
FreqHPT: Frequency-aware attention and flow fusion for
Human Pose Transfer

Liyuan Ma1,2* Tingwei Gao2* Haibin Shen1 Kejie Huang1†

1Zhejiang University, China
2Alibaba Group

{mlyarthur,shen hb,huangkejie}@zju.edu.cn, tingwei.gtw@alibaba-inc.com

Abstract

Human pose transfer is a challenging task that synthe-
sizes images in various target poses while preserving the
original appearance. This is typically achieved through
aligning the source texture and supplementing it to the tar-
get pose. However, most of previous alignment methods
only rely on either attention or flow, thereby failing to fully
leverage distinctive strengths of these two methods. More-
over, the receptive field of these methods is generally limited
in supplementation, resulting in the lack of global texture
consistency. To address this issue, observing that attention
and flow exhibit distinct characteristics in terms of their fre-
quency distribution, Frequency-aware Human Pose Trans-
fer (FreqHPT) is proposed in this paper. FreqHPT investi-
gates the complementarity between attention and flow from
the frequency perspective for improving texture-preserving
pose transfer. To this end, FreqHPT first transforms the
features from attention and flow into the wavelet domain
and then fuses them over multi-frequency bands in an adap-
tive manner. Subsequently, FreqHPT globally refines the
fused features in the Fourier space for texture supplement,
enhancing the overall semantic consistency. Extensive ex-
periments on the DeepFashion dataset demonstrate the su-
periority of FreqHPT in generating texture-preserving and
realistic pose transfer images.

1. Introduction
Human pose transfer has garnered significant attention

due to its potential applications in the fields of fashion and
design, such as virtual try-on, art design and online fash-
ion shopping [24, 37]. However, accurately and effectively
modeling the texture transformation during the pose trans-
fer process remains a significant challenge.

In order to achieve texture-preserving human pose trans-
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Figure 1. The illustration of our observation that flow-based
and attention-based methods exhibit complementary differences
in frequency distributions. This observation indicates that atten-
tion can better recover the low-frequency (LF) structure (overall
human structure), whereas the high-frequency (HF) components
from flow warping are closer to the target (cloth texture details).

fer, previous works employ various spatial alignment meth-
ods, including deformable convolution [32], affine transfor-
mation [41], flow [3, 16, 18, 21, 26, 43] and attention [15,
17, 24, 28, 37], and then supplement the aligned source in-
formation along with the target to obtain generated images.
Among these methods, flow and attention have emerged as
the most effective and widely used approaches.

Flow-based [38, 44, 45] and attention-based [29, 31, 42]
methods have distinctive strengths and limitations in ad-
dressing human pose transfer, which is reflected by fre-
quency domain. As illustrated in Figure 1, flow operations
identify the point-wise correspondences between source
and target. These methods place greater emphasis on cap-
turing rich high-frequency texture details, but lack a guar-
antee for modeling overall structure. In contrast, attention
operations calculate the weighted summation of all source
values for each target position. These methods prioritize
low-frequency semantic consistency, but may exhibit rela-
tively weaker performance in preserving local texture and
details. Therefore, relying only on flow or attention alone is
insufficient to achieve texture-preserving human pose trans-
fer. Besides, previous methods supplement source texture
to the target under restricted receptive fields without aware-
ness of their image-wide correlation, which may bring in-
consistent global human semantics.
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Figure 2. The overview of the proposed FreqHPT. Given the
source image Is and target pose Pt, WLA utilizes the attention
and flow to deform the source features, which are fused into Fag

locally in the wavelet space. Then the fused features are globally
supplemented by FGS in the Fourier space and decoded to gener-
ate the desired image Ig .

