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Abstract

Humans apprehend the world through various sensory
modalities, yet language is their predominant communica-
tion channel. Machine learning systems need to draw on
the same multimodal richness to have informed discourses
with humans in natural language; this is particularly true
for systems specialized in visually-dense information, such
as dialogue, recommendations, and search engines for cloth-
ing. To this end, we train a visual question-answering (VQA)
system to answer complex natural language questions about
apparel in fashion photoshoot images. The key to the success-
ful training of our VQA model is the automatic creation of a
visual question-answering dataset with 168 million samples
from item attributes of 207 thousand images using diverse
templates. The sample generation employs a strategy that
considers the difficulty of the question-answer pairs to em-
phasize challenging concepts. We see that using the same
transformer for encoding the question and decoding the
answer, as in language models, achieves maximum accu-
racy, showing that visual language models (VLMs) make the
optimal visual question-answering systems for our dataset.
The accuracy of the best model surpasses the human expert
level. Our approach for generating a large-scale multimodal
domain-specific dataset provides a path for training special-
ized models capable of communicating in natural language.
The training of such domain-expert models, e.g., our fashion
VLM model, cannot rely solely on the large-scale general-
purpose datasets collected from the web.

1. Introduction

Fashion is about 2% of the world’s GDP and a signifi-
cant sector of the retail industry. Whenever a new fashion
item like apparel or footwear is launched, the retailer needs
to prepare and show rich information about the product,
including pictures, text descriptions, and detailed attribute
tags. The attributes of the fashion products, including color,
pattern, texture, material, occasion-to-use, etc., require do-

main experts to label them piece by piece. This labeling
process is time-consuming, costly, subjective, error-prone,
and fundamentally imprecise due to the interdependency of
the attributes. To address these issues, we introduce a multi-
task multimodal machine learning model to automatically,
consistently and precisely infer the visual attributes of the
fashion items.

Each item is typically labeled with multiple tags that de-
scribe different attributes of the item. For example, an item
can be labeled with “shirt”, “red”, “solid pattern”, “blue
collar” and “short sleeve”. An intuitive way of learning such
information is to train a multi-label classifier, which outputs
the probability of multiple labels of each input sample. How-
ever, such a model cannot encode the relationship between
different attributes. For example, “short sleeve” is a suit-
able attribute for “shirt”, but not for “jeans”, and “red” only
describes the body part of the shirt, but not the collar. The
model needs to learn attribute and object relationships and
adjusts its output accordingly.

We propose designing a Visual Questioning Answer
(VQA) framework for fashion items, in which the model
is trained to answer complex natural-language questions,
such as “is the person wearing a red shirt with a solid pattern
and blue collar?”, given the input image. The VQA task is
more challenging than the simple attribute classifier since
it requires a thorough understanding of both the question
and the structure and relationship between various visual
attributes in the image. By training such a model, we con-
vert the manual process of tagging new products with visual
attributes into automated answering of a series of questions
with visual intents (auto-labeling). The model also generates
multimodal embeddings of the product images attended to
the questions for downstream dialogue, search, and recom-
mendation systems.

Prior to our work, there exists a large-scale VQA v2
dataset [11], which includes 0.6 million question-answer-
image triplets. It has been widely used as the benchmark in
recent research on VQA tasks. However, this general dataset
only contains a small number of samples related to fashion.
In this work, we build a fashion VQA dataset from a diverse
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apparel product database. The questions, including both
binary and non-binary, are automatically composed by fill-
ing question templates with the given attribute information.
The dataset contains 207 thousand images and 168 million
question-answer-image triplets. The automatic generation
of the VQA dataset from a limited number of images and
attributes allows us to achieve the scale required for training
a multimodal domain expert model.

We leverage a cross-modality fusion model mapping rep-
resentations from visual and text space to the same latent fea-
ture space and performing answer prediction with classifier
modules. Given an image that contains a fashion item and
the corresponding questions regarding its different attributes,
the model predicts the answers to the given questions. We
can then use the model to generate the missing or alternative
attribute information based on its answers.

