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Figure 1. TSNE [30] visualization for the SHIFT15M.

Abstract

Set-to-set matching is the problem of matching two differ-
ent sets of items based on some criteria. Especially when
each item in the set is high-dimensional, such as an im-
age, set-to-set matching is treated as one of the applied
problems to be solved by utilizing neural networks. Most
machine learning-based set-to-set matching generally as-
sumes that the training and test data follow the same distri-
bution. However, such assumptions are often violated in real-
world machine learning problems. In this paper, we propose
SHIFT15M, a dataset that can be used to properly evaluate
set-to-set matching models in situations where the distribu-
tion of data changes between training and testing. Some
benchmark experiments show that the performance of naive
methods drops due to the effects of the distribution shift. In
addition, we provide software to handle SHIFT15M dataset
in a very simple way: https://github.com/st-
tech/zozo-shift15m. The URL for the software will
appear after this manuscript is published.

1. Introduction
One of the key problems for fashion data analysis is set-

to-set matching [1, 2, 23]. For example, we can consider

{
"user":{"user_id":"xxxx"},
"like_num":"xx",
"set_id":"xxx",
"items":[
{"price":"xxxx","item_id":"xx","category_id1":"xx","category_id2":"xx"},
{"price":"xxxx","item_id":"xx","category_id1":"xx","category_id2":"xx"},
{"price":"xxxx","item_id":"xx","category_id1":"xx","category_id2":"xx"},
…
],
"publish_date":"yyyy-mm-dd"
}

Figure 2. Overview of SHIFT15M dataset.

Figure 3. Minimum sample code using SHIFT15M data loader.

a task that measures the degree of completion of an outfit
by matching sets of clothing items (i.e., for two sets A =
{hat, shirt, skirt} and B = {jacket, shoes}, the matching
score of A and B corresponds to the goodness of the outfit
A∪B). To solve this, we need to investigate neural networks
that handle sets [13, 15, 26, 28, 35, 36, 39, 41].

Another common phenomenon in the domain of fashion
is trend change. These phenomena are observed at various
scales, ranging from annual trend changes such as fashion-
able colors to seasonal trend changes such as summer to
winter clothing. In the field of machine learning, such an
assumption can be defined as a distribution shift (or dataset
shift) [11, 18, 19, 22, 24, 24, 27, 37].

Many machine learning problem settings assume that
training and test data are independent and identically
distributed (i.i.d). We assume that training examples
{(xtr

i , ytri )}ntr
i=1 are independently and identically distributed

(i.i.d.) according to some fixed but unknown distribution
ptr(x, y), which can be decomposed into the marginal dis-
tribution and the conditional probability distribution, i.e.,
ptr(x, y) = ptr(x)ptr(y|x). We also denote the test ex-
amples by {(xte

i , ytei )}nte
i=1 drawn from a test distribution

pte(x, y) = pte(x)pte(y|x).
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Figure 4. Several sample images from SHIFT15M dataset.

Table 1. Statistics on the SHIFT15M dataset.

Property Total 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

#sets 2,555,147 1,423 4,813 131,611 466,583 730,443 617,844 299,502 137,510 92,944 59,412 13,062
#items 15,218,721 8,327 29,140 756,532 2,644,564 4,305,802 3,731,864 1,853,647 855,036 576,022 373,549 84,238
mean set size 6.03 5.85 6.05 5.74 5.66 5.89 6.04 6.18 6.21 6.19 6.28 6.44
median set size 6.00 6.00 6.00 5.00 5.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
mean #likes 26.98 0.94 2.00 15.74 16.84 23.24 37.37 35.67 32.41 24.89 21.34 16.01
median #likes 9.00 0.00 1.00 8.00 6.00 6.00 13.00 18.00 23.00 19.00 17.00 12.00
#unique users 193,574 289 571 16,922 52,283 80,290 49,441 18,854 7,511 4,442 2,739 853

Definition 1.1. (Covariate shift [25]) We consider that the
two distributions ptr(x, y) and pte(x, y) satisfy the covariate
shift assumption if the following conditions hold:

ptr(x) ̸= pte(x), p(y|x) = ptr(y|x) = pte(y|x).

Definition 1.2. (Target shift [40]) We consider that the two
distributions ptr(x, y) and pte(x, y) satisfy the target shift
assumption if the following conditions hold:

ptr(y) ̸= pte(y), p(x|y) = ptr(x|y) = pte(x|y).

To address these problems, we provide SHIFT15M, a real-
world dataset that can handle the above two problem settings,
that is, the set-to-set matching dataset with distribution shift.
Our SHIFT15M dataset is built on data accumulated over the
past 10 years in our fashion SNS. In this SNS, users could
post combinations of their clothing items and other users
could bookmark them as favorites. The data accumulated by
this service, which has been in operation for a decade from
2010 to 2020, is very useful for dealing with distribution
shifts in the fashion sector. Figure 2 shows an overview
of the SHIFT15M dataset. Each column is a set of posted
fashion items, with information such as the user who posted,
the date of publication, and the price of each item. We hope
that our SHIFT dataset will encourage research on set-to-set
matching tasks under the distribution shift.

