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Abstract
Understanding the design of a product without human

supervision is a crucial task for e-commerce services. Such
a capability can help in multiple downstream e-commerce
tasks like product recommendations, design trend analysis,
image-based search, and visual information retrieval, etc.
For this task, getting fine-grain label data is costly and not
scalable for the e-commerce product. In this paper, we lever-
age knowledge distillation based self-supervised learning
(SSL) approach to learn design representations. These rep-
resentations do not require human annotation for training
and focus on only design related attributes of a product and
ignore attributes like color, orientation, etc. We propose
a global and task specific local augmentation space which
captures the desired image information and provides robust
visual embedding. We evaluated our model for the three
highly diverse datasets, and also propose and measure a
quantitative metric to evaluate the model’s color invariant
feature learning ability. In all scenarios, our proposed ap-
proach outperforms the recent SSL model by upto 8.6% in
terms of accuracy.

1. Introduction
The automatic identification of visual properties, such

as texture, pattern, style, and shape, is highly critical for
e-commerce stores. This capability has many practical appli-
cations, including simulating an offline shopping experience
for customers, enabling sellers and brands to understand and
respond to current trends, and aiding in the recommendation
of relevant products to customers. The visual feature-based
identification should not be limited to clothing or home decor
items, but should widely apply to a range of products, includ-
ing fashion, electronics, furniture, beauty, and bags. One
primary challenge is capturing the pattern, design, and shape
while remaining agnostic to other properties, such as color
and image orientation (e.g. image 2).

An usual e-commerce store may have millions of images

Figure 1. Same pat-
tern label (striped)
but visually differ-
ent pattern

Figure 2. Simi-
lar design but differ-
ent orientation and
color

Figure 3. An ex-
ample of 2 different
products with simi-
lar pattern

for each product type, but labelling them is extremely chal-
lenging, costly and time consuming. Sometimes, sellers or
brands provide the product attribute (e.g. ‘floral’ or ‘solid’
patterns) but these pattern labels are often too generic and
coarse-grained, resulting in products with the same label
(e.g., ‘striped’) that may not necessarily “look similar” in
terms of pattern (as depicted in Figure 1). Self-supervised
learning (SSL) has recently gained significant attention due
to its ability to learn visual embeddings without labeled
data [4, 5, 8, 13, 14, 21]. The SSL approaches, such as
SimCLR [5], MoCo [17], and MoCoV2 [6], use image
augmentation techniques (such as Gaussian Blur, color jit-
tering, and random cropping) to generate positive pairs of
the same image to learn visual similarity embeddings. How-
ever, these approaches also require negative samples for
contrastive loss which is error prone. Recent works, BYOL
[14], DINO [4], and SimSiam [8] have introduced self-
knowledge distillation-based architectures that eliminate the
use of negative pairs.

In the proposed model, we leverage the SSL approach to
learn the desired feature. However, we observed that SSL
has several shortcomings when used directly. Specifically,
it fails to learn fine-grained design representations and is
not agnostic to visual properties like color. To address these
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Figure 4. The block diagram of the proposed model, augmentation space contains the local and global augmentation. The local augmentation
are selected based on the product type Ti and Gl and Gh augmentation are applied to achieve two pair.

shortcomings, we used additional augmentations to learn the
task specific and color invariant feature. The e-commerce
products are diverse and same augmentation does not work
well across multiple product therefore we propose task spe-
cific augmentation. The proposed model is robust and shows
the promising result for a diverse set of task as compared to
vanilla SSL model. Also we propose a new metric to mea-
sure the model’s color invariant learning ability. Our model
has been extensively tested on diverse datasets, e.g. women’s
dresses, furniture, and shirts, demonstrating its effectiveness.
On tested classification tasks, our models show increase by
upto 8.6% in accuracy.