Additionally, given different but similar text descriptions
on the same item, we can generate consistent feature embed-
dings that enable us to build better online search services.
The existing search engines cannot attend to the relevant
visual parts of a fashion item given the query and do not
adapt the attention mask according to the chained adjectives.
With this work, we can map the input query to the learned
embedding space and perform a robust and fuzzy search in
that multimodal space. We can also provide a visual dia-
logue service, in which the customers can ask consecutive
questions to narrow down the item list according to their
apparel preferences. We can also build a fashion recom-
mendation system in the multimodal embedding space. The
customer-item interaction history is mapped to this space,
and the neighboring items are recommended.

2. Related work

Cross-modality fusion models: Cross-modality fusion
model is a core component of the VQA framework. It
aligns the features from the visual and language modali-
ties. Initially-proposed VQA models identify the high-level
cross-modal interactions by Bilinear Fusion [9]. MCB [7],
MLB [17] and MUTAN [2] are later introduced to achieve
better fusion performance at much lower computational
cost and parameters. Motivated by the remarkable perfor-
mance of the attention mechanism in language and vision
models [6] [31], the attention module becomes the funda-
mental block in designing the cross-modality fusion mod-
els [4, 8, 21, 22, 24, 30, 37, 38].

Fashion datasets: In recent years, many valuable fashion
datasets [23] [10] [39] [40] [33] [12] [15] [3] [36] [32] [34]
have greatly contributed to clothing item recognition and
apparel attribute understanding. However, most of them
suffer from some limitations when considered for training
versatile VQA models.

3. Methods

In this section, we describe how we designed and gener-
ated a novel VQA dataset for fashion. We named the new
dataset FashionVQA dataset. Each sample in the dataset is a
question-answer-image triplet.

3.1. Question templates

We adopt a templating mechanism to automatically create
question-answer pairs from fashion items’ meta-information.
The question templates are designed based on a set of
fixed rules that meet the English grammar and result in
human-readable sentences. By filling the question templates
with specific item attribute (e.g., color, pattern...etc), at-
tribute value (e.g. red, green, stripe...), category (e.g, shirt,
pants...etc), and location (e.g. “on the top”, “on the bot-
tom”...), we can generate a variety of questions for each
image. The answer to each question can be “Yes/No” for
binary questions and multiple choices from the relevant at-
tribute values for non-binary questions.

Since the images from the FashionVQA dataset are all
photoshoot images with a solid background, the question
templates ask only attribute-related questions about the fash-
ion items in the image. For example, “what is the sleeve
length of this shirt on the top?” or “is this a white v-neck
sweater?”. The basic template is structured as “{question
type} {this/these} {a/an/} {pair of/pairs of/} {object} {lo-
cation}?”. When filling the template to expand into a full
sentence, the choices between “is/are”, “this/these”, “a/an”,
“a pair of/pairs of”, and singular or plural format of category
are required to follow the English grammar and be aligned
with the number of targeted fashion item in the image. The
question templates fall into two primary categories based on
the answer types: binary and non-binary templates.

Binary question templates: Binary question templates
typically start with “is this/are these”, “can you see”, or “is
there any {part} on this/these”, followed by the description
of the targeted item in the format of “{location} {a}/{a pair
of/}/{} {attribute value 1} {attribute value 2} {category} ”,
where attribute value 1 and attribute value 2 are two attribute
values from different attributes. Permuting attribute value 1,
attribute value 2, category in different orders yields different
question templates. Conjunction words like “with”, “and”,
or “in” can be used in templates when attribute value 1 or
attribute value 2, or both are located after category. The
most common question types used in binary questions are
“is/are” and “can”.

Non-binary question templates: Non-binary question
templates typically start with question words like “what” /
“why” / “when” / “how” followed by terms of attribute. The
formats of the question type vary from attribute to attribute.
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3.1.1 Balance positive and negative samples for each
binary question

Given binary and non-binary question templates and at-
tribute values for a specific image, we can easily generate
non-binary question-(multiple answers)-image triplets and
binary question-(positive answer)-image triplets.