Based on the above analysis, we propose Frequency-
aware Human Pose Transfer (FreqHPT) for texture-
preseving human pose transfer, which leverages the comple-
mentarity between attention and flow in a frequency-aware
manner. To boost the alignment effect, FreqHPT applies
Wavelet Local Fusion (WLA) to align the texture with at-
tention and flow by leveraging their advantages in differ-
ent frequency bands. WLA decomposes the aligned tex-
ture with wavelet transform [23] and fuses the aligned fea-
tures in low- and high-frequencies distinguishable and lo-
cally, which avoids the interruption between different fre-
quencies and improves the quality of the target texture. To
further supplement the aligned features, FreqHPT employs
Fourier Global Supplement (FGS) to supplement the global
information from aligned source to the target. FGS adopts
Fourier transform [4] to extract Fourier features character-
izing the global texture information and adaptively supple-
ments the source information to the target through the in-
teraction between Fourier features. The global Fourier fre-
quency information complements the local information in
the wavelet domain while enhancing the feature representa-
tion and model capability.

The main contributions of this paper are as follows: (1)
A novel human pose transfer approach, dubbed FreqHPT, is
introduced, which effectively investigates the complemen-
tarity between flow and attention in frequency domain. Fre-
qHPT involves texture alignment achieved through the fu-
sion of flow and attention in the wavelet domain and tex-
ture supplementation in the Fourier domain. (2) Our method
surpasses existing state-of-the-art approaches both qualita-
tively and quantitatively, which is demonstrated through ex-
tensive experiments on the benchmark.

2. Related Works

Frequency Domain Analysis. Frequency domain analysis
has shown to be effective for various computer vision tasks,

such as image inpainting [35] and image generation [34].
For instance, the wavelet transform has achieved great suc-
cess in these tasks by decomposing the signal into different
frequency bands. Fourier transformation allows global ma-
nipulation and analysis of Fourier features, and its effective-
ness in capturing global receptive fields has been demon-
strated [2]. Furthermore, Fourier analysis has been applied
in video generation [33] and image restoration [5,13]. How-
ever, there has been no prior work focusing on the applica-
tion of frequency domain analysis in pose transfer.
Human Pose Transfer. Pose transfer aims to synthe-
size human images in different poses. Previous work has
used style manipulation [22,36] and flow-based [16,18,26]
approaches to handle this task, but they suffer from los-
ing spatial texture details or failing to generate reasonable
global semantics. Attention-based methods [24,38,45] have
shown their capability in rendering global semantic struc-
tures. [25] combined the advantages of attention and flow
in the spatial domain, while our method performs fusion in
the frequency domain, which better captures the character-
istic of frequency distribution from attention and flow.

3. Method
The framework overview is shown in Figure 2. Fre-

qHPT utilizes WLA to align features along with Discrete
Wavelet Transform (DWT) and Inverse Discrete Wavelet
Transform (IDWT), and applies FGS to supplement them
along with Discrete Fourier Transform (DFT) and Inverse
Discrete Fourier Transform (IDFT).

3.1. Wavelet Local Alignment

As illustrated in Figure 3, WLA first warps the source
feature Fs into Fattn and Fflow by attention and flow. Flow
spatially deforms the source appearance into a target pose
by calculating a point-wise 2D deformation field, which
correlates the target position with the specific source can-
didates. We follow [6,8,10] to estimate the flow in a coarse
to fine manner. Attention predicts the value of the target
position with the weighted summation of the whole source
values. We choose the efficient double attention [1, 24, 40]
as our attention calculation backbone which splits the at-
tention calculation into gathering and distribution. The
aligned features from attention and flow contain both low-
frequency semantic structures and high-frequency sharp de-
tails. Therefore, it is reasonable to fuse them adaptively
across different frequency bands in the wavelet domain.

