet – RGB Synt+real RGB
38 CDPNv2 BOP20 (PBR-only & RGB-only) [30] 2020 DNN Object FCOS – RGB PBR RGB
39 leaping from 2D to 6D [33] 2020 DNN Object Unknown – RGB Synt+real RGB
40 EPOS-BOP20-PBR [16] 2020 DNN Dataset – – RGB PBR RGB
41 Drost-CVPR10-3D-Only-Faster [7] 2019 PPF – – ICP – – D
42 Félix&Neves-ICRA2017-IET2019 [39, 42] 2019 DNN/PPF Dataset MaskRCNN ICP RGB-D Synt+real RGB-D
43 Sundermeyer-IJCV19+ICP [45] 2019 DNN Object RetinaNet ICP RGB Synt+real RGB-D
44 Zhigang-CDPN-ICCV19 [30] 2019 DNN Object RetinaNet – RGB Synt+real RGB
45 PointVoteNet2 [9] 2020 DNN Object – ICP RGB-D PBR RGB-D
46 Pix2Pose-BOP20-ICCV19 [38] 2020 DNN Object MaskRCNN – RGB PBR+real RGB
47 Sundermeyer-IJCV19 [45] 2019 DNN Object RetinaNet – RGB Synt+real RGB
48 SingleMultiPathEncoder-CVPR20 [44] 2020 DNN All MaskRCNN – RGB Synt+real RGB
49 DPOD (synthetic) [57] 2019 DNN Dataset – – RGB Synt RGB

Table 3. Properties of evaluated 6D object localization methods. Column Year is the year of submission, Type indicates whether the
method relies on deep neural networks (DNN’s) or point pair features (PPF’s), DNN per... shows how many DNN models were trained,
Det./seg. is the object detection or segmentation method, Refinement is the pose refinement method, Train im. and Test im. show image
channels used at training and test time respectively, and Train im. type is the domain of training images. All test images are real.

timation on the provided PBR and real RGB images, and
refines the poses by a multi-hypotheses refinement method
inspired by Coupled Iterative Refinement (CIR) [32], which
is trained on PBR and real RGB-D images.

Training on depth: Methods RCVPose3D [54] (#7) and
CIR [32] (#12; a variant is also used in #1, 2, 4), started
benefiting from learning on the depth channel in addition to

the RGB channels (only PointVoteNet2 [9] applied a neural
network to the depth channel in 2020). On the flip side, the
multi-hypotheses refinement methods can be time-intensive
– the CIR-based approach increases the inference time of
GDRNPP by 6.03s per image on average (#1−#3).

Increased accuracy & speed: The third GDRNPP entry
replaces the CIR-based refinement [32], which is used in the
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top two entries, by a fast and simple depth-based adjustment
of the 3D translation and still achieves impressive 80.5 ARC

in just 0.23s per image. In comparison, the best method in
2020 that took less than 1s per image is KoenigHybrid [27]
(#24) with 63.9 ARC and 0.63s per image.

RGB-only from 2022 beats RGB-D from 2020: The best
method that relies only on RGB image channels at both
training and test time is a variant of GDRNPP (#13). With-
out any pose refinement, this method achieves 72.8 ARC

which is +9.1 w.r.t. CosyPose that applies RGB-based pose
refinement (#25) and +3.0 w.r.t. to the overall best method
from 2020, i.e., CosyPose with a depth-based ICP (#19).

Synthetic-to-real gap shrinks further: Another important
result was achieved by the GDRNPP variant that is trained
only on the provided synthetic PBR images rendered with
BlenderProc [2, 3]. With 82.7 ARC , this variant achieves
the second highest accuracy. On datasets with real train-
ing images (T-LESS, YCB-V, TUD-L), the synthetically
trained variant is only -2.5 ARC on average behind the win-
ning method that was trained on both PBR and real train-
ing images. In the RGB-only setting, the synthetic-to-real
gap has been reduced on the three datasets from ∆15.8
ARC (observed on CosyPose in 2020; #25−#29) to ∆6.2
ARC (observed on GDRNPP in 2022; #13−#18). The BOP
2020 results [22] demonstrated the importance of training
on PBR images over training on rasterized images with
random backgrounds. The BOP 2022 results confirm this
observation and also suggest that the synthetic-to-real gap
monotonically shrinks as the accuracy of methods increases
(see, e.g., #25−#29, #14−#20, #5−#9, #1−#2 in Tab. 2).