For a balanced VQA dataset, we expect each binary ques-
tion to come with the same number of positive and negative
samples, i.e., balanced (question, “Yes”, image ID) triplets
and (question, “No”, image ID) triplets. Here is the strategy
to achieve it.

First, we build an attribute-value-to-images dictionary to
map each distinct attribute value or category to a set of eligi-
ble image IDs. Given a specific attribute value, we collect a
set of positive answer image IDs directly from this attribute-
value-to-images dictionary using given attribute value and
its synonyms. The negative answer image IDs are collected
from all image IDs of the same attribute excluding the posi-
tive image IDs. More concretely, to maximally reduce the
noise in the positive/negative answer image IDs, we need to
verify the relationship among attribute values as alternative,
hierarchical, or exclusive terms. Examples of alternative
terminologies are “sweatpants”, “jogger pants”, and “lounge
pants”; examples of hierarchical terminologies are “blue”,
“light blue”, and “sky blue”; and, examples of exclusive
terminologies are “light blue” and “dark blue”. We expect
attribute values with similar terminologies (alternatives and
parents of hierarchical terms) to contain the same set of
positive samples, so they are considered synonyms. In this
manner, we can build an attribute-value-to-(positive/negative
answer)-images dictionary.

Then, we consider all the combinations of assorted at-
tributes with category. For example, ⟨ color, pattern, cat-
egory ⟩, ⟨ color, category ⟩, ⟨ material, neckline type, cat-
egory ⟩, etc. For each combination, we further expand the
attribute-value-to-(positive/negative answer)-images dictio-
nary by mapping the combination of one specific attribute
value and one specific category (e.g. ⟨red, shirt⟩) to its
positive/negative answer image ID set.

With the attribute-value-to-(positive/negative answer)-
images dictionary, we can easily generate different binary
questions via filling the question templates with each com-
bination of attribute value and category in the dictionary.
We can pick a fixed number of positive and negative answer
image IDs to guarantee the sample balance for each ques-
tion. Following the same formula, we can easily expand the
combinations to multiple attribute values and one category.

3.2. Dataset description

FashionVQA: FashionVQA dataset includes 207,654
unique photoshoot images. We use 169,406 images in the
train split for training and 38,248 images in the validation
split for evaluation. The train split is composed of 163M

Model Top-1 Acc
All Non-binary Binary

MUTAN 81.38% 61.62% 87.43%
MCAN∗-v1 84.42% 64.32% 90.58%

MCAN∗-VLM 84.69% 64.65% 90.84%

Table 1. Benchmarks of different VQA models

question-answer-image triplets and the validation split in-
cludes 5.2M question-answer-image triplets.

4. Benchmarks
We benchmark the FashionVQA dataset by training sev-

eral VQA models to learn the interaction between images
and questions. Given the visual embedding of the input im-
age and text embedding of the input question sentence, we
train the model to output the given answer to the question.
The dataset is used to train two variants of the MCAN [37]
model and a MUTAN [2] model. One MCAN variant, named
MCAN∗-v1, is a modification of the MCAN-small, which
includes only two encoder-decoder modules. The other vari-
ant is named MCAN∗-VLM, which has a similar structure
to MCAN∗-v1, but instead of an answer classifier, it has
a token classifier covering all of the question and answer
tokens. For MCAN∗-VLM, the answer to each question is
tokenized as one token and concatenated with the question
tokens as the language input. The special token ‘SEP’ is
inserted between the question and the answer. Also, ‘EOS’
token is used at the end of the answer. During the training
of MCAN∗-VLM, we randomly mask one token and predict
the masked token as in the masked language modeling, simi-
lar to BERT [6]. Table 1 lists the benchmark results of the
three aforementioned models on the validation split of our
FashionVQA dataset. The results show that MCAN∗-VLM
works better than MCAN∗-v1 and MUTAN, indicating that a
decoder-only visual language model (VLM) performs better
than the dedicated VQA architectures. Figure 1 visualizes
the attention map from two validation samples for a series
of binary and non-binary questions.