2. Related Work
The goal of this research is to develop a model that learns

an embedding, such that images with similar visual proper-
ties are closer in the embedding space, also the embedding
should be agnostic to the color [1, 11]. To address this prob-
lem, several proposals [3, 15, 19, 20, 22] have been made.
Recently, self-supervised approach allows learning without
the need for supervisory signals, has gained significant at-
tention due to its ability to eliminate the costly annotations.
The initial SSL work RotNet [13], CFN [21] shows good per-
formance, however the recent work in the SSL focus on the
contrastive [16] or knowledge distillation based learning and
shows the promising performance. The approach [5,7] lever-
ages the contrastive learning [10, 16] between the positive
and negative pair. These pairs are made using the augmen-
tation and random sampling respectively. Here sampling
the negative data is error prone therefore model achieves
degraded results.

Another set of recent research BOYL [14], SimSiam [8],
DINO [4] discard the requirement of negative samples and
trains the model only using the original sample and its aug-
mentation as a positive samples. BOYL and Simsiam model
use CNN architecture as backbone and tries to learn the
similar embedding of the augmented version of the same
samples. Other work DINO [4] incorporates the transformer
architecture as backbone and minimize the cross entropy loss
between the two embedding of the teacher and student model.

In these approach the model collapse is the key bottleneck, to
overcome the above challenge knowledge distillation [2, 18]
methods are used. During the distillation only one network
[12] is trained and other learns using the exponential moving
average.

3. Proposed Method
The e-commerce products encompass a wide range of

diverse categories, including apparel (e.g. dresses, shirts,
pants, jackets), curtains, furniture, toys, wall art, and shoes.
Gathering labeled data for these categories can be a chal-
lenging and expensive process. The proposed approach is
based on the self-supervised learning approaches [4,5,8,14].
Similar to DINO [4] our approach leverages the vision trans-
former [9] as the base architecture for image encoding. The
fixed augmentation technique does not work well for the
diverse category since some key attribute in a category may
be not required for others, also in the recommendation of
design or pattern color are not important therefore model
should learn the color invariant feature. To achieve this,
we propose a data augmentation technique that captures the
desired information and produces the robust output.

3.1. Notations
We consider a set of tasks T1, T2, . . . , TK , where each

task corresponds to a specific product type. Let (Sθ) be the
student model and (Tϕ) be the teacher model, where θ and ϕ
are the parameters of the student and teacher, respectively.
3.2. Augmentation Space

Data augmentation is crucial in SSL models, and can
greatly impact the performance of the model. In our ap-
proach, we define two types of augmentations: global aug-
mentations, which capture generic information that is com-
mon across tasks, and local augmentations, which cap-
ture task-specific information. Let G = Gh,Gl represent
global augmentations and let A1,A2,A3, . . . ,AK repre-
sent local augmentations. Here, G{h,l} = g1, g2, . . . gg and
Ai = a1, a2, . . . al, where ai ∈ A andA represents the local
augmentation space. Each local Ai contains a set of aug-
mentations from the local augmentation space. During the
training of the ith task Ti, we select the global augmentation
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Figure 5. Global augmentation space, Gh (first column), Gl (remaining). Here Gh are of high
resolution (224× 224) and Gl are of low resolution (96× 96).

Figure 6. Local augmentation space,
Ai for the women-dress.

Gh,Gl and the corresponding local augmentation Ai. More
details around the augmentations is in the supplementary
sheet. Also for a product, in e-commerce, there are typically
multiple images (5-8) of a single product. Let x′ and x′′ be
two random images from the same product. The positive
pair for the x′x′′ ∈ Ti is defined as follows:

x1,x2 = GhoAi(x
′),GhoAi(x

′′) (1)

y1,y2, . . . ,yc = GloAi(x
′) (2)

In our experiments, Gh and Gl are high and low-resolution
images. Gh generates two positive pairs and Gl generates
c positive pairs. o is a composite operation. GhoAi(x)
and GloAi(x) give the output after the composite operation.
From the set of local augmentations, we can choose any task-
specific augmentation and find images with positive pairs x1

and x2. See Figure 4, 5, 6 for a visual illustration.

