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1. Augmentation Space

The use of data augmentation is crucial in self-supervised
learning models, as it can greatly impact the performance
of the model. In e-commerce, where there is a wide variety
of product categories, it is not feasible to apply a single set
of augmentations to all tasks. For example, augmentations
designed for learning design representations in the fashion
category may not be effective when applied to the furniture
category. Therefore, it is necessary to use different augmen-
tations to capture the relevant information corresponding
to each task.The model also needs to be agnostic to certain
visual attributes, such as being color invariant. This means
that if two items, such as clothes or furniture, are signifi-
cantly different in color but share similar style or pattern,
their embedding distance must be low.

1.0.1 Intuition of Augmentation Space

To understand the intuition behind our proposed augmenta-
tion space, consider the example of a category of women’s
dresses. Our goal is to learn features that are invariant to
color, pose, etc. and focus on style, pattern, and texture.
To achieve this, we divide the local and global features and
define the augmentation accordingly. To make the model ag-
nostic to color, we apply global augmentations such as Ran-
domGray, ColorJitter, and GaussianBlur. These augmenta-
tions also include random size crop and random scale. When
we augment an image using RandomGray, the teacher model
receives a color image while the student network receives the
grayscale equivalent. In order to minimize the embedding
distance, the model must learn features that are invariant
to color. Similarly, ColorJitter and GaussianBlur help the
model learn color-invariant embeddings. In addition to these
global augmentations, we also define lower-resolution aug-
mentations to capture pattern. A close embedding distance
is only possible if the model focuses on patterns.

One of the properties of e-commerce that we can exploit

is the availability of multiple images for a single product,
which we can use as positive pairs. These images typically
show the same product from different angles or perspectives.
By making them or their augmentations positive pairs, the
model learns to ignore some noisy variations of the same
image (e.g. different angles at which the image is shot). For
example, if there are 5 images of a person wearing a dress in
different poses, making these images positive pairs allows
the model to focus on the dress and makes it agnostic to the
pose of the person or the angle at which the image is shot.
Besides these global and lower-resolution augmentations,
we also devise local augmentations that capture task-specific
properties such as neck style, sleeve length, and knee-length
for women’s dresses. To determine image crops that contain
information about these attributes, we use head detection to
identify the head of the person wearing the dress1. We then
use the image crops below the head to capture information
about sleeve length and knee-length, and we crop a rectangle
below the detected head to capture neck style. By using
these crops as positive pairs among local and with the global
augmentations, we can train a model that focuses on the
required attributes. If we move to another product category,
such as shirts, we can discard any augmentations that do not
exist, like knee-length. Similarly, if our use case is limited
to detecting designs and not capturing any other attributes,
we can drop the corresponding augmentations. In image
1 we show examples where product pairs were identified
as “similar” by our model and “dissimilar” by the closest
baseline.

2. Datasets and Evaluation Details

The collection of the dataset are discussed in the main
paper. Here we are discussing the details of the evaluation
metric and classes used for the evaluation.

1We use https://github.com/deepinsight/insightface
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Figure 1. Examples of samples identified as “similar” (embedding distance ≤ 0.15) by our model. Nearest baseline (DINO), trained on the
same data, identified them as dissimilar (distance ≥ 0.8). Women-dress (left), Shirt (middle) and Furniture (right).

2.1. Women-dress

The women-dress are evaluated over the two attribute
Sleeve and Pattern with 9 and 18 classes respectively. The
class details are giving below:

2.1.1 Sleeve

[’3/4 sleeve’, ’short sleeve’, ’sleeveless’, ’long sleeve’, ’half
sleeve’, ’cap sleeve’, ’puff sleeve’, ’bell sleeve’, ’flare
sleeve’]

2.1.2 Pattern

[’solid’, ’floral’, ’striped’, ’polka’, ’checkered’, ’geometric’,
’graphic’, ’animal’, ’tribal’, ’paisley’, ’printed’, ’animal’,
’plain’, ’chevron’, ’screen print’, ’embroidered’, ’quilted’,
’print’]

2.2. Shirt

Shirt category also evaluated for the two attribute Sleeve
and Pattern with 6 and 17 classes respectively. The class
details are giving below:

2.2.1 Sleeve

[’long sleeve’, ’half sleeve’, ’short sleeve’, ’cap sleeve’, ’3/4
sleeve’, ’sleeveless’]

2.2.2 Pattern

[’solid’, ’striped’, ’checkered’, ’printed’, ’geometric’, ’flo-
ral’, ’tribal’, ’quilted’, ’animal’, ’graphic’, ’paisley’, ’plain’,
’polka’, ’tie and die’, ’print’, ’chevron’, ’embroidered’]

2.3. Furniture

The furniture class are evaluated for the sub-category. We
have 19 subcategory that are discussed below.