Accuracy
All Non-binary Binary

Human Expert 1 62.3% 30.5% 74.3%
MCAN∗-VLM 77.7% 47.6% 89.0%
p-value 1.9e-05 0.0125 3.4e-05

Table 2. Comapre the MCAN∗-VLM model to a human expert

5. Comparison to human performance
Human accuracy for FashionVQA dataset: We asked

9 human annotators including 2 experts (trained each expert
with at least ten examples per fashion term) to answer each
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Q: what type of strap is this dress?
GT: [spaghetti, thin]
A: [thin, spaghetti, halter] 

Q: what is the length of this dress?
GT: [midi, at calf, long]
A: [at calf, midi, long]

Q: what pattern is on?
GT: [floral print, botanical print]
A: [botanical print, floral print, 
shape print] 

Q: what type of neckline is the 
dress the person wearing?
GT: [v neck]
A: [v neck, square neck, sweetheart 
neck] 

Q: what is the closure type of this 
dress?
GT: [pullover]
A: [pullover, tie, front tie] 

Nonbinary
Questions/Answers

Q: the one on the top a dark gray 
tank top with sweetheart neck?
GT: [no]
A: [no] 

Q: the one on the top a dark gray 
tank top with scoop neck?
GT: [yes]
A: [yes] 

Q: is the person wearing the one on 
the top a pink tank top with scoop 
neck?
GT: [no]
A: [no] 

Q: on the bottom a pink skirt with 
at thigh length?
GT: [yes]
A: [yes] 

Q: on the bottom a pink skirt with 
floor length?
GT: [no]
A: [no] 

Input
Image

Attention
Map

Attention
Overlay

Binary
Questions/Answers

Input
Image

Attention
Map

Attention
Overlay

Figure 1. Visualization of attention maps generated by the model trained with FashionVQA dataset.

random question in the validation set of our FashionVQA
dataset to the best of their knowledge without looking up the
terms. To analyze the statistical significance of the results,
we calculated the p-values of the human accuracies with
respect to the validation accuracy of the model using the
one-sided t-test.

The model outperforms all of the human annotators at a
95% confidence level, and the differences in the accuracies
between the model and human accuracies are statistically
significant.

Accuracies for human-generated questions: We also
stress-tested the model by measuring its performance on
human-generated questions. We asked another expert anno-
tator to paraphrase the questions of 300 random samples (218
binary and 82 non-binary) from the validation set. We used
these questions instead of the original questions in the vali-
dation set to measure the accuracies of the MCAN∗-VLM
model and a human annotator, Expert 1 (Table 2).

We performed a one-sided t-test to analyze the statistical
significance of the difference between the human and the
model accuracies. At a significance level of 0.05 (α = 0.05),
the p-values reject the null hypothesis of the human accuracy
being greater than or equal to the model.

Impact on downstream tasks: We performed a side-by-
side comparison of the apparel search with/without Fashion-
VQA. A baseline search engine returns the top 24 items for
an apparel search query. Another variant of the search results
is formed by reranking these 24 items with FashionVQA:
we generate a set of binary questions from the search query

and use MCAN∗-VLM model trained with FashionVQA to
answer these questions for each of the 24 items. The average
confidence scores of the yes and no answers are used as
additional features to rerank the top 24 items.

For a number of randomly-selected search queries with
two attribute values and one category, e.g., “green crew neck
dress”, a human annotator is presented with the original and
reranked search result pages (randomly located on the left
and right sides of the screen) and gets to choose her/his
preferred result page. Out of 150 search queries, the human
annotator preferred 117 search pages reranked based on the
FashionVQA. Binomial statistical test results in a p-value
of 3.2e-12, showing that the human annotator significantly
prefers the search result page reranked using FashionVQA.

Conclusion

In this work, we design a fashion VQA dataset and gen-
erate non-binary and binary questions via diverse templates.
The templates allow us to flexibly scale the dataset to the
size and complexity required for training a domain-specific
multimodal model. We benchmark this large-scale dataset
on different VQA models. The best model is a visual lan-
guage model trained on the FashionVQA dataset. The model
generates the cross-modality embeddings of the vision and
language domains applicable to downstream tasks of fashion
dialogue, search, and recommendation.
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