Specifically, we first decompose the spatial feature into
different frequency elements with DWT. Haar wavelet fil-
ter with a low-pass filter (1/

√
2, −1/

√
2) and high-pass fil-

ter (1/
√
2, 1/

√
2) is applied to extract low-frequency LF

(LL) and high-frequency HF components (LH, HL, HH).
Subsequently, the mask prediction network estimates the
masks with global style modulation techniques. It takes
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Figure 3. The detailed structure of WLA and FGS. Given the aligned features Fattn and Fflow from source feature F l−1
s by attention and

flow along with target feature F l−1
t , WLA decomposes them into low- and high-frequency components LF and HF, which are fused by

low- and high-frequency masks ML and MH calculated with Mask Prediction. FGS then applies DFT to transform F l−1
t and Fag into the

Fourier features including amplitude components Al−1
t / Aag and phase components Phl−1

t /Phag , which are convolved with each other to
refine feature representation globally. Finally, F l

t is obtained by summation with convolved Fag , followed by upsampling.

LFflow/attn, HFflow/attn, Fs, and Ft as inputs and out-
puts the soft masks ML and MH in the low- and high-
frequency bands. Finally, aligned source features Fag are
acquired by fusing Fattn and Fflow, which is computed
as the weighted summation of Fattn and Fflow with corre-
sponding masks ML and MH in low- and high-frequencies.

Due to the independent processing for each frequency
band, we can emphasize the semantical structures of the
attention-aligned features in the low-frequency domain and
retain the sharp details of the flow-aligned features in the
high-frequency effectively. Finally, the wavelet features are
converted back into the Fag in spatial space with IDWT.

3.2. Fourier Global Supplement

Although WLF performs source texture alignment and
fusion locally in the wavelet domain, it lacks consideration
of the global information exchange between source and tar-
get. To address this limitation, FGS turns to supplement the
Fag to the target globally in the Fourier domain. Specifi-
cally, as shown in Figure 3, FGS transforms aligned source
feature Fag and target feature Ft with DFT and updates the
global Fourier features containing Fourier amplitude and
phase from Fag ∈ Rh×w and Ft ∈ Rh×w, respectively. The
updated amplitude value reflecting the frequency intensity
is expressed as:

Asu = C
{√

(
∑
x,y

Ftcos(−2πM))
2
+ (

∑
x,y

Ftsin(−2πM))
2
,

√
(
∑
x,y

Fagcos(−2πM))
2
+ (

∑
x,y

Fagsin(−2πM))
2}

,

(1)
where C{·, ·} represents the concatenation and convolution
operations, as well as M denotes the result value located in
(u, v), which equals x

hu + y
wv calculated in (x, y) coordi-

nate of the spatial input. Besides, the refined phase value
characterizing the global structure is expressed as:

Phsu = C
{
ε(

∑
x,y Ftsin(−2πM)∑
x,y Ftcos(−2πM)

),

ε(

∑
x,y Fagsin(−2πM)∑
x,y Fagcos(−2πM)

)
}
,

(2)

where ε denotes the arctan function, IDFT then turns the
processed Fourier features back into the spatial feature:

Fsu = IDFT(Asu,Phsu). (3)

By globally reasoning in the Fourier domain and sup-
plementing the aligned features Fag , FGS achieves an en-
hanced representation Fsu. Then the next-level feature F l

t

is calculated by summation with Fag and upsampling.

3.3. Loss Functions

Deformation loss Ldefor encourages accurate defor-
mation using attention matrix As→t and flow Ws→t.
We deform the downsampled source image and calculate
the l1 distance with corresponding target image It

↓ as
Ldefor = ||RS(Ws→t, Is

↓)− It
↓||1 +

∑
i ||∇(Ws→t)i||+

||As→tIs
↓−It

↓||1, where RS is the resample function [12]
and ||∇(Ws→t)i|| [27] enables the smoothness of the flow.
Multiple widely used image-to-image loss functions such as
Perceptual loss Lperc [14], Adversarial loss Ladv [7], and
SSIM loss Ladv [30] are also applied for network training.