3.3. Teacher-Student framework for SSL
We have a set of tasks T1, T2, . . . , TK where each task is

a different product type. During the training of the ith task
Ti, we select Gh and Gl as the global andAi as the local aug-
mentation. Say, after applying the augmentation (GhoAi(x))
we get x1 and x2, which are the high resolution augmented
positive pair and (GloAi(x)) gives y1,y2, . . . ,yc which are
low resolution positive pair. The augmentation obtained by
Gh and Gl passed to the network Tϕ and Sθ respectively,
which is given as:

osi = SM(Sθ(xi)); & oti = SM(Ce(Tϕ(yi))) (3)

Where Ce is the centering function and SM is the Softmax
operation. The Softmax operation for the input Sθ(xi) is:

osi =
exp(Sθ(xi)/τ)∑N
i=1 exp(Sθ(xi)/τ)

(4)

Here τ is the temperature parameter which is used to
flatten the output space. The loss between the output osi

and oti is given as: L(osi ,oti) = −oti log osi We optimize
jointly the high and low resolution augmentation as follows:

L(θ, ϕ) =
∑

{x1,x2}

∑
{y1,y2,...,yc}

L(osi ,oti) (5)

We obtained osi and oti from the Eq-3. The Eq-5 is opti-
mized w.r.t. the student parameter θ i.e.: minθ L(θ, ϕ) Note
that the teacher model is not learned, and it uses exponential
moving averaging to update its parameter and it is given as:
ϕt ← λθt + (1 − λ)ϕt; where λ is hyperparameter. The
cross-entropy loss minimize the oscillate [4], and the model
converges faster.

4. Data and Statistics
Product
Category

Product
Count

Training
Images

Test
Images

Women’s Dress 94,393 534,057 176,993
Shirt 84,775 520,474 157,829
Furniture 56,161 334,589 80,024

Table 1. Datasets and their statistics for the three diverse datasets
Women-dress, Shirt and Furniture.

To evaluate the proposed framework at scale, we consid-
ered three product categories - shirts, women’s dress and
furniture of a popular e-commerce service. The statistics are
provided in the Table 1, For more details, refer to supple-
mentary sheet.

5. Experiment and Results
In order to evaluate the performance of our model, we

conducted rigorous experiments on a highly diverse dataset.
The details of implementation, baselines and Evaluation
metric are provided in the supplementary.

5.1. Evaluation Metric
To evaluate the models, we selected the attributes with

good fill rate and collected the data for these attributes for
each product type (task), to train a classification model. We
measure the accuracy, Recall@90 (R@90) and Recall@95
(R@95) of the product over the selected attribute individually
and report the result. Similarly, we define the evaluation met-
ric to measure the color invariance. To our best knowledge,
this is the first metric to measure the color invariant property
for the model. We provide the details in the supplementary.

5.2. Results
We have evaluated the learned self-supervised embedding

for the two scenario, that are given as follows:
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Pattern Sleeve
Linear Non-liner Linear Non-linear

Acc R@90 R@95 Acc R@90 R@95 Acc R@90 R@95 Acc R@90 R@95

Sh
ir

t

BYOL 56.31 04.10 02.24 59.91 6.494 01.70 81.30 71.14 60.15 83.37 73.51 65.46
SimCLR 78.02 54.88 10.20 78.51 60.15 18.40 81.00 66.47 40.44 83.29 71.89 59.06
DINO 80.29 61.21 25.87 83.19 71.62 50.71 91.39 78.81 77.81 93.93 88.59 81.32
SkiLL 81.01 59.90 31.07 85.66 76.76 63.52 92.81 79.36 78.75 95.14 91.99 86.93

W
om

en
D

re
ss

BYOL 66.77 14.96 01.24 66.95 15.55 02.43 34.46 00.03 00.03 44.99 00.87 00.34
SimCLR 81.29 64.08 44.01 82.47 67.10 50.93 50.23 01.71 00.16 53.92 08.20 02.65
DINO 83.11 67.55 48.28 90.87 87.92 79.96 62.26 17.65 04.08 78.19 58.34 37.09
SkiLL 83.99 68.04 52.30 92.32 91.34 84.46 70.97 38.32 18.67 85.57 75.71 61.21

Table 2. Results for Shirt and Women-dress product type, evaluated for 2 attributes: Pattern & Sleeve which has 20 and 6 classes respectively.