2.3.1 Sub-category

[’Sofas- Large’, ’Chairs- Large’, ’Tables- Large’, ’Chairs-
Large’, ’Sofa Sets- Large’, ’Desks- Large’, ’Dining Sets-
Large’, ’Patio Furniture Sets- Large’, ’Arm Chairs- Large’,
’Bedside Cabinets - Large’, ’Bean Bags- Large’, ’Din-
ing Tables- Large’, ’Ottomans & Footstools- Large’, ’Din-
ing Chairs- Large’, ’Closet Organization’, ’Folding Chairs-
Large’, ’Beds- Large’, ’Desks & Tables- Large’, ’Recliners
& Loungers- Large’]

3. Evaluation Matrices

We have evaluated our model for the two scenario, the
first focus over the discriminative feature learned by the
model, however second evaluate the model’s ability to learn
the color agnostic feature. The discriminative power are eval-
uated using the standard matrices like, accuracy, Recall@P.
However to evaluate the color invariant feature we don’t
have any standard metric. Therefore in this work we are
proposing the evaluation metric for the same. The details of
the color agnostic evaluation metric are discussed below.

3.1. Color Agnostic Metric

3.1.1 Color ID

For learning color representations, we use an open-source
detectron model to detect “person” in the image, then we
crop the image to maximize the presence of the “person” in
the image. After that, we map the color from RGB to LUV
space. Finally, we get frequency distribution of color in
each image. Reason for moving from RGB to LUV space is
that for 2 colors, correlation of Euclidean distance between
the corresponding coordinates in LUV space and perceptual
similarity that humans feel between them is higher than RGB
space. We compare the histogram of the color coordinates
with each color from a pre-defined list of colors. We assign
the hex-code of the color in the list with which the apparel
is closest. The hex-code is the color representation of the
apparel.



3.1.2 Measuring the color invariant

we collected the embeddings of the test set from our pro-
posed method and cluster them using agglomerative cluster-
ing. After we get the clusters, we calculate the histogram
of colours based on their frequency. Then we calculate the
entropy of the clusters using equation 10. We then take the
average of the entropy across all clusters.

3.2. Recall@P

We calculate the micro average precision and recall. We
are reporting the recall at a predefined value for precision.
We calculate the class probabilities and using precision-recall
curve we clculate the the threshold for predefined precision
value. After we get the threshold we calculate the true-
positives and false-positives and false-negatives. We repeat
this for every class and aggregate the values. At the end, we
calculate the recall by:

Recall =
True–positives

(True–positives+ False–negatives)
(1)

4. Experiment and Results
In order to evaluate the performance of our model, we

conducted rigorous experiments on a highly diverse dataset.
In this section, we will provide information on the imple-
mentation details, the baseline model, the evaluation metric,
and the results of the experiments.

Other Hard-Line (OHL) Subcategories
Linear Non-liner

Acc R@90 R@95 Acc R@90 R@95
BYOL 56.45 27.46 20.39 62.14 33.44 27.37
SimCLR 72.30 49.88 38.53 75.19 54.61 43.08
DINO 83.10 70.52 58.25 85.04 75.34 64.23
SkiLL 83.77 71.79 61.35 86.02 77.45 65.32

Table 1. Hard-line Subcategories classification result, there are 19
subcategories on the hard-line dataset.