1.1. Contribution

Our contributions are summarized as follows:

• We propose SHIFT15M, a fashion-specific dataset that
can properly evaluate models for set-to-set matching
under the distribution shift assumptions. SHIFT15M
also enables the performance evaluation of the model
under various magnitudes of dataset shifts by switching
the magnitude. Figure 4 shows several sample images
from the SHIFT15M dataset.

Figure 5. Top panel: trend of price for items included in SHIFT15M.
Bottom panel: trend of number of likes for posted sets.

• We provide open-source software to handle the
SHIFT15M dataset in a very simple way. Figure 3
shows the minimum sample code of our software;

• We propose first-step benchmark methods for set-to-
set matching under distribution shift, numerical experi-
ments show the usefulness of these methods.

2. Statistics on the SHIFT15M dataset
In this section, we present some statistics for our

SHIFT15M dataset. First, Table 1 shows the overview
of statistics on the SHIFT15M dataset. Since our fash-
ion SNS was launched in 2010, the number of users and
posts gradually increased from 2010, reaching a peak around
2014∼2015, and slowly decreasing until 2020, the year the
service was terminated. Also, the number of items in a set
tends to increase over the years, indicating that users tend to
construct outfits with more and more items.

Top panel of Figure 5 shows the trend of price for items

3509



Figure 6. Trends of the number of posted sets by year

Figure 7. Covariate shift of image features.

Figure 8. Category classification results under the covariate shift.

included in the SHIFT15M dataset. It can be seen that the
fashion items posted by users are becoming more expensive
every year. Bottom panel of Figure 5 shows the trend of
number of likes for posted sets.

Figure 6 plots the trend of the number of posted sets by
year. This figure shows that our fashion SNS, the source of
the SHIFT15M dataset, was most active around 2014∼2015.

Finally, we confirm the covariate shift of the image fea-
tures included in SHIFT15M. If covariate shift assump-
tion 1.1 holds, we should be able to construct a classifier
f : x 7→ y = {0, 1}, where x is the image feature of the
item and y is the binary classification output for two years.
Figure 7 shows the experimental results. The results show
that classification between distant years (e.g., acc. of 2010
vs. 2020 is 0.85) is easier, while classification between close
years (e.g., acc. of 2010 vs. 2011 is 0.62) is more difficult,
indicating a gradual shift in image features. Figure 8 also
shows the experimental results of item categorization when
the training and test data were generated from different years.
This figure shows that the closer the years of the training and
test data are, the higher the classification accuracy.

3. Benchmarks
In this section, we introduce several numerical experi-

ments on the SHIFT15M dataset.

3.1. Importance weighted set-to-set matching

As the benchmark strategy for the distribution shift adap-
tation on the set-to-set matching, we propose importance
weighted set-to-set matching which is based on IWERM.

Definition 3.1. (Importance weighted ERM [25]) Impor-
tance Weighted Empirical Risk Minimization (IWERM) uses
the density ratio pte(x)/ptr(x) as the weighting function:

ĥ = arg min
h∈H

1

ntr

ntr∑
i=1

pte(x
tr
i )

ptr(xtr
i )

ℓ(h(xtr
i ), ytri ). (1)

Adopting the density ratio as the weighting function, as in
Definition 3.1, leads to the following statistically important
property.

Theorem 3.1. (Consistency of IWERM [25]) If we set
w(x) = pte(x)/ptr(x) as the weighting function, the em-
pirical error computed by the weighted ERM is consistent
estimator of the expected error in the test distribution.

Using the above ideas, we propose a novel covariate shift
adaptation method for set-to-set matching. Let L(V,W, f)
be the K-pair-set loss [23] function for the set matching,
which is defined as follows:

L(V,W, f) = − 1

K

K∑
i=1

K∑
j=1

δij log
exp(f(Vi,Wj))∑K
k=1 exp(f(Vi,Wk))

,

where δ is Kronecker’s delta, and we can modify L(V,W, f)
as follows:

Lw(V,W, f) = − 1

K

K∑
i=1

K∑
j=1

δijΓ
p
i,j log

Γf
i,j∑K

k=1 Γ
f
i,k

, (2)

where Γp
i,j = ep(test|Vi∪Wj) and Γf

i,j = ef(Vi,Wj). This
modification can be regarded as a weighting based on the
probability that the pair is included in the test set. Here, we
propose two weighting strategies:

max-IW : p(test|Vi ∪Wj) = max
x∈Vi∪Wj

w(x),

mean-IW : p(test|Vi ∪Wj) =
1

|Vi ∪Wj |
∑

x∈Vi∪Wj

w(x),

where w(x) is the weighting function. Next, we approximate
w(x) by using unlabeled data from both ptr and pte. In
IWERM, the squared error can be decomposed as follows:

Epte

[
∆2
]
= Eptr

[
ŵ(x)∆2

]
+ Eptr

[
(w(x)− ŵ(x))∆2

]
,
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Table 2. Experimental results of the Fill-In-The-N -Blank with four candidates.