Scalability in the number of objects: The advancement
in the synthetic-to-real transfer is crucial for increasing
the scope of applications. In addition, real world applica-
tions require methods whose computational and memory
resources scale gracefully with the amount of target ob-
jects. The top four GDRNPP variants are all trained with
at least one pose network per object. This means that the
training and inference time complexity and the inference
memory increase linearly with the number of target ob-
jects. When GDRNPP is trained with one pose network per
BOP dataset containing 2–33 objects (Tab. 1), it achieves
only 74.8 ARC (#11) and is outperformed by, e.g., Ex-
tended FCOS+PFA [24] (#5) that reaches 78.7 ARC with
one pose network per dataset. This raises the question how
the results would change if [24] was trained per object.

2D detection followed by 6D pose estimation: Almost all
6D object localization methods evaluated in 2022 start by
detecting the object instances in RGB images by predicting
their 2D bounding boxes. Some methods also predict 2D
object masks in the detected regions at training time for loss
calculation [24] or extra supervision [12], and some predict

2D masks at both training and inference time and use them
to establish correspondences [11,43]. The only exception is
RCVPose3D [54], which does not start by detecting object
instance in the RGB image channels and instead segments
the object instances in 3D point clouds calculated from the
depth image channel.

Detector-agnostic results: Eleven methods use the default
2D object detections (Default in column Det./seg. in Tab. 3),
which were provided to participants of the 2022 challenge
and produced by Mask R-CNN [12] trained for the first
stage of CosyPose [29] in 2020. Three of these methods
use detections from Mask R-CNN trained only on PBR im-
ages, and eight use detections from Mask R-CNN trained on
synthetic and real images (where the synthetic include PBR
and additional images synthesized by the authors of [29]).
Among the eight methods, GDRNPP is once again at the
top with 79.8 ARC (#4). We can therefore conclude that the
pose estimation performance of the GDRNPP pipeline is
performing best independent of the used detection method.
However, the accuracy gap to other methods decreases with
the default detections, e.g., from +7.2 ARC (#1−#8) to
+3.3 ARC (#4−#8) w.r.t. ZebraPose [43].

4.3. 2D Object Detection Results

As shown in Tab. 4, the YOLOX [8] detector from
GDRNPP has the top performance of 77.3 APC . This de-
tector employs a ConvNext [35] backbone and was trained
with the Ranger optimizer [52] and strong data augmen-
tation. Mask R-CNN [12] from CosyPose only achieves
60.5 APC (-16.8 APC), which explains the +3.9 ARC gain
in the pose accuracy (#1−#4 in Tab. 2). YOLOX is rela-
tively insensitive to the image domain, improving only +3.5
APC (#1−#2 in Tab. 4) when trained also on real images.
Mask R-CNN yields +4.8 APC (#6−#7) and FCOS [47]
yields +5.4 APC (#3−#4) in such a comparison.

Although all 2D object detection methods rely only on
RGB and ignore the depth channel, they work remarkably
well even on the texture-less objects from T-LESS [18] (see
the BOP website for per-dataset scores). However, detec-
tions from YOLOX on YCB-V [55] in Fig. 1 reveal a lim-
itation of the RGB-only detection that fails to distinguish
the two differently sized clamps. This detection failure can
cause wrong pose estimates even though the rendered scene
seems perfectly plausible. Depth data could help to disam-
biguate the object scale in such cases.