4.1. Implementation Details

5. Implementation Details
We used patch sizes of eight in our models, which are

more costly to use compared to patch sizes of 16, but pro-
vided better results. To aggregate information for the en-
tire sequence, we added a learnable token to our model [9]
without using label information. Our transformer module
consisted of self-attention, residual connections, and fully
connected layers. We trained our model with a batch size
of 32 distributed over four GPUs. We employed a similar
learning rate schedule as in [4], which utilized linear scaling
for the first 10 epochs and then used cosine scheduling for
the decay of the learning rate. The temperature parameter

also played a crucial role in our model, and we set it to a
lower value in the range of τ ∈ [0.04, 0.07]. As the epochs
progressed, we increased the l2 penalty from an initial value
of 0.04 to 10× its original value. We used Pytorch libraries
such as torchvision and opencv to train our model, which
was done on an Nvidia V100 GPU.

5.1. Baseline

In our experiments, we compared our model (SkiLL)
to several strong baselines in the self-supervised learning
field. One of these baselines, the Transformer-based DINO
model [4], is similar to our approach in that it uses a teacher-
student framework with a transformer architecture. How-
ever, our approach differs in the use of local and global
task-specific augmentation. Another baseline, BYOL [14],
also uses a teacher-student framework with a convolutional
network, but it measures the cosine similarity between posi-
tive pairs. Finally, SimCLR [5] employs a contrastive loss
and negative samples for self-supervision. We evaluated all
of these approaches, against SkiLL, using linear and non-
linear classifier for the learned features and the proposed
color invariant metric.

5.2. Evaluation Metric

We collected the data from a popular a e-commerce ser-
vice where corresponding to each product we have a set of
attribute value for e.g., the women-dress has attribute sleeve
length, neck style, pattern, etc. We collected the data from a
popular a e-commerce service where corresponding to each
product we have a set of attribute value for e.g., the women-
dress has attribute sleeve length, neck style, pattern, etc.
To evaluate the models, we decided on available attributes
with good fill rate collected the data for these attributes
for each product type (task), to train a classification model.
For example, in the women-dress the pattern attribute has
18 labels [‘solid’, ‘floral’, ‘striped’, ‘polka’,...]. The self-
supervised learned embeddings are classified into one of the
18 classes. We measure the accuracy, Recall@90 (R@90)
and Recall@95 (R@95) of the product over the selected
attribute individually and report the result. The accuracy for
the print-type attribute over the product Ti is given as:

Aprint−type(Ti) =
1

Ni

Ni∑
j=1

Acc(ŷ,y) (2)

Here ŷ and y are the predicted and ground truth value
Acc(ŷ,y) = 1 if both belong to same class else zero.

Similarly, we define the evaluation metric to measure
the color invariance, to our best knowledge, this is the first
metric to measure the color invariant property for the model.
We first use the embeddings to perform an agglomerative
clustering, such that “visually similar” product as per the
model get grouped into one cluster. Then we convert the
image into LUV space, in this space we define each image



by a unique color ID. See the supplement for the process
to assign color ID to each product. Once we have color ID,
for each cluster we can find the histogram of based on the
frequency of the color id in a particular cluster. Let hi is the
histogram of a particular cluster j, then its entropy of the
task is defined as:

Ci =
1

L

L∑
j=1

−hj log hj (3)

More the color diversity in a cluster shows the higher aver-
age entropy. In this way, we can compare the two model’s
color invariant learning ability, however having the same
number of cluster L. A model which is not agnostic to
color, would tend to have a peaky histogram and hence lower
entropy.

5.3. Results

We have evaluated the learned self-supervised embedding
for the two scenario, that are given as follows:

5.3.1 Class Discrimination

The results for class discrimination on the Shirt, Women-
Dress, and Hard-Line datasets were evaluated using the met-
ric discussed in Section 5.2. The pattern and sleeve attributes
of the Shirt and Women-Dress datasets were evaluated. The
Women-Dress dataset had 18 classes for the pattern attribute
and 9 classes for the sleeve attribute, while the Shirt dataset
had 17 and 6 classes, respectively, for the same attributes.
The Hard-Line dataset, which included products such as
sofas and furniture, had 19 subcategories that were used as
targets for classification. More details on the dataset are
provided in the supplmentary sheet. The results for these
categories are shown in Table 3 and 2. The convolutional
network-based models BYOL and SimCLR showed reason-
able results for the easy categories of hard-line and shirt
sleeves. However, for the pattern and women-dress sleeve
categories, the models showed significantly degraded per-
formance. These models struggled to capture the fine-grain
details and discriminate between small variations in the com-
plex categories. Table 2 demonstrates that the sleeve cate-
gory for the shirt showed better results because it is simpler,
while the women-dress sleeve category with more complex
classes resulted in significantly degraded model performance.
The DINO model shows promising results for most product
types and outperformed the BYOL and SimCLR models by
a significant margin. However, the proposed model, SkiLL,
consistently outperforms the state-of-the-art DINO model
and showed promising results even when all other models
failed, such as the women-dress sleeve category. Figures
2, 3 and 4 are some examples from women’s dress sleeves
classification task, where other baseline fails to properly
predict the sleeve type. Some more examples can be seen
in the supplementary sheet. While other models showed