4. Experiments
Dataset and metrics. The experiments are conducted on
the DeepFashion dataset [19],following the setting of [37]
in 256×176 resolution and [24] in 512×352 resolution. We
utilize SSIM [30], LPIPS [39] and FID [11] to measure the
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Method SSIM↑ FID↓ LPIPS↓ Reid Score (%)↑
AlexNet VGG Topk-1 MAP

ADGAN [22] 0.6721 14.4580 0.2283 0.2557 81.46 80.26
GFLA [26] 0.7677 10.8429 0.2258 0.2765 90.84 87.56
PISE [36] 0.7682 11.5144 0.2080 0.2498 90.09 87.22

SPGNet [20] 0.7758 12.7027 0.2102 0.2443 94.43 91.60
CASD [44] 0.7248 11.3732 0.2157 0.2645 93.09 91.20
NTED [24] 0.7715 9.2876 0.2019 0.2564 97.34 94.73
DPTN [37] 0.7782 11.4664 0.1957 0.2459 97.69 95.04

Ours 0.7800 8.9072 0.1977 0.2369 98.72 95.93

CocosNet2 [45] 0.7236 13.3250 0.2265 0.2735 87.84 86.75
NTED [24] 0.7376 7.7821 0.1980 0.2472 99.71 97.33

Ours 0.7456 6.5522 0.2026 0.2471 98.48 97.80

Table 1. Quantitative comparison results on DeepFashion. (Upper
and lower rows are for 256×176 and 512×352 resolutions). The
first and the second best are bold and underlined.

Method SSIM↑ FID↓ LPIPS ↓ Reid Score(%)↑
AlexNet VGG Topk-1 MAP

w/o WLA 0.7769 11.5039 0.2246 0.2860 97.08 94.96
w/o FGS 0.7778 9.5311 0.2026 0.2400 98.77 96.67

Ours 0.7800 8.9072 0.1977 0.2369 98.83 96.94

Table 2. Ablation study on the DeepFashion dataset. w/o WLA
setting adopts the similar fusion strategy with [25].

Source CocosNet2 NTED Ours Target

Source ADGAN GFLA PISE SPGNet NTED DPTN CASD Ours Target

25
6×
17
6

51
2×
35
2

Figure 4. Qualitative results of FreqHPT on DeepFashion dataset.

image quality. Reid Score [37] further measures the Top-
1 and Mean Average Precision (MAP) by re-identification
model [9], which tests whether the generated query image
can be matched with the corresponding real gallery image.
Quantitative comparison. According to Table 1, our
method achieves the best and second-best results of all met-
rics in both low- and high-resolution datasets, which veri-

Figure 5. Visual comparison results of the ablation study.

fies the superiority of our proposed FreqHPT in rendering
high-quality images and maintaining detailed texture.
Qualitative comparison. As depicted in Figure 4, Fre-
qHPT is capable of facilitating the reoccurrence of source
texture patterns (see 4th to 6th rows) and improving seman-
tical consistency (see 1st row), owing to the proposed local
texture alignment in WLA and global supplement in FGS.
Ablation study. We train several variant models to explore
the contributions of proposed designs by removing the spe-
cific part from FreqHPT. As shown in Figure 5, the absence
of WLA leads to local artifacts (e.g., distorted hand shape in
the 3rd row) due to the lack of accurate local alignment. Ad-
ditionally, the model without FGS fails to generate global
consistent textures (e.g., the shoulder area in the 2nd row).
FreqHPT generates both local and global high-quality tex-
tures. Quantitative results in Table 2 further verify the ef-
fectiveness of each component in FreqHPT.

5. Conclusion
This paper presents a novel human pose transfer frame-

work, which effectively leverages the complementarity of
attention and flow in a frequency-aware manner. The pro-
posed method deforms the features by fusing attention and
flow in the wavelet domain and then supplements the fused
features to the target in the Fourier domain. Extensive ex-
periments demonstrate that the integration of flow and atten-
tion from a frequency perspective can significantly improve
texture-preserving human pose transfer.
Acknowledgement. This work was supported by Alibaba
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