4.4. 2D Object Segmentation Results

We see an improvement from 40.5 APC achieved by the
default masks from Mask R-CNN to 58.7 APC achieved
by masks from ZebraPoseSAT [43] (+18.2 APC ; #1−#7
in Tab. 5). Interestingly, ZebraPoseSAT predicts the high-
quality masks in regions determined by the default detec-
tions from Mask R-CNN (#6 in Tab. 4) and would likely
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# Method ...based on Year Data ...type APC Time

1 GDRNPPDet YOLOX 2022 RGB PBR+real 77.3 .081
2 GDRNPPDet YOLOX 2022 RGB PBR 73.8 .081
3 Extended FCOS FCOS 2022 RGB PBR+real 72.1 .030
4 Extended FCOS FCOS 2022 RGB PBR 66.7 .030
5 DLZDet DLZDet 2022 RGB PBR 65.6 -
6 CosyPose Mask R-CNN 2020 RGB PBR+real 60.5 .054
7 CosyPose Mask R-CNN 2020 RGB PBR 55.7 .055
8 FCOS-CDPN FCOS 2022 RGB PBR 50.7 .047

Table 4. 2D object detection results. The methods are ranked
by the APC score defined in Sec. 2.1. The last column shows the
average image processing time (in seconds).

# Method ...based on Year Data ...type APC Time

1 ZebraPoseSAT CosyPose+Zebra 2022 RGB PBR+real 58.7 .080
2 ZebraPoseSAT CDPNv2+Zebra 2022 RGB PBR+real 57.8 .080
3 ZebraPoseSAT CosyPose+Zebra 2022 RGB PBR 53.8 .080
4 ZebraPoseSAT CDPNv2+Zebra 2022 RGB PBR 52.3 .080
5 DLZDet DLZDet 2022 RGB PBR+real 49.6 -
6 DLZDet DLZDet 2022 RGB PBR 42.9 -
7 CosyPose Mask R-CNN 2020 RGB PBR+real 40.5 .054
8 CosyPose Mask R-CNN 2020 RGB PBR 36.2 .055

Table 5. 2D object segmentation results. Details as in Tab. 4.

achieve even higher segmentation accuracy if relying on de-
tections from YOLOX trained for GDRNPP. As mentioned
in Sec. 4.2, most 6D object localization methods evaluated
in 2022 start by 2D object detection. Leveraging 2D ob-
ject segmentation instead could improve results on objects
with irregular shapes [56] which are included, e.g., in the
industrial ITODD dataset [6].

5. Awards

The following BOP Challenge 2022 awards were pre-
sented at the 7th Workshop on Recovering 6D Object Pose7

organized at the ECCV 2022 conference. The awards are
based on the 6D object localization results in Tab. 2, method
properties in Tab. 3, the 2D object detection results in Tab. 4,
and the 2D object segmentation results in Tab. 5.

The GDRNPP [34, 51] submissions were prepared by
Xingyu Liu, Ruida Zhang, Chenyangguang Zhang, Bowen
Fu, Jiwen Tang, Xiquan Liang, Jingyi Tang, Xiaotian
Cheng, Yukang Zhang, Gu Wang, Xiangyang Ji; Ex-
tended FCOS+PFA [24] by Yang Hai, Rui Song, Zhiqiang
Liu, Jiaojiao Li, Mathieu Salzmann, Pascal Fua, Yinlin
Hu; ZebraPoseSAT [43] by Yongzhi Su, Praveen Nathan,
Torben Fetzer, Jason Rambach, Didier Stricker, Mahdi
Saleh, Yan Di, Nassir Navab, Benjamin Busam, Federico
Tombari, Yongliang Lin, Yu Zhang, Coupled Iterative Re-
finement [32] by Lahav Lipson, Zachary Teed, Ankit Goyal,
and Jia Deng; and RCVPose3D [54] by Yangzheng Wu,
Alireza Javaheri, Mohsen Zand, Michael Greenspan.