Figure 2. DINO:
long sleeve, SkiLL:
puff sleeve

Figure 3. DINO:
short sleeve, SkiLL:
bell sleeve

Figure 4. DINO:
three quarter sleeve,
SkiLL: short sleeve

Figure 5. The result for the color invariant measurement, similar in
style but agnostic to color shows high color entropy.

good accuracy, they struggled with high recall scores, par-
ticularly at the Recall@90 (R@90) and Recall@95 (R@95)
levels. The proposed SkiLL model, however, shows high
recall scores. Finally, the model was evaluated using both
linear and non-linear classifiers, and the linear classifier also
showed promising results, indicating that the learned embed-
ding can be used for downstream tasks, such as clustering.

5.3.2 Color Invariant

We evaluated the effectiveness of our learned embeddings
in terms of color invariance by using the metrics outlined
in Section-5.2. The results, which depict the average color
entropy across all clusters, are presented in Figure-5. It can
be seen that our proposed model, SkiLL, demonstrates the
highest level of color agnosticism compared to the other
methods. Further, the embedding for shirts exhibits greater
color agnosticism than for women’s dresses. This may be
attributed to the higher level of color variation present in the
training data for shirts, leading to a more robust model that
can effectively ignore color information.

6. Ablations
Local Augmentation and Preprocessing: The local aug-
mentation plays a key role in the specific product type. We
have conducted the ablation over the proposed task specific
augmentation for the challenging dataset women-dress and
pattern attribute type. We observe that if from SkiLL we
remove the local augmentation (SkiLL \ L) the model per-



formance degraded. Also, the image pre-processing like
object detection head cropping overcome the model bias
towards the background or undesired feature. The SkiLL
without pre-processing (SkiLL\H) significantly reduce the
model performance. The results for the women dress are
shown in the Table-2 for the linear and non-linear evaluation.

Color Agnostic: As we discussed earlier to learn the color
agnostic embedding, we incorporate the RandomGray, Col-
orJitter and GaussianBlur as a global transformation with
the probability p1 = 0.5, p2 = 0.8 and p3 = 0.5 respectively.
We observe that for small value of p1 = p2 = p3 = 0.1 the
color agnostic property of the model significantly degraded
and color entropy reduce from 1.01 to 0.90. Therefore, these
global augmentations are necessary to achieve the color ag-
nostic embedding.

Linear Non-liner

Acc R@90 R@95 Acc R@90 R@95
SkiLL \ H 83.67 68.73 50.85 90.92 87.81 78.59
SkiLL \ L 83.74 68.15 52.27 91.91 89.25 79.02
SkiLL 83.99 68.04 52.30 92.32 91.34 84.46

Table 2. Ablation on the women-dress for the pattern classes, with-
out local augmentation (SkiLL \L) model performance degraded.

7. Examples where SkiLL classification is better
than Baseline

aa

Figure 6. DINO:
three-fourth, SkiLL:
bell sleeve

Figure 7. DINO:
sleeveless, SkiLL:
long sleeve

Figure 8. DINO:
short sleeve, SkiLL:
sleeveless

8. Qualitative Clusters with SkiLL embeddings
In figures 9 and 10 we show examples of clusters formed

via agglomerative clustering of the SkiLL embeddings of the
images. Note that the embeddings focus primarily on style
of the apparels and is agnostic to the color of the product or
pose of the human. These us analyse design trends and rec-
ommend a different color for the same design to customers.

Figure 9. Cluster example 1

Figure 10. Cluster example 2
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