Other Hard-Line (OHL) Subcategories
Linear Non-liner

Acc R@90 R@95 Acc R@90 R@95
BYOL 56.45 27.46 20.39 62.14 33.44 27.37
SimCLR 72.30 49.88 38.53 75.19 54.61 43.08
DINO 83.10 70.52 58.25 85.04 75.34 64.23
SkiLL 83.77 71.79 61.35 86.02 77.45 65.32

Table 3. Hard-line Subcategories classification result, there are 19
subcategories on the hard-line dataset.

Figure 7. The result for the color invariant measurement, similar in
style but agnostic to color shows high color entropy.

5.2.1 Class Discrimination
The results for class discrimination on the Shirt, Women-
Dress, and Hard-Line datasets were evaluated using the met-
ric discussed in Section 5.1. We have shown the results for
these categories in Table 2 and 3. The CNN network-based
models BYOL and SimCLR showed reasonable results for
the easy categories of hard-line and shirt sleeves. How-
ever, for the pattern and women-dress sleeve categories, the
models performance degraded significantly. These models
struggled to capture the fine-grain details and discriminate
between small variations in the complex categories. How-
ever, the proposed model easily capture these information
and outperforms the CNN baselines.

5.2.2 Color Invariant
We evaluated the effectiveness of our learned embeddings
in terms of color invariance by using the metrics outlined
in Section-5.1. The results depicting the average color en-
tropy across all clusters appear in Figure-7. We can see that
SkiLL, demonstrates the highest level of color agnosticism
compared to the other methods.
6. Ablations
Local Augmentation and Preprocessing: The local aug-
mentation plays a key role in the specific product type. We

have conducted the ablation over the proposed task specific
augmentation for the challenging dataset women-dress and
pattern attribute type. We observe that if from SkiLL we
remove the local augmentation (SkiLL \ L) the model per-
formance degraded. The SkiLL without pre-processing
(SkiLL \ H) significantly reduce the model performance.
The results for the women dress are shown in the Table-4 for
the linear and non-linear evaluation.
Color Agnostic: To learn the color agnostic embedding,
we incorporate the RandomGray, ColorJitter and Gaussian-
Blur as a global transformation with the probability p1 = 0.5,
p2 = 0.8 and p3 = 0.5 respectively. We observe that for
small value of p1 = p2 = p3 = 0.1 the color agnostic prop-
erty of the model significantly degraded and color entropy
reduce from 1.01 to 0.90. Therefore, these global augmenta-
tions are necessary to achieve the color agnostic embedding.

Linear Non-liner

Acc R@90 R@95 Acc R@90 R@95
SkiLL \ H 83.67 68.73 50.85 90.92 87.81 78.59
SkiLL \ L 83.74 68.15 52.27 91.91 89.25 79.02
SkiLL 83.99 68.04 52.30 92.32 91.34 84.46

Table 4. Ablation on the women-dress for the pattern classes, with-
out local augmentation (SkiLL \L) model performance degraded.

7. Conclusions
In this paper, we addressed the challenge of learning vi-

sual similarity in terms of style and pattern-type, agnostic
to other properties, such as color, without the use of labeled
data. We proposed a SSL approach using knowledge distil-
lation with the transformer architecture as the backbone for
the teacher and student networks. To solve the desired prob-
lem we carefully designed an augmentation space containing
both local and global augmentations. The local augmenta-
tions were task-specific, allowing us to select the appropriate
ones for a particular task in combination with the global
augmentations. We incorporated the RandomGray, Color-
Jitter, and GaussianBlur global augmentations to achieve a
color agnostic feature space. Our proposed augmentation
outperformed the recent baseline by a significant margin.
We proposed a novel metric to measure the model’s color
agnostic property. The ablation shows the importance of the
proposed component.
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