7cmp.felk.cvut.cz/sixd/workshop 2022

Awards for 6D object localization methods:

• The Overall Best Method:
GDRNPP-PBRReal-RGBD-MModel

• The Best RGB-Only Method:
GDRNPP-PBRReal-RGB-MModel

• The Best Fast Method (less than 1s per image):
GDRNPP-PBRReal-RGBD-MModel-Fast

• The Best BlenderProc-Trained Method:
GDRNPP-PBR-RGBD-MModel

• The Best Single-Model Method (trained per dataset):
Extended FCOS+PFA-MixPBR-RGBD

• The Best Open-Source Method:
GDRNPP-PBRReal-RGBD-MModel

• The Best Method On Default Detections/Segment.:
GDRNPP-PBRReal-RGBD-MModel-OfficialDet

• The Best Method on T-LESS, ITODD, YCB-V, HB:
GDRNPP-PBRReal-RGBD-MModel

• The Best Method on LM-O:
Extended FCOS+PFA-MixPBR-RGBD

• The Best Method on TUD-L:
Coupled Iterative Refinement (CIR)

• The Best Method on IC-BIN:
RCVPose3D SingleModel VIVO PBR

Awards for 2D object detection/segmentation methods:

• The Overall Best Detection Method:
GDRNPPDet PBRReal

• The Best BlenderProc-Trained Detection Method:
GDRNPPDet PBR

• The Overall Best Segmentation Method:
ZebraPoseSAT-EffnetB4 (DefaultDetection)

• The Best BlenderProc-Trained Segment. Method:
ZebraPoseSAT-EffnetB4 (DefaultDet+PBR Only)

6. Conclusions
In the BOP Challenge 2022, we witnessed another break-

through in the 6D pose estimation accuracy, efficiency and
synthetic-to-real transfer. Methods based on deep neural
networks now clearly surpass the traditional methods based
on point pair features in both accuracy and speed. Vari-
ations of the winning GDRNPP method [34, 51] allowed
us to analyze the importance of different aspects related to
training domains, modalities and run-time efficiency. Be-
sides, we individually measured 2D detection and segmen-
tation performance and could thereby determine sources of
gains in the multi-stage pose estimation pipelines. Despite
the progress, accuracy scores have not been saturated on
most BOP datasets and we are already looking forward to
insights from the next challenge. The online evaluation sys-
tem at bop.felk.cvut.cz stays open and raw results
of all methods will be made publicly available.
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[20] Tomáš Hodaň, Frank Michel, Eric Brachmann, Wadim Kehl,
Anders Glent Buch, Dirk Kraft, Bertram Drost, Joel Vidal,
Stephan Ihrke, Xenophon Zabulis, Caner Sahin, Fabian Man-
hardt, Federico Tombari, Tae-Kyun Kim, Jiřı́ Matas, and
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A method for 6D pose estimation of free-form rigid objects
using point pair features on range data. Sensors, 2018. 5, 6

[51] Gu Wang, Fabian Manhardt, Federico Tombari, and Xi-
angyang Ji. GDR-Net: Geometry-guided direct regression
network for monocular 6D object pose estimation. CVPR,
2021. 2, 4, 5, 6, 8

[52] Less Wright. Ranger: A synergistic optimizer.
https : / / github . com / lessw2020 / Ranger -
Deep-Learning-Optimizer, 2019. 7

[53] Bojian Wu, Yang Zhou, Yiming Qian, Minglun Cong, and
Hui Huang. Full 3D reconstruction of transparent objects.
ACM TOG, 2018. 2

[54] Yangzheng Wu, Alireza Javaheri, Mohsen Zand, and
Michael Greenspan. Keypoint cascade voting for point
cloud based 6DoF pose estimation. arXiv preprint
arXiv:2210.08123, 2022. 5, 6, 7, 8

[55] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and
Dieter Fox. PoseCNN: A convolutional neural network for
6D object pose estimation in cluttered scenes. RSS, 2018. 2,
4, 7

[56] Lei Yang, Yan Zi Wei, Yisheng He, Wei Sun, Zhenhang
Huang, Haibin Huang, and Haoqiang Fan. iShape: A first
step towards irregular shape instance segmentation. arXiv
preprint arXiv:2109.15068, 2021. 8

[57] Sergey Zakharov, Ivan Shugurov, and Slobodan Ilic. DPOD:
6D pose object detector and refiner. ICCV, 2019. 5, 6

2794