Models 2013 2014 2015 2016 2017

ERM [23] 0.924(±0.005) 0.907(±0.006) 0.886(±0.009) 0.865(±0.006) 0.855(±0.003)
ERM + mean-IW 0.924(±0.005) 0.917(±0.002) 0.886(±0.003) 0.866(±0.003) 0.860(±0.002)
ERM + max-IW 0.924(±0.005) 0.921(±0.002) 0.896(±0.006) 0.871(±0.001) 0.865(±0.005)

Table 3. Experimental results of the Fill-In-The-N -Blank with eight candidates.

Models 2013 2014 2015 2016 2017

ERM [23] 0.845(±0.000) 0.822(±0.001) 0.791(±0.005) 0.762(±0.008) 0.741(±0.004)
ERM + mean-IW 0.845(±0.000) 0.831(±0.008) 0.792(±0.002) 0.766(±0.004) 0.749(±0.002)
ERM + max-IW 0.845(±0.000) 0.842(±0.004) 0.807(±0.003) 0.769(±0.005) 0.753(±0.005)

where ∆2 = ∥f(x)− y∥2 and ŵ(x) is the approximator of
the weighting function w(x). Second term is bounded as

Eptr

[
(w(x)− ŵ(x))∆2

]
≤ 1

2

(
Eptr

[
∆2
]
+ Eptr

[
(w(x)− ŵ(x))2

])
. (3)

Let s is the indicator of the distributions, where s = 1 corre-
sponds to the train distribution and s = 0 corresponds to the
test distribution, and we assume that p(s) = 0.5. Then, we
also assume that

p(x|s) =

{
ptr(x) (s = 1),

pte(x) (s = 0).
(4)

Then, we have w(x) = p(x|s=0)
p(x|s=1) . Let g(x) be the optimal

source discriminator which identifies whether x is generated
ptr or pte. Then, we can write as g(x) = p(s = 1|x) =

1
1+w(x) . Suppose that the density ratio pte(x)/ptr(x) is
bounded by β > 0, we have 1

1+β ≤ g(x) ≤ 1 for all x.
From the unlabeled data generated from ptr and pte, we can
learn the estimator ĝ of g. Then, we can write the weight
estimation term as

Eptr

[
(w(x)− ŵ(x))2

]
= Eptr

[(
g(x)− ĝ(x)

g(x)ĝ(x)

)2]
≤ (1 + β)4Eptr

[
(g(x)− ĝ(x))2

]
= (1 + β)4Epte

[
(g(x)− ĝ(x))2

ptr(x)

pte(x)

]
≤ 2(1 + β)4Epte

[
(g(x)− ĝ(x))2

]
= 2(1 + β)4

{
Epte

[
(s− g(x))2

]
− Epte

[
(g(x)− ĝ(x))

]}
.

This indicates that the weighting function is approximated
by the function g(x).

3.2. Results of numerical experiments

We introduce benchmark results for a set-to-set matching
under the covariate shift. The model architecture is same as
the previous work [23], which is based on the architecture
of Transformer [15, 20, 33]. Our task can be considered an
extended version of a standard task, Fill-In-The-Blank [8],
which requires us to select an item that best extends an
outfit from among four candidates. Because selecting a set
corresponds to filling multiple blanks, we consider the set
matching problem as Fill-In-The-N -Blank [23]. To construct
the correct pair of sets to be matched, we randomly halve
the given outfit O into two non-empty proper subsets V and
W , as follows: O → {V,W}, where V ∩W = ∅.

Tables 2 and 3 show the experimental results of the Fill-
In-The-N -Blank with four and eight candidates. In these
experiments, data from 2013 are used as training data and
data from 2013∼2017 are used as test data. ERM refers
to empirical risk minimization [6, 31, 32], which assumes
that ptr(x) = pte(x). From these results, we can see that
the covariate shift adaptive set-to-set matching methods can
achieve better performances than the ordinal ERM.

4. Related works and conclusion

Several distribution shift datasets exist for general clas-
sification and regression tasks where the input is a vector.
WILDS [14] is the collection of benchmark datasets [3–5,
7, 9, 12, 17, 21, 29, 38] under the distribution shift, including
histopathological images, satellite images or sequence of
source code tokens. PACS [16] and Office-Home [34] adopt
the image style to differentiate distributions, and VLCS [10]
takes data collected independently from four sources as en-
vironments. Also, DomainNet [42] extends PACS to a far
larger scale, consisting of more domains and categories.

We believe that our SHIFT15M is a very useful dataset for
evaluating the still underdeveloped task of set-to-set match-
ing under natural distribution shifts.
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